1
|
Pedisić S, Zorić Z, Repajić M, Levaj B, Dobrinčić A, Balbino S, Čošić Z, Dragović-Uzelac V, Elez Garofulić I. Valorization of Berry Fruit By-Products: Bioactive Compounds, Extraction, Health Benefits, Encapsulation and Food Applications. Foods 2025; 14:1354. [PMID: 40282756 PMCID: PMC12026826 DOI: 10.3390/foods14081354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
The increased production of high-quality berry products in recent years has led to considerable quantities of by-products such as pomace (25-50%), which consists of skin, seeds, stems and leaves. The improper management of pomace can lead to environmental pollution and potential public health problems due to microbial contamination, and storage causes additional processing costs. However, due to their high content of various valuable bioactive compounds (BACs), berry by-products have gained much attention as sustainable and functional ingredients with applications in the food and nutraceutical industries. The health benefits are primarily attributed to the phenolic compounds, which exhibit numerous biological activities, especially good antioxidant and antibacterial activity as well as health-promoting effects. This review summarizes the bioactive content and composition of extracts from berry by-products (genera Ribes, Rubus, Fragaria, Sambucus, Aronia and Vaccinium) obtained using advanced extraction technologies and their stabilization through sophisticated encapsulation technologies that make them suitable for various food applications. The addition of berry pomace to beverages, bakery, dairy and meat products improves sensory quality, extends shelf life, increases nutritional value and reduces the environmental footprint. This information can provide food scientists with valuable insights to evaluate the potential of berry by-products as functional ingredients with health-promoting and disease-preventing properties that create value-added products for human consumption while reducing food waste.
Collapse
Affiliation(s)
- Sandra Pedisić
- Centre for Food Technology and Biotechnology, University of Zagreb Faculty of Food Technology and Biotechnology, P. Kasandrića 3, 23000 Zadar, Croatia;
| | - Zoran Zorić
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg kneza Višeslava 9, 23000 Zadar, Croatia;
| | - Maja Repajić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| | - Branka Levaj
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| | - Ana Dobrinčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| | - Sandra Balbino
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| | - Zrinka Čošić
- Centre for Food Technology and Biotechnology, University of Zagreb Faculty of Food Technology and Biotechnology, P. Kasandrića 3, 23000 Zadar, Croatia;
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| | - Ivona Elez Garofulić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| |
Collapse
|
2
|
Ciurlă L, Enache IM, Buțerchi I, Mihalache G, Lipșa FD, Patraș A. A New Approach to Recover Bioactive Compounds from Apple Pomace: Healthy Jelly Candies. Foods 2024; 14:39. [PMID: 39796329 PMCID: PMC11720155 DOI: 10.3390/foods14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Rich in bioactive compounds, carbohydrates, fibers, minerals, and trace elements, apple pomace (AP) is a significant agro-industrial by-product, which pollutes and brings high management costs. The current study investigates the possibility of using an aqueous AP extract (APE) as the main ingredient in a jelly candy recipe, replacing artificial colors and flavors and improving its nutritional value. APE and formulated jelly candies were analyzed in terms of their phytochemical profile, antioxidant capacity, and color parameters. In addition, the microbiological and sensory properties of the jelly candies, as well as their behavior during storage, were analyzed. An HPLC analysis of AP revealed the presence of 9 individual phenolic compounds, with a high content of protocatechuic (375.21 ± 18.76 µg/g DW) and p-hydroxybenzoic (164.96 ± 13.83 µg/g DW) acids. The results of this study prove the presence of bioactive compounds with antioxidant and antidiabetic properties in both APE and its candies. Investigation on jelly candies with APE revealed an antioxidant capacity of 142.03 ± 1.08 mmol TE/g DW and a total polyphenolic content of 8.25 ± 0.17 mg GAE/g DW. Additionally, a sensory analysis highly appreciated the proposed jelly with APE, with scores higher than 4.70/5.00 for all evaluated attributes. Thus, this study succeeded in developing a new approach to recovering bioactive compounds from AP, demonstrating the potential of this by-product to improve jelly candies' attributes while promoting sustainability through waste reduction and the effective use of natural resources.
