1
|
Shams S, Shahrousvand M, Mohammadi-Rovshandeh J, Moghaddam AB, Heidari V, Esmaeili J. Encouraging collagen and epithelial layer formation via poly (lactic acid)/hyaluronic acid hybrid wound dressing containing niacinamide. Int J Biol Macromol 2025; 306:141463. [PMID: 40032096 DOI: 10.1016/j.ijbiomac.2025.141463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
This study examines the fabrication and characterization of electrospun nanofibrous mats composed of poly (lactic acid) (PLA), hybridized hyaluronic acid (HA), and niacinamide (NA) for potential applications in wound dressings. PLA and HA concentrations were changed from 4 to 12 wt% and 0.25 to 1 wt%, respectively. The morphological analysis revealed that mats with 8 wt% PLA produced smooth, bead-free fibers with an average diameter of 632 nm. Meanwhile, all concentrations of HA nanofibers had beads, except for the 1 wt%, whose average fiber diameter was 234 nm. Mechanical testing indicated that PLA-HA mats achieved a tensile strength of 4.93 MPa and elongation at a break of 88 ± 4 %. In comparison, PLA-HA-NA mats exhibited a tensile strength of 4.1 MPa but improved elongation at a break of 91 ± 4.5 %. Hydrophilicity assessments indicated that the contact angle for PLA-HA-NA was 25°, demonstrating superior fluid absorption compared to pure PLA, which had a contact angle of 109°. Drug release studies revealed that after 720 min, approximately 72.3 ± 3.6 % of NA was released from the electrospun mat, following a Korsmeyer-Peppas model with a transport exponent (n) of 0.29, indicating controlled release. In-vitro cytotoxicity tests showed cell viability rates of 94 % for PLA-HA-NA after 72 h. In-vivo studies on rats demonstrated that by day 14, wounds treated with PLA-HA-NA achieved a closure rate of 96 ± 4.6 %, compared to 93 ± 4.3 % for PLA-HA and 82 ± 3.8 % for the control group. These results highlight the potential of PLA-HA-NA nanofibers as effective wound dressings with desirable mechanical properties and biocompatibility.
Collapse
Affiliation(s)
- Soroush Shams
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Guilan, Rezvanshar, Iran; Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, Tehran, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Guilan, Rezvanshar, Iran.
| | - Jamshid Mohammadi-Rovshandeh
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Guilan, Rezvanshar, Iran.
| | | | - Vida Heidari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Javad Esmaeili
- Tissue Engineering Hub Group (TEHUB), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
2
|
Wong R, Sichmann MGDO, Sun J, Kim AR, Bianchini RJ, Hermanson KD, Chabert L. In Vitro and In Vivo Assessment of an Innovative Peeling System with Azelaic and Tranexamic Acids for Targeted Hyperpigmentation Reduction. Dermatol Ther (Heidelb) 2025; 15:1209-1225. [PMID: 40254690 PMCID: PMC12033157 DOI: 10.1007/s13555-025-01399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
INTRODUCTION Melanin, derived from tyrosine, plays a pivotal role in skin pigmentation through melanogenesis. Disruptions in this process lead to hyperpigmentation, a condition affecting skin tone and quality of life. Current treatments, including chemical peels, have limitations, highlighting the need for novel solutions. Here, we present an innovative peeling system, comprising a masque and moisturizer, formulated with a novel blend of acids, including azelaic acid (AZA) and tranexamic acid (TXA), alongside known brightening and penetration-enhancing agents for a comprehensive solution to target hyperpigmentation. METHODS In vitro studies assessed the ability of the novel moisturizer to inhibit ultraviolet-A (UVA)-induced melanin accumulation in human melanocytes. In a single-center, controlled study, we assessed the efficacy of the peeling system in 33 healthy female participants aged 30-55 years with moderate-to-severe hyperpigmentation over a 6-week treatment period. Skin condition was assessed using clinical photography, 3D skin topography, and clinical expert evaluation (CEE) at baseline and 6 weeks post-treatment. Participants completed a self-evaluation questionnaire at 6 weeks post-treatment. RESULTS In vitro findings demonstrated a concentration-dependent inhibition of melanin accumulation by the novel moisturizer. In vivo, significant reductions in dark spot number, area, and perimeter were observed at week 6, along with improvements in skin homogeneity, contrast, and brightness. Skin tone and roughness parameters also improved significantly from baseline. These findings were supported by self-evaluation findings and improvements in CEE parameters. CONCLUSION These data provide evidence for the efficacy of the innovative peeling system in reducing the appearance of hyperpigmentation over a 6-week treatment regimen in females with healthy skin and moderate-to-severe hyperpigmentation. The inclusion of AZA and TXA within the peeling system, along with active brightening and penetration-enhancing ingredients, may have synergistically facilitated the observed improvements. This multifaceted approach may address hyperpigmentation at the source, contributing to overall improvements in the appearance of the skin.
Collapse
Affiliation(s)
- Russell Wong
- Rejuvenation Dermatology, 5083, Windermere Blvd Unit 101, Edmonton, AB, T6W 0J5, Canada.
| | | | | | | | | | | | | |
Collapse
|
3
|
Kircik L, Tan J, Lain E(T, Beleznay K, Chavda R, Lachmann N, Brinkhuizen T, Baldwin H, Layton AM. One Acne™: A holistic management approach to improve overall skin quality and treatment outcomes in acne with or without sensitive skin. Int J Dermatol 2025; 64:637-646. [PMID: 39551973 PMCID: PMC11931094 DOI: 10.1111/ijd.17546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/19/2024]
Abstract
Acne and sensitive skin can take a profound toll on patients' well-being, which can be exacerbated if the conditions are experienced together. This narrative review aims to identify appropriate treatments to facilitate a holistic management approach to acne (One Acne™), sensitive skin, and acne-induced sequelae and describe the role of treatments in improving skin quality. Topical retinoids are considered the preferred first-line option for acne treatment by dermatologists, either as monotherapy or in combination with other treatments, because of their ability to target various aspects of the disease. Tretinoin, trifarotene, adapalene, and tazarotene have all been assessed in clinical studies for managing acne-associated scarring, with varying success, with the latter three reported to improve skin quality. Moreover, some corrective procedures, e.g., injectable non-animal stabilized hyaluronic acid (NASHA) fillers, have proven effective for treating acne scarring. Both treatment types may complement each other to provide optimal treatment outcomes and patient satisfaction, as observed in several patients receiving concomitant treatment with NASHA fillers/topical trifarotene. Adjunctive use of cleansers, moisturizers, and photoprotection-containing ingredients such as vitamin B3, glycerin, or pro-vitamin B3 may also complement drug/corrective treatments to reduce skin irritation and risk of scarring, as well as improve skin hydration, tone, and overall appearance. This narrative review highlights that comprehensive skincare regimens should be used throughout acne patients' journeys to reduce treatment-related irritation, improve treatment outcomes, adherence, and satisfaction, and enhance overall skin quality. Patients with sensitive skin should choose tailored skincare products to maintain skin barrier integrity and restore skin function.
Collapse
Affiliation(s)
- Leon Kircik
- Department of DermatologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Jerry Tan
- University of Western OntarioWindsorONCanada
- Windsor Clinical Research IncWindsorONCanada
| | | | - Katie Beleznay
- Department of Dermatology and Skin ScienceUniversity of British ColumbiaVancouverBCCanada
| | | | | | - Tjinta Brinkhuizen
- Department of Dermatology, Catharina Hospital EindhovenMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Hilary Baldwin
- Robert Wood Johnson Medical CenterNew BrunswickNJUSA
- The Acne Treatment and Research CenterBrooklynNYUSA
| | - Alison M. Layton
- Skin Research CentreUniversity of YorkYorkUK
- Department of DermatologyHarrogate and District NHS TrustHarrogateUK
| |
Collapse
|
4
|
Goswami S, Namkoong J, El Hajoui M, Lesniak E, Wu J. In Vitro, Ex Vivo, Instrumental, and Clinical Assessment of a Novel Anti-aging Serum Targeting Oxidative Stress. J Cosmet Dermatol 2025; 24:e16664. [PMID: 40178310 PMCID: PMC11967377 DOI: 10.1111/jocd.16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/26/2024] [Accepted: 10/22/2024] [Indexed: 04/05/2025]
Abstract
BACKGROUND Primarily driven by oxidative stress, aging results from the attrition of cells, aggravated by environmental stressors. Therefore, protection from oxidative stress is the main target of antiaging cosmetics. AIMS To evaluate the efficacy of a unique cosmetic serum combining five antioxidants and hyaluronic acid. METHODS The inactivation of reactive oxygen species by the serum was evaluated in-tubo. IL-1α release was evaluated using EpiDermTM skin models, while gene expression analysis and elastin fiber length were evaluated on human skin explants. Finally, the effect of twice daily serum application for 28 days was compared to those induced by a control serum, focusing on instrumental and assessor evaluations. RESULTS In-tubo, the serum reduces reactive oxygen species by 45.2%. A single topical application on EpiDermTM skin models limits UV-induced ROS-mediated IL-1α release. Compared to untreated explants, HB-EGF (heparin-binding epidermal growth factor) skin homeostasis marker expression increases by 22-fold with treatment. Additionally, the serum increases elastin fiber length by 40.2%. Clinically, twice daily application of the serum over a period of 7 days revealed significant improvements in clinical scoring of skin's wrinkle (-12.8%), smoothness (+12.5%), and radiance (+22.2%). The serum also leads to a rapid and long-lasting increase in skin hydration (30 min: +50.5%, 28 days: +19.9%) and reduced transepidermal water loss (30 min: -7.7%, 28 days: -8.7%). The serum is highly efficacious and well tolerated by the subjects. CONCLUSION The serum has antioxidant, soothing, photoprotective, and moisturizing properties that can be explained by the individual properties of its unique blend of actives.
Collapse
Affiliation(s)
- Sayantani Goswami
- Skin Research and Innovation, Global Personal Care and Skin Health R&DColgate‐Palmolive CompanyPiscatawayNew JerseyUSA
| | - Jin Namkoong
- Skin Research and Innovation, Global Personal Care and Skin Health R&DColgate‐Palmolive CompanyPiscatawayNew JerseyUSA
| | | | - Ewelina Lesniak
- Personal Care Product Development, Skin Health R&DColgate‐Palmolive CompanyPiscatawayNew JerseyUSA
| | - Joanna Wu
- Skin Research and Innovation, Global Personal Care and Skin Health R&DColgate‐Palmolive CompanyPiscatawayNew JerseyUSA
| |
Collapse
|
5
|
Li Y, Yang B, Li N, Wei J, Wu Y. Association between dietary niacin intake and atherosclerotic cardiovascular disease among American adults: national health and nutrition examination survey. Front Nutr 2025; 12:1566684. [PMID: 40230721 PMCID: PMC11994425 DOI: 10.3389/fnut.2025.1566684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Background The relationship between dietary niacin and atherosclerotic cardiovascular disease (ASCVD) is still not fully understood. Our objective was to assess the association between dietary niacin intake and the prevalence of ASCVD. Methods In this cross-sectional study, we examined a cohort of 15,685 adult individuals in the United States, aged 20 years and older, who participated in the National Health and Nutrition Examination Survey (NHANES) carried out between 2007 and 2014. Dietary Niacin consumption was assessed using a 24-h dietary recall method. The assessment of the presence of ASCVD was conducted through the Patient Medical Conditions Questionnaire. To assess the reliability of the results, restricted cubic spline models and logistic regression analyses were employed, along with conducting subgroup analyses. Results The analysis included 15,685 participants who were 20 years or older, drawn from the NHANES data for the cycles spanning 2007 to 2014. Of which 10.4% (1,638/15,685) were diagnosed with ASCVD. The probability of ASCVD diminishes by 9% with each 10 mg/day increment in dietary niacin intake (OR = 0.91, 95% CI: 0.87-0.96). This association held true when niacin consumption was assessed as a categorical variable. Compared to individuals with the lowest dietary niacin intake, defined as T1 (≤17.4 mg/day), the adjusted odds ratios for ASCVD in those with higher niacin intakes, T2 (17.5-27.2 mg/day) and T3 (≥27.3 mg/day), were 0.87 (95% CI: 0.76-0.99, p = 0.037) and 0.75 (95% CI: 0.64-0.87, p < 0.001), respectively. There was an inverse association between dietary niacin intake and ASCVD prevalence, supported by sensitivity analyses. Subgroup analysis revealed an interaction effect when stratified by age. Conclusion This analysis of NHANES data has demonstrated that niacin is significantly negative associated with ASCVD in American adults aged ≥20 years.
Collapse
Affiliation(s)
- Yan Li
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Beilei Yang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Na Li
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Jinjuan Wei
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Yue Wu
- Department of Cardiovascular Medicine, People’s Hospital of Xiangxi Tujia and Miao Autonomous Prefecture, The First Affiliated Hospital of Jishou University, Jishou, China
| |
Collapse
|
6
|
Wen L, Wang P, Zhang G, Ma Y, Li J, Chen D, Liu L, Hu H, Huang C, Yao X. Prognostic and Immunological Significance of NMNAT1 in Colorectal and Pan-Cancer Contexts. Onco Targets Ther 2025; 18:389-410. [PMID: 40160196 PMCID: PMC11954486 DOI: 10.2147/ott.s504668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Nicotinamide plays a critical role in the prevention and treatment of tumors, and its metabolism is closely associated with tumor progression. The aim of this study was to understand the prognostic and immunological significance of nicotinamide metabolism-related genes in pan-cancer. Methods We downloaded The Cancer Genome Atlas and Genotype Tissue Expression pan-cancer datasets for NMNAT1 from the UCSC database. We analyzed the differential expression, prognosis, genetic alterations, DNA methylation, immune infiltration, and co-expression with RNA modification-related genes and immune checkpoint-related genes. Genes with expression patterns similar to NMNAT1 were identified using the GEPIA library. The GSCA database was used to investigate the correlation between gene expression and drug sensitivity, as assessed by GDSC and CTRP. The CancerSEA database was employed to examine the association of NMNAT1 expression at the single-cell level across different tumors and its relation to 14 functional states. Immunohistochemistry was performed to assess the clinical significance of NMNAT1 expression. Results NMNAT1 exhibited differential expression across 25 tumor types, including colorectal cancer (CRC), and its expression was significantly associated with the prognosis of 11 tumors. Furthermore, NMNAT1 expression correlated significantly with clinicopathological features. NMNAT1 was strongly associated with immune cells, RNA modification-related genes, and immune checkpoint-related genes in most tumors, affecting immune responses. The expression of NMNAT1 also correlated with sensitivity and resistance to several drugs. Single-cell analysis revealed that NMNAT1 is involved in the progression of retinoblastoma, uveal melanoma, and CRC. Immunohistochemical analysis confirmed that NMNAT1 expression is an independent prognostic factor in patients with CRC. Conclusion NMNAT1 is a crucial prognostic and immune marker gene for nicotinamide metabolism, particularly in CRC. It has potential as a clinical biomarker and a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Liang Wen
- Gannan Medical University, Ganzhou, People’s Republic of China
- Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Ping Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Guosheng Zhang
- Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
| | - Yongli Ma
- Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Jinghui Li
- Gannan Medical University, Ganzhou, People’s Republic of China
- Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Dengzhuo Chen
- Gannan Medical University, Ganzhou, People’s Republic of China
- Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Linfeng Liu
- Gannan Medical University, Ganzhou, People’s Republic of China
- Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Hongkai Hu
- Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
| | - Chengzhi Huang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Xueqing Yao
- Gannan Medical University, Ganzhou, People’s Republic of China
- Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, People’s Republic of China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| |
Collapse
|
7
|
Dal Col V, Marchi C, Ribas F, Franzen Matte B, Medeiros H, Domenici de Oliveira B, Viana R. In Vitro Comparative Study of Calcium Hydroxyapatite (Stiim): Conventional Saline Dilution Versus Poly-Micronutrient Dilution. Cureus 2025; 17:e80344. [PMID: 40206905 PMCID: PMC11980529 DOI: 10.7759/cureus.80344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
Calcium hydroxylapatite (CaHA) is widely used in aesthetics for its dual role as a dermal filler and biostimulator, promoting collagen and elastin synthesis. This study evaluates the comparative potential of CaHA in conventional saline dilution versus CaHA mixed with a poly-micronutrient solution (CaHA/PMN) to enhance its biostimulatory effects. In an in vitro model, primary human fibroblasts were treated with both formulations, and cell viability and gene expression of type I collagen, elastin, FOXO3, SIRT-1, and SIRT-3 were assessed. The results demonstrated that both CaHA and CaHA/PMN treatments significantly improved cellular responses compared to the control. CaHA/PMN outperformed conventional CaHA, with greater increases in cell viability, collagen synthesis, elastin synthesis, and the expression of SIRT-1, SIRT-3, and FOXO3. These findings suggest that poly-micronutrient-enriched solutions can enhance CaHA's regenerative potential, providing a promising approach for skin rejuvenation and elasticity improvement.
Collapse
|
8
|
Goff GK, Stein SL. Cosmeceuticals in the Pediatric Population Part I: A Review of Risks and Available Evidence. Pediatr Dermatol 2025; 42:221-227. [PMID: 39925031 PMCID: PMC11950811 DOI: 10.1111/pde.15866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/19/2024] [Accepted: 12/24/2024] [Indexed: 02/11/2025]
Abstract
The rise in the use of cosmeceuticals among children and adolescents has created a new challenge for dermatologists, who are confronted with the task of advising young patients on the risks that these products can carry and the often questionable efficacy of these products. While some cosmeceuticals can be beneficial for this population when used correctly, such as broad-spectrum sunscreen or specific anti-acne agents, other products may not carry benefits for young skin and could even cause complications, particularly in young consumers who have skin conditions such as acne or atopic dermatitis. Many of the common ingredients in cosmeceutical products have had very limited (if any) studies conducted in pediatric populations, and much of the data regarding the efficacy claims and risks of these products must be inferred from studies in adult patients.
Collapse
Affiliation(s)
| | - Sarah L. Stein
- Department of Medicine and Pediatrics, Section of DermatologyUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
9
|
Golubnitschaja O, Sargheini N, Bastert J. Mitochondria in cutaneous health, disease, ageing and rejuvenation-the 3PM-guided mitochondria-centric dermatology. EPMA J 2025; 16:1-15. [PMID: 39991093 PMCID: PMC11842662 DOI: 10.1007/s13167-025-00400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/25/2025]
Abstract
Association of both intrinsic and extrinsic risk factors leading to accelerated skin ageing is reflected in excessive ROS production and ir/reversible mitochondrial injury and burnout, as abundantly demonstrated by accumulating research data. Due to the critical role of mitochondrial stress in the pathophysiology of skin ageing and disorders, maintained (primary care) and restored (secondary care) mitochondrial health, rejuvenation and homoeostasis are considered the most effective holistic approach to advance dermatological treatments based on systemic health-supportive and stimulating measures. Per evidence, an effective skin anti-ageing protection, wound healing and scarring quality - all strongly depend on the sustainable mitochondrial functionality and well-balanced homoeostasis. The latter can be objectively measured and, if necessary, restored in a systemic manner by pre- and rehabilitation algorithms tailored to individualised patient profiles. The entire spectrum of corresponding innovations in the area includes natural and systemic skin rejuvenation, aesthetic and reconstructive medicine, sustainable skin protection and targeted treatments of skin disorders. Contextually, mitochondria-centric dermatology is instrumental for advanced 3PM-guided approach which makes a good use of predictive multi-level diagnostics and targeted protection of skin against both - the health-to-disease transition and progression of relevant disorders. Cost-effective targeted protection and new treatment avenues focused on sustainable mitochondrial health and physiologic homoeostasis are proposed in the article including in-depth analysis of patient cases and exemplified 3PM-guided care with detailed mechanisms and corresponding expert recommendations presented.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Janine Bastert
- Private Dermatological Clinic, Kirchheimer Str. 71, 70619 Stuttgart, Germany
| |
Collapse
|
10
|
Abuyousif HS, Porcello A, Cerrano M, Marques C, Scaletta C, Lourenço K, Abdel-Sayed P, Chemali M, Raffoul W, Hirt-Burri N, Applegate LA, Laurent AE. In Vitro Evaluation and Clinical Effects of a Regenerative Complex with Non-Cross-Linked Hyaluronic Acid and a High-Molecular-Weight Polynucleotide for Periorbital Treatment. Polymers (Basel) 2025; 17:638. [PMID: 40076130 PMCID: PMC11902836 DOI: 10.3390/polym17050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Skin aging is a complex and multifactorial process influenced by both intrinsic and extrinsic factors. The periorbital area of the face is particularly susceptible to premature aging signs due to its delicate skin structure, and is a major concern for many individuals. While hyaluronic acid (HA)-based dermal filler products are commonly used for periorbital rejuvenation, novel approaches to effectively locally address the visible signs of aging are available. This study aimed to investigate Innovyal Regenerative Action (IRA), an injectable polynucleotide-HA (PN-HA) regenerative complex designed for periocular prejuvenation. Firstly, PN-HA was compared to other commercially available HA-based dermbooster products (Profhilo®, Suisselle Cellbooster® Glow, and NCTF® 135 HA) in terms of rheological properties, in vitro antioxidant capacity, and total collagen production stimulation in human fibroblasts. Secondly, the clinical effects of the IRA PN-HA complex were evaluated in two case reports (monotherapy for periorbital prejuvenation). It was shown that the PN-HA complex outperformed its comparators in terms of relative rheological behavior (biophysical attributes normalized to polymer contents), intrinsic antioxidant activity (CUPRAC, FRAP, and ORAC assays), as well as total collagen level induction (72-h in vitro dermal fibroblast induction model). Generally, the results of this study provided mechanistic and preliminary clinical insights into the potential benefits of the IRA PN-HA complex for periocular cutaneous treatment. Overall, it was underscored that combining the structural support and regenerative properties of PN with the hydrating and volumizing effects of HA bares tangible potential for multifactorial skin quality enhancement and for periocular prejuvenation in particular.
Collapse
Affiliation(s)
| | - Alexandre Porcello
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (A.P.); (C.M.); (K.L.)
| | - Marco Cerrano
- Aesthetic Surgery Department, Clinique Entourage, CH-1003 Lausanne, Switzerland;
| | - Cíntia Marques
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (A.P.); (C.M.); (K.L.)
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
| | - Kelly Lourenço
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (A.P.); (C.M.); (K.L.)
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
- STI School of Engineering, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Michèle Chemali
- Plastic and Aesthetic Surgery Service, Centre Médical Lausanne Ouest, CH-1008 Prilly, Switzerland;
| | - Wassim Raffoul
- Plastic and Reconstructive Surgery Service, Ensemble Hospitalier de la Côte, CH-1110 Morges, Switzerland;
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Alexis E. Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
| |
Collapse
|
11
|
Lv X, Deng X, Lai R, Liu S, Zou Z, Wan R, Dai X, Luo Y, Li Y. Association between niacin intake and osteoarthritis in the US population based on NHANES 1999-2018. Sci Rep 2025; 15:6470. [PMID: 39987357 PMCID: PMC11846844 DOI: 10.1038/s41598-025-91063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
The relationship between niacin and osteoarthritis (OA) is not clear. Using a retrospective cohort study from the National Health and Nutrition Examination Survey (NHANES), this study aimed to investigate the association between niacin intake and osteoarthritis. This study conducted a cross-sectional analysis using data from the National Health and Nutrition Examination Survey 1999-2018 to investigate the association between niacin intake and osteoarthritis. The association between niacin and osteoarthritis was assessed using univariate and multivariate weighted logistic regression models and restricted cubic spline curves (RCS). Nonlinear correlation is analyzed by fitting smooth curve. In this study, 30,620 participants were examined, with 1,864 individuals diagnosed with osteoarthritis, resulting in a prevalence of 5.74%. Utilizing multivariate weighted logistic regression, a consistent inverse relationship between Niacin and osteoarthritis was observed (OR = 0.99, 95% CI: 0.98-0.99, P = 0.003). When Niacin was treated as a categorical variable, the highest Niacin quartile (Q4) exhibited a 33% reduced risk of osteoarthritis compared to the lowest quartile (Q1) (OR = 0.67, 95% CI: 0.53-0.83, P = 0.0004). The restricted cubic spline analysis revealed a non-linear association between Niacin and osteoarthritis risk (non-linear P = 0.022), with 33.53 as the inflection point. Subgroup analyses further highlighted a stronger inverse relationship between Niacin and osteoarthritis in Non - Hispanic Black and other Race patients. The results showed a negative linear relationship between niacin intake and OA risk. By increasing the intake of niacin-rich foods, the risk of osteoarthritis can be reduced, providing ideas for the prevention and treatment of osteoarthritis. Further future studies are recommended to validate our findings.