Collapse
Affiliation(s)
- Liliana Ciurlă
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu, Alley, 700490 Iasi, Romania; (L.C.)
| | - Iuliana-Maria Enache
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu, Alley, 700490 Iasi, Romania; (L.C.)
| | - Ioana Buțerchi
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu, Alley, 700490 Iasi, Romania; (L.C.)
| | - Gabriela Mihalache
- Faculty of Agriculture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu, Alley, 700490 Iasi, Romania
- Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Florin Daniel Lipșa
- Faculty of Agriculture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu, Alley, 700490 Iasi, Romania
| | - Antoanela Patraș
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu, Alley, 700490 Iasi, Romania; (L.C.)
| |
Collapse
|
3
|
Raczkowska E, Serek P. Health-Promoting Properties and the Use of Fruit Pomace in the Food Industry-A Review. Nutrients 2024; 16:2757. [PMID: 39203893 PMCID: PMC11357471 DOI: 10.3390/nu16162757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Fruit pomace, a by-product of the fruit industry, includes the skins, seeds, and pulp most commonly left behind after juice extraction. It is produced in large quantities: apple residues alone generate approximately 4 million tons of waste annually, which is a serious problem for the processing industry but also creates opportunities for various applications. Due to, among other properties, their high content of dietary fiber and polyphenolic compounds, fruit residues are used to design food with functional features, improving the nutritional value and health-promoting, technological, and sensory properties of food products. This article presents the health-promoting (antioxidant, antidiabetic, anti-inflammatory, and antibacterial) properties of fruit pomace. Moreover, the possibilities of their use in the food industry are characterized, with particular emphasis on bread, sweet snack products, and extruded snacks. Attention is paid to the impact of waste products from the fruit industry on the nutritional value and technological and sensory characteristics of these products. Fruit pomace is a valuable by-product whose use in the food industry can provide a sustainable solution for waste management and contribute to the development of functional food products with targeted health-promoting properties.
Collapse
Affiliation(s)
- Ewa Raczkowska
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wroclaw, Poland;
| | | |
Collapse
|
4
|
Saracila M, Untea AE, Oancea AG, Varzaru I, Vlaicu PA. Comparative Analysis of Black Chokeberry ( Aronia melanocarpa L.) Fruit, Leaves, and Pomace for Their Phytochemical Composition, Antioxidant Potential, and Polyphenol Bioaccessibility. Foods 2024; 13:1856. [PMID: 38928798 PMCID: PMC11202527 DOI: 10.3390/foods13121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The study aims to compare the nutrient composition, antioxidant potential, and polyphenol bioaccessibility of the fruit, leaves, and pomace of black chokeberry. Phytochemical characterization, antioxidant activity, and the effect of in vitro gastrointestinal digestion on the individual phenolic compounds of fruit, leaves, and pomace of black chokeberry were assessed. Results showed that leaves had a higher content of polyphenols (61.06 mg GAE/g dw), flavonoids (8.47 mg QE/g), and tocopherols (1172.20 mg/kg) than fruit (27.99 mg GAE/g dw polyphenols, 5.23 mg QE/g flavonoids, 38.48 mg/kg tocopherols) and pomace (22.94 mg GAE/g dw polyphenols, 1.89 mg QE/g flavonoids and 157.19 mg/kg tocopherols), with superior in vitro antioxidant activity. Chlorogenic acids were the dominant phenolic compounds in black chokeberry undigested samples (2.713 mg/g in fruit, 17.954 mg/g in leaves, and 1.415 mg/g in pomace) but are poorly absorbed (bioaccessibility index in intestinal phase of 28.84% for fruit, 8.81% for leaves, and 31.90% for pomace). Hydroxybenzoic acids were highly stable in leaves and fruit during simulated digestion and had high bioaccessibility. In conclusion, residues from black chokeberry processing are also valuable sources of bioactive compounds, but the pomace had higher polyphenol bioaccessibility than leaves and might be a promising supplement for the food industry.
Collapse
Affiliation(s)
- Mihaela Saracila
- Feed and Food Quality Department, National Research and Development Institute for Animal Biology and Nutrition, Balotesti, 077015 Ilfov, Romania; (A.E.U.); (A.G.O.); (P.A.V.)
| | | | | | | | | |
Collapse
|
5
|
Godyla-Jabłoński M, Raczkowska E, Jodkowska A, Kucharska AZ, Sozański T, Bronkowska M. Effects of Anthocyanins on Components of Metabolic Syndrome-A Review. Nutrients 2024; 16:1103. [PMID: 38674794 PMCID: PMC11054851 DOI: 10.3390/nu16081103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a significant health problem. The co-occurrence of obesity, carbohydrate metabolism disorders, hypertension and atherogenic dyslipidaemia is estimated to affect 20-30% of adults worldwide. Researchers are seeking solutions to prevent and treat the conditions related to MetS. Preventive medicine, which focuses on modifiable cardiovascular risk factors, including diet, plays a special role. A diet rich in fruits and vegetables has documented health benefits, mainly due to the polyphenolic compounds it contains. Anthocyanins represent a major group of polyphenols; they exhibit anti-atherosclerotic, antihypertensive, antithrombotic, anti-inflammatory and anticancer activities, as well as beneficial effects on endothelial function and oxidative stress. This review presents recent reports on the mechanisms involved in the protective effects of anthocyanins on the body, especially among people with MetS. It includes epidemiological data, in vivo and in vitro preclinical studies and clinical observational studies. Anthocyanins are effective, widely available compounds that can be used in both the prevention and treatment of MetS and its complications. Increased consumption of anthocyanin-rich foods may contribute to the maintenance of normal body weight and modulation of the lipid profile in adults. However, further investigation is needed to confirm the beneficial effects of anthocyanins on serum glucose levels, improvement in insulin sensitivity and reduction in systolic and diastolic blood pressure.