Collapse
Affiliation(s)
- Xiaofeng Lv
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xinmin Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Rui Lai
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Shanshan Liu
- Sichuan Integrative Medicine Hospital, Chengdu, Chengdu, 610041, Sichuan, China
| | - Zihao Zou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Renhong Wan
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xuechun Dai
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yalan Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ying Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
12
|
Lee YH, Jeong EY, Kim YH, Park JH, Yoon JH, Lee YJ, Lee SH, Nam YK, Cha SY, Park JS, Kim SY, Byun Y, Shin SS, Park JT. Identification of senescence rejuvenation mechanism of Magnolia officinalis extract including honokiol as a core ingredient. Aging (Albany NY) 2025; 17:497-523. [PMID: 39992207 DOI: 10.18632/aging.206207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
Reactive oxygen species (ROS) contribute to aging by mainly damaging cellular organelles and DNA. Although strategies to reduce ROS production have been proposed as important components of anti-aging therapy, effective mechanisms to lower ROS levels have not yet been identified. Here, we screened natural compounds frequently used as cosmetic ingredients to find substances that reduce ROS levels. Magnolia officinalis (M. officinalis) extract significantly lowered the levels of ROS in senescent fibroblasts. A novel mechanism by which M. officinalis extract restores mitochondrial function to reduce ROS, a byproduct of inefficient electron transport, was discovered. The reduction of ROS by M. officinalis extracts reversed senescence-associated phenotypes and skin aging. Then, honokiol was demonstrated as a core ingredient of M. officinalis extract that exhibits antioxidant effects. Honokiol functions as an oxygen radical scavenger through redox processes, also significantly reduced ROS levels by restoring mitochondrial function. In summary, our study identified a novel mechanism by which M. officinalis extract reverses aging and skin aging by reducing ROS through restoring mitochondrial function. These new findings will not only expand our understanding of aging and associated diseases, but also provide new approaches to anti-aging treatments.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Eun Young Jeong
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Ye Hyang Kim
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Ji Ho Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jee Hee Yoon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yoo Jin Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - So Hun Lee
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Yeon Kyung Nam
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - So Yoon Cha
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Jin Seong Park
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - So Yeon Kim
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Song Seok Shin
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
13
|
Fei C, Zou J, Yang Z, Chang H, Lu L, Zhao K, Shi H. Enhanced therapeutic efficacy of Eupolyphaga sinensis Walker in females through sex-specific metabolomic-pharmacodynamic divergence. Sci Rep 2025; 15:6032. [PMID: 39972042 PMCID: PMC11839932 DOI: 10.1038/s41598-025-90100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Eupolyphaga sinensis Walker (ESW), a medicinal insect used in traditional Chinese medicine, is renowned for its effects on blood circulation, stasis resolution, and bone and tendon healing. The underlying reasons for the clinical preference for female ESW remain unclear. Previous investigations were limited in scope, focusing narrowly on female specimens, large-molecule compounds, and single pharmacological effect. This study systematically compared female and male ESW in terms of composition and therapeutic efficacy. Metabolomics identified 31 compound types in both female and male ESW, including lipids, amino acids, and fatty acids. Female ESW exhibited significantly higher levels of 8 bioactive compounds, 15 small peptides, and 13 prostaglandins compared to male ESW, which contribute to immunity enhancement, antithrombotic effects, and improved bone metabolism. These differences may underlie the superior medicinal efficacy of female ESW. In the thrombosis model, ESW can cause vasodilation, reduce blood cell aggregation and thrombosis rate of mice tails. It also improved t-PA levels, prolonged APTT, and enhanced hepatic SOD activity, with female ESW showing stronger effects on MDA and D2D levels, indicating its stronger ability to protect cells from damage and fibrinolytic effect. In the osteoporosis model, ESW increased femur length, liver, and thymus indices while regulating serum BALP and Mg levels. Female ESW notably reduced TRACP-5b, OT/BGP, P, and Cu to normal levels, indicating its stronger ability to improved bone metabolism, corrected disturbances in calcium-phosphorus metabolism, and regulated serum inorganic elements. Overall, female ESW exhibited a greater abundance of bioactive components and demonstrated superior anti-thrombotic and anti-osteoporotic effects. These findings highlight the superior therapeutic effects of female ESW due to its enriched bioactive components, supporting its clinical preference while underscoring the potential of male ESW for uilization of resource.
Collapse
Affiliation(s)
- Chenghao Fei
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Jie Zou
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Zhaorui Yang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Huaiyang Chang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Lixian Lu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Kun Zhao
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Hongzhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
14
|
Satapathy BS, Zafar A, Warsi MH, Behera S, Mohanty DI, Mujtaba MA, Mohanty M, Upadhyay AK, Khalid M. Luliconazole-niacinamide lipid nanocarrier laden gel for enhanced treatment of vaginal candidiasis: in vitro, ex vivo, in silico and preclinical insights. RSC Adv 2025; 15:5665-5680. [PMID: 39980997 PMCID: PMC11836644 DOI: 10.1039/d4ra08397k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
A lipid-based nanocarrier system is a novel technique for the delivery of poorly soluble drugs through topical delivery. This study developed a dual-drug (luliconazole: LZ, and niacinamide: NM) loaded lipid nanocarrier (LN)-laden gel for the treatment of vaginal candidiasis. The LNs were prepared using cholesterol and soya-α-lecithin through a thin-film hydration technique. The average vesicle size, polydispersity index, and zeta potential of the optimized LZNMLNs were 126.40 ± 1.30 nm, 0.276, and -34.6 ± 0.8 mV, respectively, and the formulation showed the sustained release of both drugs over an extended period. Selected LZNMLNs were incorporated into a bio-adhesive gel. The optimized LZNMLNs-gel showed excellent viscosity, spreadability, and bio-adhesiveness. The optimized LZNMLNs-gel exhibited significantly higher permeation of LZ (1.46-fold) and NM (1.55-fold) than LZNM gel. The optimized LZNMLNs-gel showed significantly higher in vitro antifungal activity (ZOI = 34 ± 2 mm) than commercial Candid V gel (18 ± 1 mm). The optimized LZNMLNs-gel did not show any cytotoxicity against vaginal epithelial cells. The bioavailability of LZNMLNs-gel was significantly (P < 0.05) increased (1.94-fold for LZ and 1.33-fold for NM) compared to Candid V, with a decrease in total clearance indicating sustained release of the drug, which may lead to the maintenance of therapeutic concentration for an extended period. In vivo antifungal activity showed that the optimized LZNMLNs-gel completely treated the infection on the 7th day of treatment in an induced rabbit model, compared to the commercial gel (Candid V gel, 10 days). Based the findings, it can be concluded that LN-laden gel is an alternative carrier for improvement of the topical delivery of drugs for the treatment of vaginal candidiasis.
Collapse
Affiliation(s)
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University Sakaka 72341 Al-Jouf Saudi Arabia
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University Taif 21944 Saudi Arabia
| | - Sritam Behera
- Nityananda College of Pharmacy, Biju Patnaik University of Technology Sergarh Balasore Odisha India
| | - Dibya Iochan Mohanty
- Centre for Nanomedicine, Department of Pharmaceutics, School of Pharmacy, Anurag University Hyderabad Telangana Pin 500088 India
| | - Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University Arar Saudi Arabia
- Center for Health Research, Northern Border University Arar Saudi Arabia
| | - Mahaprasad Mohanty
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University Odisha India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering and Technology Patiala Punjab India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| |
Collapse
|
15
|
Somboon K, Chng CP, Huang C, Gupta S. Enhancing Niacinamide Skin Penetration via Other Skin Brightening Agents: A Molecular Dynamics Simulation Study. Int J Mol Sci 2025; 26:1555. [PMID: 40004021 PMCID: PMC11855608 DOI: 10.3390/ijms26041555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Niacinamide, a derivative of vitamin B3, has been shown to reduce skin pigmentation (i.e., acting as a brightening agent) and inflammatory responses such as dermatitis and acne vulgaris. However, niacinamide is a hydrophilic compound and poor partitioning to the lipid matrix in the uppermost layer of the skin (the stratum corneum or SC) limits its delivery to the skin. This necessitates the use of penetration enhancers to increase its bio-availability. In this study, we used computer simulations to investigate the skin penetration of niacinamide alone and in combination with other brightening agents that are also shown to be skin penetration enhancers, namely undecylenoyl phenylalanine (Sepiwhite®), bisabolol, or sucrose dilaurate. Molecular dynamics simulations were performed to reveal molecular interactions of these brightening agents with a lipid bilayer model that mimics the SC lipid matrix. We observed minimal penetration of niacinamide into the SC lipid bilayer when applied alone or in combination with any one of the three compounds. However, when all three compounds were combined, a notable increase in penetration was observed. We showed a 32% increase in the niacinamide diffusivity in the presence of three other brightening agents, which also work as penetration enhancers for niacinamide. These findings suggest that formulations containing multiple brightening agents, which work as penetration enhancers, may improve skin penetration of niacinamide and enhance the effectiveness of the treatment.
Collapse
Affiliation(s)
- Kamolrat Somboon
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore;
| | - Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; (C.-P.C.); (C.H.)
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; (C.-P.C.); (C.H.)
| | - Shikhar Gupta
- P&G Singapore Innovation Center (SgIC), 70 Biopolis Street, Singapore 138547, Singapore
| |
Collapse
|
16
|
Camillo L, Zavattaro E, Savoia P. Nicotinamide: A Multifaceted Molecule in Skin Health and Beyond. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:254. [PMID: 40005371 PMCID: PMC11857428 DOI: 10.3390/medicina61020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
Nicotinamide (NAM), the amide form of vitamin B3, is a precursor to essential cofactors nicotinamide adenine dinucleotide (NAD⁺) and NADPH. NAD⁺ is integral to numerous cellular processes, including metabolism regulation, ATP production, mitochondrial respiration, reactive oxygen species (ROS) management, DNA repair, cellular senescence, and aging. NAM supplementation has demonstrated efficacy in restoring cellular energy, repairing DNA damage, and inhibiting inflammation by suppressing pro-inflammatory cytokines release. Due to its natural presence in a variety of foods and its excellent safety profile-even at high doses of up to 3 g/day-NAM is extensively used in the chemoprevention of non-melanoma skin cancers and the treatment of dermatological conditions such as blistering diseases, atopic dermatitis, rosacea, and acne vulgaris. Recently, its anti-aging properties have elevated NAM's prominence in skincare formulations. Beyond DNA repair and energy replenishment, NAM significantly impacts oxidative stress reduction, cell cycle regulation, and apoptosis modulation. Despite these multifaceted benefits, the comprehensive molecular mechanisms underlying NAM's actions remain not fully elucidated. This review consolidates recent research to shed light on these mechanisms, emphasizing the critical role of NAM in cellular health and its therapeutic potential. By enhancing our understanding, this work underscores the importance of continued exploration into NAM's applications, aiming to inform future clinical practices and skincare innovations.
Collapse
Affiliation(s)
| | | | - Paola Savoia
- Department of Health Science, Università del Piemonte Orientale, 28100 Novara, Italy; (L.C.); (E.Z.)
| |
Collapse
|
17
|
Tomas M, Günal-Köroğlu D, Kamiloglu S, Ozdal T, Capanoglu E. The state of the art in anti-aging: plant-based phytochemicals for skin care. Immun Ageing 2025; 22:5. [PMID: 39891253 PMCID: PMC11783858 DOI: 10.1186/s12979-025-00498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Phytochemicals help mitigate skin aging by scavenging free radicals, modulating key enzymatic pathways, and promoting the skin's structural integrity. Carotenoids, vitamins, essential fatty acids, and phenolic compounds work by acting as antioxidants, inhibiting enzymes like hyaluronidase, collagenase, and elastase, which degrade skin structure, and reducing levels of inflammatory markers (IL-6, IL-8, etc.) and matrix metalloproteinases (MMP-1, MMP-2) linked to aging. Recent research highlights that plant-based phytochemicals can improve skin elasticity, reduce hyperpigmentation, prevent the breakdown of important skin proteins, and support wound healing, making them valuable components for skin care and treatments. This review explores the multifaceted roles of phytochemicals in maintaining and improving skin health, highlighting their mechanisms of action and potential in skin anti-aging innovations.
Collapse
Affiliation(s)
- Merve Tomas
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Senem Kamiloglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059, Gorukle, Bursa, Türkiye
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, 16059, Gorukle, Bursa, Türkiye
| | - Tugba Ozdal
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, 34959, Tuzla, Istanbul, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
18
|
Qiu Z, Cheng L, Wang Q, Dong Z. The impact of sexual behavior on facial skin aging and pigmentation: evidence from Mendelian randomization and Bayesian colocalization analyses. Arch Dermatol Res 2025; 317:181. [PMID: 39760776 DOI: 10.1007/s00403-024-03705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Affiliation(s)
- Zeming Qiu
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Long Cheng
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Qinyuan Wang
- Department of Plastic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Zhilong Dong
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China.
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
19
|
Rusic D, Ivic M, Slugan A, Leskur D, Modun D, Durdov T, Vukovic D, Bukic J, Bozic J, Seselja Perisin A. Pilot Study on the Effects of a Cosmetic Serum Containing Niacinamide, Postbiotics and Peptides on Facial Skin in Healthy Participants: A Randomized Controlled Trial. Life (Basel) 2024; 14:1677. [PMID: 39768384 PMCID: PMC11727686 DOI: 10.3390/life14121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
The literature describes niacinamide, but also postbiotics and peptides, as ingredients that improve skin barrier function, but also affect melanin and sebum levels in individuals. However, the combined effects of these ingredients in a single cosmetic serum have not been sufficiently investigated. Therefore, the aim of this randomized controlled study, conducted at the University of Split School of Medicine (Croatia), was to evaluate the effects of cosmetic products containing these active ingredients. This study was registered with ClinicalTrials.gov (NCT06189105) and has been completed. Primary outcomes were the levels of trans epidermal water loss, skin hydration, erythema, melanin, and sebum, all measured in 25 healthy Caucasian participants. Significant differences between hydration levels were observed at week 4 (61.0 ± 11.2 vs. 68.6 ± 13.3 AU, control and intervention). Moreover, a significant decrease in erythema values from the first to last measurement in the intervention group was observed, (379.9 ± 106.8 vs. 333.6 ± 73.5 AU, baseline values and week 4, intervention group). Interestingly, both the increase in skin hydration levels and the decrease in skin erythema after niacinamide serum application were significant in study participants who did not use sun protection products. It is well known that ultraviolet radiation has detrimental effects on human skin, and our results suggest that niacinamide could help counteract these effects.
Collapse
Affiliation(s)
- Doris Rusic
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (D.R.); (M.I.); (A.S.); (D.L.); (D.M.); (T.D.); (A.S.P.)
| | - Magdalena Ivic
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (D.R.); (M.I.); (A.S.); (D.L.); (D.M.); (T.D.); (A.S.P.)
| | - Ana Slugan
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (D.R.); (M.I.); (A.S.); (D.L.); (D.M.); (T.D.); (A.S.P.)
| | - Dario Leskur
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (D.R.); (M.I.); (A.S.); (D.L.); (D.M.); (T.D.); (A.S.P.)
| | - Darko Modun
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (D.R.); (M.I.); (A.S.); (D.L.); (D.M.); (T.D.); (A.S.P.)
| | - Toni Durdov
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (D.R.); (M.I.); (A.S.); (D.L.); (D.M.); (T.D.); (A.S.P.)
| | - Dubravka Vukovic
- Department of Dermatovenerology, University Hospital Split, 21000 Split, Croatia;
| | - Josipa Bukic
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (D.R.); (M.I.); (A.S.); (D.L.); (D.M.); (T.D.); (A.S.P.)
- Department of Laboratory Medicine and Pharmacy, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Ana Seselja Perisin
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia; (D.R.); (M.I.); (A.S.); (D.L.); (D.M.); (T.D.); (A.S.P.)
| |
Collapse
|
20
|
Ong RR, Goh CF. Niacinamide: a review on dermal delivery strategies and clinical evidence. Drug Deliv Transl Res 2024; 14:3512-3548. [PMID: 38722460 DOI: 10.1007/s13346-024-01593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 10/24/2024]
Abstract
Niacinamide, an active form of vitamin B3, is recognised for its significant dermal benefits including skin brightening, anti-ageing properties and the protection of the skin barrier. Its widespread incorporation into cosmetic products, ranging from cleansers to serums, is attributed to its safety profile and proven efficacy. Recently, topical niacinamide has also been explored for other pharmaceutical applications, including skin cancers. Therefore, a fundamental understanding of the skin permeation behaviour of niacinamide becomes crucial for formulation design. Given the paucity of a comprehensive review on this aspect, we provide insights into the mechanisms of action of topically applied niacinamide and share the current strategies used to enhance its skin permeation. This review also consolidates clinical evidence of topical niacinamide for its cosmeceutical uses and as treatment for some skin disorders, including dermatitis, acne vulgaris and actinic keratosis. We also emphasise the current exploration and perspectives on the delivery designs of topical niacinamide, highlighting the potential development of formulations focused on enhancing skin permeation, particularly for clinical benefits.
Collapse
Affiliation(s)
- Rong Rong Ong
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, 11800, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, 11800, Malaysia.
| |
Collapse
|
21
|
Chikhaoui A, Zayoud K, Kraoua I, Bouchoucha S, Tebourbi A, Turki I, Yacoub-Youssef H. Supplementation with nicotinamide limits accelerated aging in affected individuals with cockayne syndrome and restores antioxidant defenses. Aging (Albany NY) 2024; 16:13271-13287. [PMID: 39611850 PMCID: PMC11719109 DOI: 10.18632/aging.206160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Cockayne syndrome (CS) is a segmental progeroid syndrome characterized by defects in the DNA excision repair pathway, predisposing to neurodegenerative manifestations. It is a rare genetic disorder and an interesting model for studying premature aging. Oxidative stress and autophagy play an important role in the aging process. The study of these two processes in a model of accelerated aging and the means to counteract them would lead to the identification of relevant biomarkers with therapeutic value for healthy aging. Here we investigated the gene expression profiles of several oxidative stress-related transcripts derived from CS-affected individuals and healthy elderly donors. We also explored the effect of nicotinamide supplementation on several genes related to inflammation and autophagy. Gene expression analysis revealed alterations in two main pathways. This involves the activation of arachidonic acid metabolism and the repression of the NRF2 pathway in affected individuals with CS. The supplementation with nicotinamide adjusted these abnormalities by enhancing autophagy and decreasing inflammation. Furthermore, CSA/CSB-dependent depletion of the mitochondrial DNA polymerase-γ catalytic subunit (POLG1) was restored following nicotinamide supplementation in CS-affected individuals' fibroblasts. This study reveals the link between oxidative stress and accelerated aging in affected individuals with CS and highlights new biomarkers of cellular senescence. However, further analyses are needed to confirm these results, which could not be carried out, mainly due to the unavailability of crucial samples of this rare disease.
Collapse
Affiliation(s)
- Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Kouloud Zayoud
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Ichraf Kraoua
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 2092, Tunisia
| | - Sami Bouchoucha
- Orthopedics Department, Béchir Hamza Children’s Hospital, Tunis 2092, Tunisia
| | - Anis Tebourbi
- Orthopedic and Trauma Surgery Department, Mongi Slim Hospital, La Marsa 2046, Tunisia
| | - Ilhem Turki
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 2092, Tunisia
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| |
Collapse
|
22
|
Ye M, Fan Y, Fu C, He H, Xiao J. Biocompatible recombinant type III collagen enhancing skin repair and anti-wrinkle effects. Biomater Sci 2024; 12:6114-6122. [PMID: 39436415 DOI: 10.1039/d4bm01284d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Treating sunburn and other UV-induced skin damage issues remains a significant challenge in the field of dermatology. In this study, we synthesized a highly bioactive recombinant type III collagen (rCol III) to accelerate the healing of UV-damaged skin. The high-purity rCol III demonstrated excellent biocompatibility and bioactivity, significantly promoting the adhesion, proliferation, and migration of HFF-1 cells. In a mouse UV-damage model, Combo evaluations demonstrated that rCol III contributed to restore transepidermal water loss (TEWL) values of UV-damaged skin to normal levels. Histological analysis further confirmed that rCol III substantially accelerated skin repair by enhancing collagen regeneration. Additionally, rCol III facilitated the regeneration of zebrafish tail fin tissue and alleviated shrinkage caused by excessive UV exposure. The biocompatible and bioactive rCol III offers a novel strategy for treating UV-induced skin damage, holding immense potential for applications in skin tissue engineering.
Collapse
Affiliation(s)
- Mingzhu Ye
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Yirui Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Caihong Fu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Huixia He
- College of School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| |
Collapse
|
23
|
Marín-Blázquez M, Rovira J, Ramírez-Bajo MJ, Zapata-Pérez R, Rabadán-Ros R. NAD + enhancers as therapeutic agents in the cardiorenal axis. Cell Commun Signal 2024; 22:537. [PMID: 39516787 PMCID: PMC11546376 DOI: 10.1186/s12964-024-01903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiorenal diseases represent a complex interplay between heart failure and renal dysfunction, being clinically classified as cardiorenal syndromes (CRS). Recently, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism, through deficient NAD+ synthesis and/or elevated consumption, have proved to be decisive in the onset and progress of cardiorenal disease. NAD+ is a pivotal coenzyme in cellular metabolism, being significant in various signaling pathways, such as energy metabolism, DNA damage repair, gene expression, and stress response. Convincing evidence suggests that strategies designed to boost cellular NAD+ levels are a promising therapeutic option to address cardiovascular and renal disorders. Here, we review and discuss the implications of NAD+ metabolism in cardiorenal diseases, focusing on the propitious NAD+ boosting therapeutic strategies, based on the use of NAD+ precursors, poly(ADP-ribose) polymerase inhibitors, sirtuin activators, and other alternative approaches, such as CD38 blockade, nicotinamide phosphoribosyltransferase activation and combined interventions.
Collapse
Affiliation(s)
- Mariano Marín-Blázquez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - Rubén Zapata-Pérez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| | - Rubén Rabadán-Ros
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| |
Collapse
|
24
|
Davis A, Furtak A, Paterson S, Velthuizen R, Shen J, Nip J, Bappal A, Lathrop W, Villa A, Lee JM, Guelakis M. Topical application of retinyl propionate, 4 hexyl resorcinol, and niacinamide reverses molecular and clinical features of ageing. Int J Cosmet Sci 2024; 46:761-774. [PMID: 38685700 DOI: 10.1111/ics.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Topical tretinoin is the mainstay of treatment for photoageing, despite the risk of skin irritation. Cosmetic combination anti-ageing formulations may offer similar efficacy to tretinoin, while improving on tolerability. We aim to demonstrate facial appearance benefits of a novel triple-active cosmetic formulation containing 4-hexylresorcinol, retinyl propionate, and niacinamide and to identify transcriptomic biomarkers underpinning these benefits. METHODS A cosmetic prototype formulation containing 4-hexylresorcinol, retinyl propionate, and niacinamide was evaluated ex vivo and in a clinical study. For ex vivo experiments, the cosmetic formulation was applied for 3 days to healthy surgical discard skin from female donors aged 31-51 years, with tissues harvested for gene expression and histologic analyses. In the clinical study, females aged 47-66 years with moderate-to-severe overall visual photodamage on the face applied either topical 0.02% tretinoin or the cosmetic formulation to the face for 16 weeks and to forearms for 1 week, with forearm biopsies taken for gene expression analyses. Visual grading for facial photodamage and VISIA-CR images was taken throughout the clinical study. Safety was visually assessed during site visits, and adverse event monitoring was conducted throughout. RESULTS Gene expression analyses in both studies revealed modulation of pathways associated with skin rejuvenation, with several genes of interest identified due to being implicated in ageing and differentially expressed following the application of the cosmetic formulation. Reversal of a consensus skin ageing gene signature was observed with the cosmetic formulation and tretinoin in the ex vivo and clinical studies. Both the cosmetic formulation and tretinoin clinically improved the overall appearance of photoageing, crow's feet, lines, wrinkles, and pores. Adverse event reporting showed that the cosmetic formulation caused less skin irritation than tretinoin. CONCLUSION In a double-blind clinical study, the novel triple-active cosmetic combination formulation improved the visual appearance of photoageing similarly to prescription tretinoin. The cosmetic formulation and tretinoin reversed a consensus gene signature associated with ageing. Together with adverse event reporting, these results suggest that the cosmetic formulation may be a well-tolerated and efficacious alternative to tretinoin for improving the visual features of photoageing.