Collapse
Affiliation(s)
- Michaela Godyla-Jabłoński
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland;
| | - Ewa Raczkowska
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland;
| | - Anna Jodkowska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland;
| | - Alicja Zofia Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland;
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Monika Bronkowska
- Institute of Health Sciences—Collegium Salutis Humanae, University of Opole, Katowicka 68, 45-060 Opole, Poland;
| |
Collapse
|
6
|
Wal P. Phytochemicals and their Potential Mechanisms against Insulin Resistance. Curr Diabetes Rev 2024; 20:e081123223322. [PMID: 37946350 DOI: 10.2174/0115733998262924231020083353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Insulin's inception dates back to 1921 and was unveiled through a momentous revelation. Diabetes is a dangerous, long-term disease in which the body fails to generate enough insulin or utilize the insulin it creates adequately. This causes hyperglycemia, a state of high blood sugar levels, which can even put a person into a coma if not managed. Activation of the insulin receptor corresponds to two crucial metabolic functions, i.e., uptake of glucose and storage of glycogen. Type 2 diabetes mellitus (T2DM) exists as one of the most challenging medical conditions in the 21st century. The sedentary lifestyle and declining quality of food products have contributed to the rapid development of metabolic disorders. Hence, there is an urgent need to lay some reliable, significant molecules and modalities of treatment to combat and manage this epidemic. In this review, we have made an attempt to identify and enlist the major phytoconstituents along with the associated sources and existing mechanisms against insulin resistance. The conducted study may offer potential sustainable solutions for developing and formulating scientifically validated molecules and phytoconstituents as formulations for the management of this metabolic disorder.
Collapse
Affiliation(s)
- Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (PHARMACY), NH19 Kanpur, Agra Highway, Bhauti Kanpur, Uttar Pradesh 209305, India
| |
Collapse
|
7
|
Negreanu-Pirjol BS, Oprea OC, Negreanu-Pirjol T, Roncea FN, Prelipcean AM, Craciunescu O, Iosageanu A, Artem V, Ranca A, Motelica L, Lepadatu AC, Cosma M, Popoviciu DR. Health Benefits of Antioxidant Bioactive Compounds in the Fruits and Leaves of Lonicera caerulea L. and Aronia melanocarpa (Michx.) Elliot. Antioxidants (Basel) 2023; 12:antiox12040951. [PMID: 37107325 PMCID: PMC10136089 DOI: 10.3390/antiox12040951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Lonicera caerulaea L. and Aronia melanocarpa (Michx.) Elliot fruits are frequently used for their health benefits as they are rich in bioactive compounds. They are recognized as a source of natural and valuable phytonutrients, which makes them a superfood. L. caerulea presents antioxidant activity three to five times higher than other berries which are more commonly consumed, such as blackberries or strawberries. In addition, their ascorbic acid level is the highest among fruits. The species A. melanocarpa is considered one of the richest known sources of antioxidants, surpassing currants, cranberries, blueberries, elderberries, and gooseberries, and contains one of the highest amounts of sorbitol. The non-edible leaves of genus Aronia became more extensively analyzed as a byproduct or waste material due to their high polyphenol, flavonoid, and phenolic acid content, along with a small amount of anthocyanins, which are used as ingredients in nutraceuticals, herbal teas, bio-cosmetics, cosmeceuticals, food and by the pharmaceutical industry. These plants are a rich source of vitamins, tocopherols, folic acid, and carotenoids. However, they remain outside of mainstream fruit consumption, being well known only to a small audience. This review aims to shed light on L. caerulaea and A. melanocarpa and their bioactive compounds as healthy superfoods with antioxidant, anti-inflammatory, antitumor, antimicrobial, and anti-diabetic effects, and hepato-, cardio-, and neuro-protective potential. In this view, we hope to promote their cultivation and processing, increase their commercial availability, and also highlight the ability of these species to be used as potential nutraceutical sources, helpful for human health.
Collapse
Affiliation(s)
- Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu no. 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Florentina Nicoleta Roncea
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
| | - Ana-Maria Prelipcean
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Andreea Iosageanu
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Victoria Artem
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Aurora Ranca
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Ludmila Motelica
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
| | - Anca-Cristina Lepadatu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, University Alley no.1, Campus, Corp B, 900470 Constanta, Romania
| | - Madalina Cosma
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Dan Razvan Popoviciu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, University Alley no.1, Campus, Corp B, 900470 Constanta, Romania
| |
Collapse
|