Collapse
Affiliation(s)
- Andrew Davis
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - Ashley Furtak
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - Sarah Paterson
- Unilever Research and Development, Port Sunlight, Bebington, Wirral, UK
| | | | - Jeremy Shen
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - John Nip
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - Arthika Bappal
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - William Lathrop
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - Ana Villa
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - Jian-Ming Lee
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - Marian Guelakis
- Unilever Research and Development, Trumbull, Connecticut, USA
| |
Collapse
|
25
|
Ouyang Y, Wang K, Jia W, Zhang P, Huang S. Simultaneous Identification of Vitamins B1, B3, B5, and B6 by an Engineered Nanopore. NANO LETTERS 2024; 24:11944-11953. [PMID: 39269011 DOI: 10.1021/acs.nanolett.4c03329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Vitamin Bs, a group of water-soluble compounds, are essential nutrients for almost all living organisms. However, due to their structural heterogeneity, rapid and simultaneous analysis of multiple vitamin Bs is still challenging. In this paper, it is discovered that a hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore containing a sole nickel ion-bound nitrilotriacetic acid (NTA-Ni) adapter at its pore constriction is suitable for the simultaneous sensing of different vitamin Bs, including vitamin B1 (thiamine), vitamin B3 (nicotinic acid and nicotinamide), vitamin B5 (pantothenic acid), and vitamin B6 (pyridoxine, pyridoxal, and pyridoxamine). Assisted by a custom machine learning algorithm, all seven vitamin Bs can be fully distinguished, reporting a general accuracy of 99.9%. This method was further validated in the rapid analysis of commercial cosmetics and natural food, suggesting its potential uses in food and drug administration.
Collapse
Affiliation(s)
- Yusheng Ouyang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| |
Collapse
|
26
|
Yoon JH, Kim YH, Jeong EY, Lee YH, Byun Y, Shin SS, Park JT. Senescence Rejuvenation through Reduction in Mitochondrial Reactive Oxygen Species Generation by Polygonum cuspidatum Extract: In Vitro Evidence. Antioxidants (Basel) 2024; 13:1110. [PMID: 39334769 PMCID: PMC11429016 DOI: 10.3390/antiox13091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress caused by reactive oxygen species (ROS) is one of the major causes of senescence. Strategies to reduce ROS are known to be important factors in reversing senescence, but effective strategies have not been found. In this study, we screened substances commonly used as cosmetic additives to find substances with antioxidant effects. Polygonum cuspidatum (P. cuspidatum) extract significantly reduced ROS levels in senescent cells. A novel mechanism was discovered in which P. cuspidatum extract reduced ROS, a byproduct of inefficient oxidative phosphorylation (OXPHOS), by increasing OXPHOS efficiency. The reduction in ROS by P. cuspidatum extract restored senescence-associated phenotypes and enhanced skin protection. Then, we identified polydatin as the active ingredient of P. cuspidatum extract that exhibited antioxidant effects. Polydatin, which contains stilbenoid polyphenols that act as singlet oxygen scavengers through redox reactions, increased OXPHOS efficiency and subsequently restored senescence-associated phenotypes. In summary, our data confirmed the effects of P. cuspidatum extract on senescence rejuvenation and skin protection through ROS reduction. This novel finding may be used as a treatment in senescence rejuvenation in clinical and cosmetic fields.
Collapse
Affiliation(s)
- Jee Hee Yoon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.Y.); (Y.H.L.)
| | - Ye Hyang Kim
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (Y.H.K.); (E.Y.J.)
| | - Eun Young Jeong
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (Y.H.K.); (E.Y.J.)
| | - Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.Y.); (Y.H.L.)
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea;
| | - Song Seok Shin
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (Y.H.K.); (E.Y.J.)
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.Y.); (Y.H.L.)
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
27
|
Guo Q, Dong Q, Xu W, Zhang H, Zhao X, He W, He Y, Zhao G. Metabolite profiling of camel milk and the fermentation bacteria agent TR1 fermented two types of sour camel milk using LC-MS in relation to their probiotic potentials. Heliyon 2024; 10:e35801. [PMID: 39220917 PMCID: PMC11365327 DOI: 10.1016/j.heliyon.2024.e35801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Camel milk is a nutrient-rich diet and fermentation affects its nutritional value and probiotic function. In this study, sour camel milk and oat jujube sour camel milk were prepared using fermentation bacteria agent TR1, and the metabolites of camel milk, sour camel milk and oat jujube sour camel milk were detected using a non-targeted metabolomics approach using liquid chromatography-mass spectrometry (LC-MS).The results showed that the partial least squares discriminant analysis (PLS-DA) with 100 % accuracy and good predictive power detected 343 components in positive ion mode and 220 components in negative ion mode. The differential metabolites were mainly organic acids, amino acids, esters, vitamins and other substances contained in camel milk.It showed that there were significant differences in the metabolites of camel milk, sour camel milk and oat jujube sour camel milk. Based on the pathway enrichment analysis of the three dairy products in the KEGG database, 12 metabolic pathways mainly involved in the positive ion mode and 20 metabolic pathways mainly involved in the negative ion mode were identified. The main biochemical metabolic pathways and signal transduction pathways of the differential metabolites of the three dairy products were obtained. This study provides theoretical support for improving the nutritional quality and probiotic function of camel milk and fermented camel milk products and provides a basis for the development of relevant processing technologies and products for camel milk and fermented camel milk.
Collapse
Affiliation(s)
- Qingwen Guo
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Biological Manufacturing in Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, China
| | - Qigeqi Dong
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Biological Manufacturing in Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, China
| | - Weisheng Xu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Biological Manufacturing in Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, China
| | - Heping Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiangyu Zhao
- The People's Bank of China Operation Office, China
| | - Wanxiong He
- Inner Mongolia Medical University, Hohhot, China
| | - Yuxing He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guofen Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Biological Manufacturing in Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
28
|
Ziklo N, Bibi M, Sinai L, Salama P. Niacinamide Antimicrobial Efficacy and Its Mode of Action via Microbial Cell Cycle Arrest. Microorganisms 2024; 12:1581. [PMID: 39203423 PMCID: PMC11356291 DOI: 10.3390/microorganisms12081581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Niacinamide is a versatile compound widely used in the personal care industry for its ample skin benefits. As a precursor to nicotinamide adenine dinucleotide (NAD+), essential for ATP production and a substrate for poly-ADP-ribose polymerase-1 (PARP-1), studies have highlighted its roles in DNA repair, cellular stress mechanisms, and anti-aging benefits. Niacinamide was also studied for its antimicrobial activity, particularly in the context of host-infection via host immune response, yet its direct antimicrobial activity and the mechanisms of action remain unclear. Its multifunctionality makes it an appealing bioactive molecule for skincare products as well as a potential preservative solution. This study explores niacinamide's antimicrobial mode of action against four common cosmetic pathogens. Our findings indicate that niacinamide is causing microbial cell cycle arrest; while cells were found to increase their volume and length under treatment to prepare for cell division, complete separation into two daughter cells was prevented. Fluorescence microscopy revealed expanded chromatin, alongside a decreased RNA expression of the DNA-binding protein gene, dps. Finally, niacinamide was found to directly interact with DNA, hindering successful amplification. These unprecedented findings allowed us to add a newly rationalized preservative facete to the wide range of niacinamide multi-functionality.
Collapse
Affiliation(s)
| | | | | | - Paul Salama
- Innovation Department, Sharon Personal Care Ltd., Eli Horovitz St. 4, Rehovot 7608810, Israel; (N.Z.); (M.B.); (L.S.)
| |
Collapse
|
29
|
Zhang X, Zhang C, Xiao L, Wang X, Ma K, Ji F, Azarpazhooh E, Ajami M, Rui X, Li W. Gas chromatography-mass spectrometry and non-targeted metabolomics analysis reveals the flavor and nutritional metabolic differences of cow's milk fermented by Lactiplantibacillus plantarum with different phenotypic. FOOD BIOSCI 2024; 60:104433. [DOI: 10.1016/j.fbio.2024.104433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
30
|
Kim E, Tollenaere MD, Sennelier B, Lambert C, Durduret A, Kim SY, Seo HH, Lee JH, Scandolera A, Reynaud R, Moh SH. Analysis of Active Components and Transcriptome of Freesia refracta Callus Extract and Its Effects against Oxidative Stress and Wrinkles in Skin. Int J Mol Sci 2024; 25:8150. [PMID: 39125720 PMCID: PMC11311438 DOI: 10.3390/ijms25158150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Freesia refracta (FR), a perennial flower of the Iris family (Iridaceae), is widely used in cosmetics despite limited scientific evidence of its skin benefits and chemical composition, particularly of FR callus extract (FCE). This study identified biologically active compounds in FCE and assessed their skin benefits, focusing on anti-aging. FR calli were cultured, extracted with water at 40 °C, and analyzed using Centrifugal Partition Chromatography (CPC), Nuclear Magnetic Resonance (NMR), and HCA, revealing key compounds, namely nicotinamide and pyroglutamic acid. FCE significantly increased collagen I production by 52% in normal and aged fibroblasts and enhanced fibroblast-collagen interaction by 37%. An in vivo study of 43 female volunteers demonstrated an 11.1% reduction in skin roughness and a 2.3-fold increase in collagen density after 28 days of cream application containing 3% FCE. Additionally, the preservation tests of cosmetics containing FCE confirmed their stability over 12 weeks. These results suggest that FCE offers substantial anti-aging benefits by enhancing collagen production and fibroblast-collagen interactions. These findings highlighted the potential of FCE in cosmetic applications, providing significant improvements in skin smoothness and overall appearance. This study fills a gap in the scientific literature regarding the skin benefits and chemical composition of FR callus extract, supporting its use in the development of effective cosmeceuticals.
Collapse
Affiliation(s)
- Euihyun Kim
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea; (E.K.); (S.-Y.K.); (H.-H.S.); (J.-H.L.)
| | - Morgane De Tollenaere
- Givaudan France SAS, Route de Bazancourt, 51110 Pomacle, France; (M.D.T.); (A.D.); (A.S.)
| | - Benedicte Sennelier
- Givaudan France Naturals, 250 rue Pierre Bayle, BP 81218, 84911 Avignon, France;
| | - Carole Lambert
- Givaudan France SAS, Bâtiment Canal Biotech 1, 3, Rue des Satellites, 31400 Toulouse, France (R.R.)
| | - Anais Durduret
- Givaudan France SAS, Route de Bazancourt, 51110 Pomacle, France; (M.D.T.); (A.D.); (A.S.)
| | - Soo-Yun Kim
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea; (E.K.); (S.-Y.K.); (H.-H.S.); (J.-H.L.)
| | - Hyo-Hyun Seo
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea; (E.K.); (S.-Y.K.); (H.-H.S.); (J.-H.L.)
| | - Jung-Hun Lee
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea; (E.K.); (S.-Y.K.); (H.-H.S.); (J.-H.L.)
| | - Amandine Scandolera
- Givaudan France SAS, Route de Bazancourt, 51110 Pomacle, France; (M.D.T.); (A.D.); (A.S.)
| | - Romain Reynaud
- Givaudan France SAS, Bâtiment Canal Biotech 1, 3, Rue des Satellites, 31400 Toulouse, France (R.R.)
| | - Sang-Hyun Moh
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea; (E.K.); (S.-Y.K.); (H.-H.S.); (J.-H.L.)
| |
Collapse
|
31
|
Bogdanowicz P, Bensadoun P, Noizet M, Béganton B, Philippe A, Alvarez-Georges S, Doat G, Tourette A, Bessou-Touya S, Lemaitre JM, Duplan H. Senomorphic activity of a combination of niacinamide and hyaluronic acid: correlation with clinical improvement of skin aging. Sci Rep 2024; 14:16321. [PMID: 39009698 PMCID: PMC11251187 DOI: 10.1038/s41598-024-66624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Intrinsic and extrinsic factors, including lifestyle and sun exposure, can contribute to cell senescence, which impairs skin homeostasis, that may in turn lead to skin aging. Senescent cells have a specific secretome, called the senescence-associated secretory phenotype (SASP) that includes MMPs, CXCLs and S100A8/9. Reducing the SASP with senotherapeutics is a promising strategy to reduce skin aging. Here we evaluated the effect of a formula containing niacinamide and hyaluronic acid, which are known to limit senescence and skin aging. We conducted three different studies. (1) Ex vivo explants treated with the formula had more collagen and glycosaminoglycan. (2) In a clinical trial with forty-four women, two months of treatment improved fine lines, wrinkles, luminosity, smoothness, homogeneity, and plumpness. (3) In a third study on thirty women, we treated one arm for two months and took skin biopsies to study gene expression. 101 mRNAs and 13 miRNAs were differentially expressed. We observed a likely senomorphic effect, as there was a decrease in many SASP genes including MMP12 and CXCL9 and a significant downregulation of autocrine signaling genes: S100A8 and S100A9. These pharmaco-clinical results are the first to demonstrate the senomorphic properties of an effective anti-aging formula in skin.
Collapse
Affiliation(s)
| | - Paul Bensadoun
- INSERM IRMB UMR1183, Hôpital Saint Eloi, Université de Montpellier, Montpellier, France
| | - Maïté Noizet
- R&D Pierre Fabre Dermo-Cosmétique & Personal Care, Toulouse, France
| | - Benoît Béganton
- R&D Pierre Fabre Dermo-Cosmétique & Personal Care, Toulouse, France
| | - Armony Philippe
- R&D Pierre Fabre Dermo-Cosmétique & Personal Care, Toulouse, France
| | | | - Gautier Doat
- Laboratoires Dermatologiques Avène, Lavaur, France
| | - Amélie Tourette
- R&D Pierre Fabre Dermo-Cosmétique & Personal Care, Toulouse, France
| | | | - Jean-Marc Lemaitre
- INSERM IRMB UMR1183, Hôpital Saint Eloi, Université de Montpellier, Montpellier, France.
| | - Hélène Duplan
- R&D Pierre Fabre Dermo-Cosmétique & Personal Care, Toulouse, France
| |
Collapse
|
32
|
Yuan F, Yan S, Zhao J. Elucidating the Phytochemical Landscape of Leaves, Stems, and Tubers of Codonopsis convolvulacea through Integrated Metabolomics. Molecules 2024; 29:3193. [PMID: 38999145 PMCID: PMC11243170 DOI: 10.3390/molecules29133193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Codonopsis convolvulacea is a highly valued Chinese medicinal plant containing diverse bioactive compounds. While roots/tubers have been the main medicinal parts used in practice, leaves and stems may also harbor valuable phytochemicals. However, research comparing volatiles across tissues is lacking. This study performed metabolomic profiling of leaves, stems, and tubers of C. convolvulacea to elucidate tissue-specific accumulation patterns of volatile metabolites. Ultra-high performance liquid chromatography-tandem mass spectrometry identified 302 compounds, belonging to 14 classes. Multivariate analysis clearly differentiated the metabolic profiles of the three tissues. Numerous differentially accumulated metabolites (DAMs) were detected, especially terpenoids and esters. The leaves contained more terpenoids, ester, and alcohol. The stems accumulated higher levels of terpenoids, heterocyclics, and alkaloids with pharmaceutical potential. The tubers were enriched with carbohydrates like sugars and starch, befitting their storage role, but still retained reasonable amounts of valuable volatiles. The characterization of tissue-specific metabolic signatures provides a foundation for the selective utilization of C. convolvulacea parts. Key metabolites identified include niacinamide, p-cymene, tridecanal, benzeneacetic acid, benzene, and carveol. Leaves, stems, and tubers could be targeted for antioxidants, drug development, and tonics/nutraceuticals, respectively. The metabolomic insights can also guide breeding strategies to enhance the bioactive compound content in specific tissues. This study demonstrates the value of tissue-specific metabolite profiling for informing the phytochemical exploitation and genetic improvement of medicinal plants.
Collapse
Affiliation(s)
- Fang Yuan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Key Laboratory of Tibetan Medicine Resources Conservation and Utilization of Tibet Autonomous Region, Tibet Agriculture and Animal Husbandry University, Nyingchi 860000, China
| | - Shiying Yan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
33
|
Park KY, López Gehrke I. Combined multilevel anti-aging strategies and practical applications of dermocosmetics in aesthetic procedures. J Eur Acad Dermatol Venereol 2024; 38 Suppl 4:23-35. [PMID: 38881448 DOI: 10.1111/jdv.19975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/28/2024] [Indexed: 06/18/2024]
Abstract
Management of the signs of facial aging and other cosmetic skin problems have greatly evolved in the past years. People are also seeking to improve their well-being and global skin appearance, and when they consider using cosmetic procedures, they expect natural and long-lasting aesthetic results. Combined dermocosmetic approaches that address the signs of facial aging at all levels are increasingly being used by dermatologists to meet patient expectations while ensuring their safety. Minimally invasive and reversible procedures that can be performed in only one session are popular approaches for skin restructuring and volumizing as they are flexible, rapid and less burdensome for patients. These interventions can achieve even better outcomes when they are combined with cosmeceuticals as pre- or post-procedural adjuvants to prepare the skin, accelerate recovery and sustain results. The use of topical dermocosmetics is also recommended as part of the daily skin care routine to improve skin quality and help maintain skin barrier function. This review thus outlines the most commonly used combined multilevel anti-aging strategies, which start by addressing the deepest skin layers and then the more superficial signs of skin aging. Examples of multi-active cosmeceuticals and skin delivery enhancing systems are also presented, together with examples of the use of dermocosmetics as supportive care for aesthetic procedures, to provide insights into current applications of dermocosmetic products.
Collapse
Affiliation(s)
- Kui Young Park
- Department of Dermatology, Chung-ang University College of Medicine, Seoul, South Korea
| | | |
Collapse
|
34
|
Yip L. Anti-aging trends in Australia. J Eur Acad Dermatol Venereol 2024; 38 Suppl 4:45-52. [PMID: 38881437 DOI: 10.1111/jdv.19647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/13/2023] [Indexed: 06/18/2024]
Abstract
Anti-aging trends in Australia have changed considerably since the country emerged from the lockdowns associated with the SARS-Cov2 pandemic. People now rely on social media influencers for skin care advice and skin care products, including professional skin care treatments that can be purchased on Internet platforms. The quest for the perfect 'zoom face' led to a 300% rise in cosmetic procedures across Australia in the year to April 2021. People now want to use less products on their skin, while looking healthy and natural (termed 'skin minimalism'). The popularity of retinoid derivatives for preventing wrinkles has been superseded by non-irritating actives like hyaluronic acid (HA) and niacinamide that provide skin barrier protection, skin hydration, plumping and anti-inflammatory effects. Botulinum toxin injections remain the most popular non-surgical cosmetic procedure, followed by HA fillers, and biostimulators that promote the synthesis of collagen and give longer lasting but more gradual results than HA fillers. Laser resurfacing is widely used for epidermal resurfacing and skin tightening, as well as non-ablative lasers, intense pulsed light and radiofrequency or ultrasound skin tightening devices. Superficial chemical peels are still popular because they are relatively gentle, inexpensive, and require no downtime, whereas medium-to-deep chemical peels have largely been superseded by laser technology. However, the most efficient approach to prevent skin aging is adopting a healthy lifestyle and taking action against all factors of the skin aging exposome.
Collapse
Affiliation(s)
- Leona Yip
- Skin Partners, West End, Queensland, Australia
| |
Collapse
|
35
|
Goodman GJ, Bagatin E. Photoaging and cosmeceutical solutions in sun-overexposed countries: The experience of Australia and Brazil. J Eur Acad Dermatol Venereol 2024; 38 Suppl 4:36-44. [PMID: 38881450 DOI: 10.1111/jdv.19867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/31/2024] [Indexed: 06/18/2024]
Abstract
Skin aging is the result of physiological changes determined by genetically driven processes and intrinsic factors, and exacerbated by a combination of multiple environmental factors, the main one being sun exposure. The effects of photoaging are particularly apparent on the face, where the appearance of aging signs can have a significant impact on the emotions conveyed and well-being. Photoprotection and facial skin care for managing photoaging signs are thus of particular importance for both physical and mental health. Countries, like Australia and Brazil, where the level of sun exposure is high and the populations have predominantly outdoor lifestyles, are particularly aware of the harms of photoaging and have implemented several measures to help reduce the risk of skin cancer in their populations. However, sun-seeking behaviours are difficult to change, and it takes time before interventions provide perceptible results. Australia still has some of the highest skin cancer incidence and mortality rates in the world. Solutions that target individuals can also be used for minimizing the clinical signs of facial aging and for improving skin quality, with the ultimate aim being not only to improve the appearance of the skin but also to mitigate the occurrence of pre-malignant and malignant lesions. This review summarizes the features of facial skin photoaging in photo-exposed populations, based on evidence gained from studies of Australian individuals, and discusses the various available solutions for skin photoaging, in particular those that are most popular in Brazil, which is a country with many years of experience in managing photoaged skin.
Collapse
Affiliation(s)
- Greg J Goodman
- Monash University, Clayton, Victoria, Australia
- University College of London, London, UK
| | - Edileia Bagatin
- Department of Dermatology, Escola Paulista de Medicina - Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Baik S, Heo H, Hong S, Jeong HS, Lee J, Lee H. Combination of Nicotinamide and Agastache rugosa Extract: A Potent Strategy for Protecting Hs68 Cells from UVB-Induced Photoaging. Prev Nutr Food Sci 2024; 29:162-169. [PMID: 38974585 PMCID: PMC11223918 DOI: 10.3746/pnf.2024.29.2.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
This study investigated the protective effects of nicotinamide (NAM) and Agastache rugosa extract (AR) against ultraviolet B (UVB)-induced photoaging in Hs68 cells. The results demonstrated that NAM and AR, alone or in combination, exhibited concentration-dependent protective effects against UVB radiation. The highest synergistic effect was observed at a NAM:AR ratio of 6:4. This combination exhibited a synergistic protective effect against UVB-induced photoaging. The sample concentration required for 80% cell survival was 9.70 μM and 131.16 ppm for NAM and AR, respectively. However, when combined, they exhibited strong synergistic effects with concentrations as low as 0.11 μM and 17.50 ppm. Moreover, 5.26 μM of NAM and 1,082.13 ppm of AR were required to inhibit 30% of reactive oxygen species, but the combination treatment required 0.62 μM and 95.49 ppm, respectively. This combination significantly reduced the production of matrix metalloproteinase and increased collagen production. These findings highlight the potential of combining NAM and AR as functional cosmetic materials to protect against UVB-induced photoaging. The synergistic effects observed in this study provide valuable information for developing novel strategies for cosmetic combinations that target UVB-mediated skin damage.
Collapse
Affiliation(s)
- Seungjoo Baik
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Seonghwa Hong
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Heon Sang Jeong
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Chungbuk 28644, Korea
| |
Collapse
|
37
|
Yusri K, Kumar S, Fong S, Gruber J, Sorrentino V. Towards Healthy Longevity: Comprehensive Insights from Molecular Targets and Biomarkers to Biological Clocks. Int J Mol Sci 2024; 25:6793. [PMID: 38928497 PMCID: PMC11203944 DOI: 10.3390/ijms25126793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Aging is a complex and time-dependent decline in physiological function that affects most organisms, leading to increased risk of age-related diseases. Investigating the molecular underpinnings of aging is crucial to identify geroprotectors, precisely quantify biological age, and propose healthy longevity approaches. This review explores pathways that are currently being investigated as intervention targets and aging biomarkers spanning molecular, cellular, and systemic dimensions. Interventions that target these hallmarks may ameliorate the aging process, with some progressing to clinical trials. Biomarkers of these hallmarks are used to estimate biological aging and risk of aging-associated disease. Utilizing aging biomarkers, biological aging clocks can be constructed that predict a state of abnormal aging, age-related diseases, and increased mortality. Biological age estimation can therefore provide the basis for a fine-grained risk stratification by predicting all-cause mortality well ahead of the onset of specific diseases, thus offering a window for intervention. Yet, despite technological advancements, challenges persist due to individual variability and the dynamic nature of these biomarkers. Addressing this requires longitudinal studies for robust biomarker identification. Overall, utilizing the hallmarks of aging to discover new drug targets and develop new biomarkers opens new frontiers in medicine. Prospects involve multi-omics integration, machine learning, and personalized approaches for targeted interventions, promising a healthier aging population.
Collapse
Affiliation(s)
- Khalishah Yusri
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sanjay Kumar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sheng Fong
- Department of Geriatric Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Clinical and Translational Sciences PhD Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Vincenzo Sorrentino
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Neuroscience Cellular & Molecular Mechanisms, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
38
|
Berardesca E, Cartigliani C, Nioré M, Bonfigli A, Canchy L, Kerob D, Tan J. Randomised, split-face study of a dermocosmetic cream containing Sphingobioma xenophaga extract and Neurosensine ® in subjects with rosacea associated with erythema and sensitive skin. Skin Res Technol 2024; 30:e13735. [PMID: 38899754 PMCID: PMC11187799 DOI: 10.1111/srt.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Rosacea is a chronic inflammatory skin condition associated with erythema, inflammation and skin sensitivity. OBJECTIVES To assess the benefit of a dermocosmetic cream (DC cream) containing Sphingobioma xenophaga extract and soothing agent in adult females with rosacea-associated erythema and sensitive skin. MATERIALS AND METHODS During phase 1, DC was applied twice daily on the randomized half-face and compared to usual-skincare (USC) for 28 days. During phase 2, DC was applied on the full face twice daily for 56 days. Clinical, instrumental and skin sensitivity assessments were performed at all visits; demodex density (standardized skin surface biopsy (SSSB) method) was performed at baseline and D28, quality of life (QoL) was assessed using the stigmatization questionnaire (SQ), Rosacea Quality of Life index (ROSAQoL) and Dermatology Life Quality Index (DLQI) at baseline and D84. RESULTS At D28, a significant benefit of DC over USC was observed for erythema, tightness, burning and stinging (all p ≤ 0.05), erythema measured by chromameter (p < 0.01), corneometry and transepidermal water loss (p < 0.0001 and p < 0.05, respectively), skin sensitivity (p < 0.001) and significant reduction of mean demodex density (p < 0.05) on the DC side. At D84, DC significantly (all p < 0.05) improved clinical signs and symptoms on both sides of the face compared to baseline; SQ, ROSAQoL and DLQI scores improved by 40.4%, 25.0% and 55.7%, respectively compared to baseline. Tolerance was excellent. CONCLUSION DC significantly improved erythema, skin sensitivity, demodex count, QoL and feeling of stigmatization of subjects with rosacea and is very well tolerated.
Collapse
Affiliation(s)
- Enzo Berardesca
- Phillip Frost Department of DermatologyUniversity of MiamiMiamiUSA
| | | | - Margot Nioré
- Scientific DirectionLa Roche‐Posay Laboratoire DermatologiqueLevallois‐PerretFrance
| | | | - Ludivine Canchy
- Scientific DirectionLa Roche‐Posay Laboratoire DermatologiqueLevallois‐PerretFrance
| | - Delphine Kerob
- Scientific DirectionLa Roche‐Posay Laboratoire DermatologiqueLevallois‐PerretFrance
- Department of DermatologySaint Louis HospitalParisFrance
| | - Jerry Tan
- Department of Medicine and Windsor Clinical Research Inc.Western UniversityWindsorONCanada
| |
Collapse
|
39
|
Porcello A, Chemali M, Marques C, Scaletta C, Lourenço K, Abdel-Sayed P, Raffoul W, Hirt-Burri N, Applegate LA, Laurent A. Dual Functionalization of Hyaluronan Dermal Fillers with Vitamin B3: Efficient Combination of Bio-Stimulation Properties with Hydrogel System Resilience Enhancement. Gels 2024; 10:361. [PMID: 38920908 PMCID: PMC11203111 DOI: 10.3390/gels10060361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Hyaluronic acid (HA) hydrogels are commonly used for facial dermal filling and for alternative medical aesthetic purposes. High diversity exists in commercial formulations, notably for the optimization of finished product stability, functionality, and performance. Polyvalent ingredients such as calcium hydroxylapatite (CaHA) or vitamin B3 (niacinamide) are notably used as bio-stimulants to improve skin quality attributes at the administration site. The aim of the present study was to perform multi-parametric characterization of two novel cross-linked dermal filler formulas (HAR-1 "Instant Refine" and HAR-3 "Maxi Lift") for elucidation of the various functional impacts of vitamin B3 incorporation. Therefore, the HAR products were firstly comparatively characterized in terms of in vitro rheology, cohesivity, injectability, and resistance to chemical or enzymatic degradation (exposition to H2O2, AAPH, hyaluronidases, or xanthine oxidase). Then, the HAR products were assessed for cytocompatibility and in vitro bio-stimulation attributes in a primary dermal fibroblast model. The results showed enhanced resilience of the cohesive HAR hydrogels as compared to JUVÉDERM® VOLBELLA® and VOLUMA® reference products in a controlled degradation assay panel. Furthermore, significant induction of total collagen synthesis in primary dermal fibroblast cultures was recorded for HAR-1 and HAR-3, denoting intrinsic bio-stimulatory effects comparable or superior to those of the Radiesse® and Sculptra™ reference products. Original results of high translational relevance were generated herein using robust and orthogonal experimental methodologies (hydrogel degradation, functional benchmarking) and study designs. Overall, the reported results confirmed the dual functionalization role of vitamin B3 in cross-linked HA dermal fillers, with a significant enhancement of hydrogel system stability attributes and the deployment of potent bio-stimulatory capacities.
Collapse
Affiliation(s)
- Alexandre Porcello
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (K.L.)
| | - Michèle Chemali
- Plastic and Reconstructive Surgery, Ensemble Hospitalier de la Côte, CH-1110 Morges, Switzerland; (M.C.); (W.R.)
| | - Cíntia Marques
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (K.L.)
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
| | - Kelly Lourenço
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (K.L.)
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
- STI School of Engineering, Federal Polytechnical School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Wassim Raffoul
- Plastic and Reconstructive Surgery, Ensemble Hospitalier de la Côte, CH-1110 Morges, Switzerland; (M.C.); (W.R.)
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
| |
Collapse
|
40
|
Goberdhan L, Schneider K, Makino ET, Bautista A, Mehta RC. Efficacy and safety of novel topical pigment-correcting regimen with biweekly diamond tip microdermabrasion procedures on facial hyperpigmentation. J Cosmet Dermatol 2024; 23:1726-1733. [PMID: 38288515 DOI: 10.1111/jocd.16192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/04/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Facial hyperpigmentation can negatively affect an individual's emotional and psychosocial well-being. AIMS Assess safety and tolerability of a combination of microdermabrasion (DG) procedures using a novel brightening pro-infusion serum (EC-DG) with a targeted at-home treatment regimen in subjects with mild to severe facial hyperpigmentation, including melasma, post-inflammatory hyperpigmentation, and dark spots. PATIENTS/METHODS This 12-week, open-label study enrolled 18 subjects (Fitzpatrick skin types I-IV) who underwent 6 in-office DG procedures with EC-DG (one procedure administered biweekly), along with daily topical application of a brightening treatment serum and dark spot cream. End points included change from baseline across multiple skin quality attributes and the Melasma Area and Severity Index (MASI), self-assessment questionnaires, and tolerability assessments. RESULTS The combination treatment was well tolerated and resulted in significant (p ≤ 0.05) improvements from baseline in radiance, tactile roughness, and moisturization/hydration immediately after the first treatment, in MASI score at day 3, and in overall hyperpigmentation at week 4. Most (94.1%) subjects were satisfied with treatment. CONCLUSIONS DG procedures using EC-DG combined with a targeted at-home skincare regimen are effective and tolerable for treating facial hyperpigmentation across a broad range of skin types.
Collapse
Affiliation(s)
- Lisa Goberdhan
- Allergan Aesthetics, an AbbVie Company, Irvine, California, USA
| | - Katie Schneider
- Allergan Aesthetics, an AbbVie Company, Irvine, California, USA
| | | | | | - Rahul C Mehta
- Allergan Aesthetics, an AbbVie Company, Irvine, California, USA
| |
Collapse
|
41
|
Lee EJ, Ryu JH, Baek JH, Boo YC. Skin Color Analysis of Various Body Parts (Forearm, Upper Arm, Elbow, Knee, and Shin) and Changes with Age in 53 Korean Women, Considering Intrinsic and Extrinsic Factors. J Clin Med 2024; 13:2500. [PMID: 38731031 PMCID: PMC11084701 DOI: 10.3390/jcm13092500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Background/Objectives: Skin color is innately determined by race and other genetic factors, and it also undergoes acquired changes due to various intrinsic and extrinsic factors. Previous studies on skin color have mainly focused on the face, and research has recently expanded to other body parts. However, there is limited information about the age-dependent changes in the skin color of these body parts. The purpose of this study is to analyze the differences in skin color between various body parts and the changes in skin color of each body part with age. Methods: This study examined the skin color of 53 Korean women subjects evenly distributed in age from the 20s to 60s on several body parts: forearm, upper arm, elbow (extended or folded), knee (extended or folded), thigh, and shin. The lightness (L*), redness (a*), and yellowness (b*) were measured using a spectrophotometer, and the individual typology angle (ITA°) was calculated from the L* and b* values. The melanin index and erythema index were measured using the mexameter. Results: The results showed that the elbow skin had the lowest L* and ITA° values and the highest a* and b* values among the examined body parts, followed by the knee. The melanin index and erythema index were also high in the skin of these body parts. In the analysis of age-dependent changes in the skin color of various body parts, the forearm skin exhibited the most notable decrease in the L* and ITA° values and increases in the a* and b* values, followed by upper-arm skin. The melanin and erythema indices in the forearm also increased as the subjects aged, whereas those in the elbow and knee rather decreased with age. Conclusions: This study suggests that differences in intrinsic and extrinsic skin aging in various body parts may be expressed as different changes in skin color and raises the need for cosmetic and dermatological research to identify the physiological significance of these changes.
Collapse
Affiliation(s)
- Eun Ju Lee
- Skin Research Center, Dermapro Ltd., Seoul 06570, Republic of Korea; (E.J.L.); (J.H.R.)
| | - Ja Hyun Ryu
- Skin Research Center, Dermapro Ltd., Seoul 06570, Republic of Korea; (E.J.L.); (J.H.R.)
| | - Ji Hwoon Baek
- Skin Research Center, Dermapro Ltd., Seoul 06570, Republic of Korea; (E.J.L.); (J.H.R.)
| | - Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
42
|
Crous C, Pretorius J, Petzer A. Overview of popular cosmeceuticals in dermatology. SKIN HEALTH AND DISEASE 2024; 4:e340. [PMID: 38577050 PMCID: PMC10988741 DOI: 10.1002/ski2.340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 01/18/2024] [Indexed: 04/06/2024]
Abstract
The eternal pursuit to prevent ageing and maintain a youthful appearance has resulted in a rapidly expanding cosmeceutical industry. Cosmeceutical products, particularly of natural origin, are in high demand due to claims of efficacy for signs of ageing and other skin conditions. Consumers often include cosmeceutical products in their skin care regime as they are readily available, and a more affordable option compared to prescription products. However, many cosmeceutical ingredients lack clinical evidence regarding their efficacy and safety as these products are not regulated by the U.S. Food and Drug Administration. This review provides a brief overview of several popular cosmeceutical ingredients with regards to their potential indications, targets and mechanisms of action.
Collapse
Affiliation(s)
- Chantalle Crous
- Pharmaceutical ChemistrySchool of Pharmacy and Centre of Excellence for Pharmaceutical SciencesNorth‐West UniversityPotchefstroomSouth Africa
| | | | - Anél Petzer
- Pharmaceutical ChemistrySchool of Pharmacy and Centre of Excellence for Pharmaceutical SciencesNorth‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
43
|
Marques C, Hadjab F, Porcello A, Lourenço K, Scaletta C, Abdel-Sayed P, Hirt-Burri N, Applegate LA, Laurent A. Mechanistic Insights into the Multiple Functions of Niacinamide: Therapeutic Implications and Cosmeceutical Applications in Functional Skincare Products. Antioxidants (Basel) 2024; 13:425. [PMID: 38671873 PMCID: PMC11047333 DOI: 10.3390/antiox13040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Niacinamide (or nicotinamide) is a small-molecule hydrosoluble vitamin with essential metabolic functions in mammalian cells. Niacinamide has become a key functional ingredient in diverse skincare products and cosmetics. This vitamin plays a pivotal role in NAD+ synthesis, notably contributing to redox reactions and energy production in cutaneous cells. Via diversified biochemical mechanisms, niacinamide is also known to influence human DNA repair and cellular stress responses. Based on decades of safe use in cosmetics, niacinamide recently gained widespread popularity as an active ingredient which aligns with the "Kligman standards" in skincare. From a therapeutic standpoint, the intrinsic properties of niacinamide may be applied to managing acne vulgaris, melasma, and psoriasis. From a cosmeceutical standpoint, niacinamide has been widely leveraged as a multipurpose antiaging ingredient. Therein, it was shown to significantly reduce cutaneous oxidative stress, inflammation, and pigmentation. Overall, through multimodal mechanisms, niacinamide may be considered to partially prevent and/or reverse several biophysical changes associated with skin aging. The present narrative review provides multifactorial insights into the mechanisms of niacinamide's therapeutic and cosmeceutical functions. The ingredient's evolving role in skincare was critically appraised, with a strong focus on the biochemical mechanisms at play. Finally, novel indications and potential applications of niacinamide in dermal fillers and alternative injectable formulations were prospectively explored.
Collapse
Affiliation(s)
- Cíntia Marques
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (A.P.); (K.L.)
| | - Farid Hadjab
- Development Department, Albomed GmbH, D-90592 Schwarzenbruck, Germany;
| | - Alexandre Porcello
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (A.P.); (K.L.)
| | - Kelly Lourenço
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (A.P.); (K.L.)
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.)
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.)
- STI School of Engineering, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.)
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.)
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
| |
Collapse
|
44
|
Yang F, Wang H, Guo M, Zhou Z. The clinical efficacy of a new emulsion for acne and conspicuous facial pore amelioration. J Cosmet Dermatol 2024; 23:958-963. [PMID: 38140770 DOI: 10.1111/jocd.16118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Oily skin is a common concern in the field of dermatology due to its association with excessive sebum production, acne, blackheads, and enlarged facial pores. Therefore, it is in great demand to develop effective cosmetics to manage oily skin. OBJECTIVES To evaluate the clinical efficacy of a novel emulsion containing niacinamide, lens esculenta seed extract, and white willow bark extract for oily skin. METHODS The efficacy of a novel emulsion was evaluated through a 56-day clinical trial. The clinical efficacy of the product to ameliorate acne, blackheads, and conspicuous facial pores was assessed on 30 subjects with oily skin by VISIA, PRIMOS, professional dermatologist evaluations, and subject self-assessment. RESULTS In the clinical trial, the participants showed high satisfaction with the emulsion's efficacy, reporting significant improvement in skin sebum secretion, acne, facial pores, and blackheads. The efficacy of the novel emulsion was further validated through VISIA and PRIMOS measurements, along with professional dermatologist evaluations. CONCLUSION Our results showed that the novel emulsion containing three active ingredients could effectively improve acne, blackheads, and conspicuous facial pores.
Collapse
Affiliation(s)
- Fan Yang
- Research & Development Center, Mageline Biology Tech Co., Ltd., Wuhan, Hubei, China
| | - Hua Wang
- Research & Development Center, Mageline Biology Tech Co., Ltd., Wuhan, Hubei, China
| | - Miao Guo
- Research & Development Center, Mageline Biology Tech Co., Ltd., Wuhan, Hubei, China
| | - Ziyan Zhou
- Research & Development Center, Mageline Biology Tech Co., Ltd., Wuhan, Hubei, China
| |
Collapse
|
45
|
Woo YR, Kim HS. Interaction between the microbiota and the skin barrier in aging skin: a comprehensive review. Front Physiol 2024; 15:1322205. [PMID: 38312314 PMCID: PMC10834687 DOI: 10.3389/fphys.2024.1322205] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The interplay between the microbes and the skin barrier holds pivotal significance in skin health and aging. The skin and gut, both of which are critical immune and neuroendocrine system, harbor microbes that are kept in balance. Microbial shifts are seen with aging and may accelerate age-related skin changes. This comprehensive review investigates the intricate connection between microbe dynamics, skin barrier, and the aging process. The gut microbe plays essential roles in the human body, safeguarding the host, modulating metabolism, and shaping immunity. Aging can perturb the gut microbiome which in turn accentuates inflammaging by further promoting senescent cell accumulation and compromising the host's immune response. Skin microbiota diligently upholds the epidermal barrier, adeptly fending off pathogens. The aging skin encompasses alterations in the stratum corneum structure and lipid content, which negatively impact the skin's barrier function with decreased moisture retention and increased vulnerability to infection. Efficacious restoration of the skin barrier and dysbiosis with strategic integration of acidic cleansers, emollients with optimal lipid composition, antioxidants, and judicious photoprotection may be a proactive approach to aging. Furthermore, modulation of the gut-skin axis through probiotics, prebiotics, and postbiotics emerges as a promising avenue to enhance skin health as studies have substantiated their efficacy in enhancing hydration, reducing wrinkles, and fortifying barrier integrity. In summary, the intricate interplay between microbes and skin barrier function is intrinsically woven into the tapestry of aging. Sound understanding of these interactions, coupled with strategic interventions aimed at recalibrating the microbiota and barrier equilibrium, holds the potential to ameliorate skin aging. Further in-depth studies are necessary to better understand skin-aging and develop targeted strategies for successful aging.
Collapse
Affiliation(s)
- Yu Ri Woo
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
46
|
Nassar K, El-Mekawey D, Elmasry AE, Refaey MS, El-Sayed Ghoneim M, Elshaier YAMM. The significance of caloric restriction mimetics as anti-aging drugs. Biochem Biophys Res Commun 2024; 692:149354. [PMID: 38091837 DOI: 10.1016/j.bbrc.2023.149354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024]
Abstract
Aging is an intricate process characterized by the gradual deterioration of the physiological integrity of a living organism. This unfortunate phenomenon inevitably leads to a decline in functionality and a heightened susceptibility to the ultimate fate of mortality. Therefore, it is of utmost importance to implement interventions that possess the capability to reverse or preempt age-related pathology. Caloric restriction mimetics (CRMs) refer to a class of molecules that have been observed to elicit advantageous outcomes on both health and longevity in various model organisms and human subjects. Notably, these compounds offer a promising alternative to the arduous task of adhering to a caloric restriction diet and mitigate the progression of the aging process and extend the duration of life in laboratory animals and human population. A plethora of molecular signals have been linked to the practice of caloric restriction, encompassing Insulin-like Growth Factor 1 (IGF1), Mammalian Target of Rapamycin (mTOR), the Adenosine Monophosphate-Activated Protein Kinase (AMPK) pathway, and Sirtuins, with particular emphasis on SIRT1. Therefore, this review will center its focus on several compounds that act as CRMs, highlighting their molecular targets, chemical structures, and mechanisms of action. Moreover, this review serves to underscore the significant relationship between post COVID-19 syndrome, antiaging, and importance of utilizing CRMs. This particular endeavor will serve as a comprehensive guide for medicinal chemists and other esteemed researchers, enabling them to meticulously conceive and cultivate novel molecular entities with the potential to function as efficacious antiaging pharmaceutical agents.
Collapse
Affiliation(s)
- Khloud Nassar
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Doaa El-Mekawey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Ahmed E Elmasry
- Department Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Mai El-Sayed Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt.
| | - Yaseen A M M Elshaier
- Department Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| |
Collapse
|
47
|
Li C, Shi S. Gut microbiota and metabolic profiles in chronic intermittent hypoxia-induced rats: disease-associated dysbiosis and metabolic disturbances. Front Endocrinol (Lausanne) 2024; 14:1224396. [PMID: 38283743 PMCID: PMC10811599 DOI: 10.3389/fendo.2023.1224396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Aim Chronic intermittent hypoxia (CIH) is a key characteristic of obstructive sleep apnea (OSA) syndrome, a chronic respiratory disorder. The mechanisms of CIH-induced metabolic disturbance and histopathological damage remain unclear. Methods CIH-induced rats underwent daily 8-h CIH, characterized by oxygen levels decreasing from 21% to 8.5% over 4 min, remaining for 2 min, and quickly returning to 21% for 1 min. The control rats received a continuous 21% oxygen supply. The levels of hypersensitive C reactive protein (h-CRP), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8), and nuclear factor kappa-B (NF-κB) were measured by ELISA. Histological analysis of the soft palates was conducted using HE staining. The microbial profiling of fecal samples was carried out by Accu16STM assay. Untargeted metabolomics of serum and soft palate tissue samples were analyzed by UPLC-MS. The protein expression of cAMP-related pathways in the soft palate was determined by Western blot. Results After 28 h of CIH induction, a significant increase in pro-inflammatory cytokines was observed in the serum, along with mucosal layer thickening and soft palate tissue hypertrophy. CIH induction altered the diversity and composition of fecal microbiota, specifically reducing beneficial bacteria while increasing harmful bacteria/opportunistic pathogens. Notably, CIH induction led to a significant enrichment of genera such as Dorea, Oscillibacter, Enteractinococcus, Paenibacillus, Globicatella, and Flaviflexus genera. Meanwhile, Additionally, CIH induction had a notable impact on 108 serum marker metabolites. These marker metabolites, primarily involving amino acids, organic acids, and a limited number of flavonoids or sterols, were associated with protein transport, digestion and absorption, amino acid synthesis and metabolism, as well as cancer development. Furthermore, these differential serum metabolites significantly affected 175 differential metabolites in soft palate tissue, mainly related to cancer development, signaling pathways, amino acid metabolism, nucleotide precursor or intermediate metabolism, respiratory processes, and disease. Importantly, CIH induction could significantly affect the expression of the cAMP pathway in soft palate tissue. Conclusions Our findings suggest that targeting differential metabolites in serum and soft palate tissue may represent a new approach to clinical intervention and treatment of OSA simulated by the CIH.
Collapse
Affiliation(s)
| | - Song Shi
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Huang K, Liu X, Zhang Z, Wang T, Xu H, Li Q, Jia Y, Huang L, Kim P, Zhou X. AgeAnnoMO: a knowledgebase of multi-omics annotation for animal aging. Nucleic Acids Res 2024; 52:D822-D834. [PMID: 37850649 PMCID: PMC10767957 DOI: 10.1093/nar/gkad884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023] Open
Abstract
Aging entails gradual functional decline influenced by interconnected factors. Multiple hallmarks proposed as common and conserved underlying denominators of aging on the molecular, cellular and systemic levels across multiple species. Thus, understanding the function of aging hallmarks and their relationships across species can facilitate the translation of anti-aging drug development from model organisms to humans. Here, we built AgeAnnoMO (https://relab.xidian.edu.cn/AgeAnnoMO/#/), a knowledgebase of multi-omics annotation for animal aging. AgeAnnoMO encompasses an extensive collection of 136 datasets from eight modalities, encompassing 8596 samples from 50 representative species, making it a comprehensive resource for aging and longevity research. AgeAnnoMO characterizes multiple aging regulators across species via multi-omics data, comprehensively annotating aging-related genes, proteins, metabolites, mitochondrial genes, microbiotas and age-specific TCR and BCR sequences tied to aging hallmarks for these species and tissues. AgeAnnoMO not only facilitates a deeper and more generalizable understanding of aging mechanisms, but also provides potential insights of the specificity across tissues and species in aging process, which is important to develop the effective anti-aging interventions for diverse populations. We anticipate that AgeAnnoMO will provide a valuable resource for comprehending and integrating the conserved driving hallmarks in aging biology and identifying the targetable biomarkers for aging research.
Collapse
Affiliation(s)
- Kexin Huang
- The Center of Gerontology and Geriatrics and West China Biomedical Big Data Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xi Liu
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Zhaocan Zhang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Tiangang Wang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Haixia Xu
- The Center of Gerontology and Geriatrics and West China Biomedical Big Data Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qingxuan Li
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Yuhao Jia
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Pora Kim
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
49
|
Minoretti P, Emanuele E. Clinically Actionable Topical Strategies for Addressing the Hallmarks of Skin Aging: A Primer for Aesthetic Medicine Practitioners. Cureus 2024; 16:e52548. [PMID: 38371024 PMCID: PMC10874500 DOI: 10.7759/cureus.52548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
In this narrative review, we sought to provide a comprehensive overview of the mechanisms underlying cutaneous senescence, framed by the twelve traditional hallmarks of aging. These include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, impaired macroautophagy, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. We also examined how topical interventions targeting these hallmarks can be integrated with conventional aesthetic medicine techniques to enhance skin rejuvenation. The potential of combining targeted topical therapies against the aging hallmarks with minimally invasive procedures represents a significant advancement in aesthetic medicine, offering personalized and effective strategies to combat skin aging. The reviewed evidence paves the way for future advancements and underscores the transformative potential of integrating scientifically validated interventions targeted against aging hallmarks into traditional aesthetic practices.
Collapse
|
50
|
Landau M, Landau SB. Hacking the International Nomenclature of Cosmetic Ingredients List- How to Read Ingredients in Cosmetic Products and What Is Important for a Dermatologist to Know? Dermatol Clin 2024; 42:7-11. [PMID: 37977687 DOI: 10.1016/j.det.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Skin specialists and practitioners are commonly requested to recommend on cosmetic products to improve skin appearance and address certain "non-medical" concerns. During residency and further education, dermatologists rarely expand their knowledge regarding cosmetic ingredients, except if they are a cause of medical condition or disease, such as contact dermatitis. This review provides guidelines to the INCI list structure, together with basic principles of cosmetic products formulation.
Collapse
Affiliation(s)
- Marina Landau
- Department of Plastic and Reconstructive Surgery, Shamir Medical Center, Be'er Ya'aqov, Merkaz, Israel.
| | | |
Collapse
|