1
|
Zhu X, Yang R, Liang Q, Yu Y, Wang T, Meng L, Wang P, Wang S, Li X, Yang Q, Guo H, Sui Q, Wang Q, Du H, Chen Q, Liang Z, Wu X, Zeng Q, Huang B. Graph-based pangenome provides insights into structural variations and genetic basis of metabolic traits in potato. MOLECULAR PLANT 2025; 18:590-602. [PMID: 39871478 DOI: 10.1016/j.molp.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Potato is the world's most important nongrain crop. In this study, to assess genetic diversity within the Petota section, 29 genomes from Petota and Etuberosum sections were newly de novo assembled and 248 accessions of wild potatoes, landraces, and modern cultivars were re-sequenced at >25× depth. Subsequently, a graph-based pangenome was constructed using DM8.1 as the backbone, integrating194,330 nonredundant structural variants. To characterize the metabolome of tubers and illuminate the genomic basis of metabolic traits, LC-MS/MS was employed to obtain the metabolome of 157 accessions, and 9,321 structural variants (SVs) were detected to be significantly associated with 1,258 distinct metabolites via PAV (presence and absence variations)-based metabolomics-GWAS analysis, including metabolites of flavonoids, phenolic acids, and phospholipids. To facilitate the utilization of pangenome resources, a comprehensive platform, the Potato Pangenome Database (PPDB), was developed. Our study provides a comprehensive genomic resource for dissecting the genomic basis of agronomic and metabolic traits in potato, which will accelerate functional genomics studies and genetic improvements in potato.
Collapse
Affiliation(s)
- Xiaoling Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China
| | - Rui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China
| | - Qiqi Liang
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuye Yu
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China
| | - Li Meng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China
| | - Ping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China
| | - Shaoyang Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China
| | - Xianping Li
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Qiongfen Yang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Huachun Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Qijun Sui
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Qiang Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
| | - Qin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Zhe Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuewei Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China
| | - Qian Zeng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China
| | - Binquan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China; Southwest United Graduate School, Kunming 650500, China.
| |
Collapse
|
2
|
Zhang W, Li L, Zhao Y, Yang H, Zhang X, Zhang Z, Wang X, Xu Z, Wang W, Deng J. Characterization of differences in volatile compounds and metabolites of six varieties of potato with different processing properties. Food Chem X 2025; 25:102116. [PMID: 39829997 PMCID: PMC11741029 DOI: 10.1016/j.fochx.2024.102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
Potato is the fourth-most important food crop around the world, and most of the potatoes are used for foodstuffs and starch products. The aim of this paper is to identify the volatile compounds and metabolites in potatoes with different processing properties. The results showed large differences of volatile and metabolite compounds such as 2,4-Heptadienal and rhoifolin in potatoes and indicated the potential regulations between volatile compounds and metabolites. Moreover, the differences in volatile and metabolite compounds were compared between fresh eating and processing type potatoes. Compared to process type potatoes, fresh eating potatoes contained a higher proportion of aldehyde and alcohol compounds, but being lower in hydrocarbon, furan, and ketone compounds. Moreover, the different expressed metabolites were involved in the metabolism of amino acids, flavone and flavanol biosynthesis, and tryptophan metabolism. The Random forest showed that the fresh eating and processing type potatoes could be distinguished by the content of amino acids and phenols.
Collapse
Affiliation(s)
- Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xuejie Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanxing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Rasheed H, Deng B, Ahmad D, Bao J. Genetic Diversity and Genome-Wide Association Study of Total Phenolics, Flavonoids, and Antioxidant Properties in Potatoes ( Solanum tuberosum L.). Int J Mol Sci 2024; 25:12795. [PMID: 39684503 DOI: 10.3390/ijms252312795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Genetic diversity of nutritional quality traits is crucial for potato breeding efforts to develop better varieties for the diverse market demands. In this study, the genetic diversity of 104 potato genotypes was estimated based on nutritional quality traits such as color parameters, total phenolic content, total flavonoid content, 2,2-Diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azino-bis-(3-ethylbezothiazoline-6-sulphonic acid) radical scavenging potential across two environments. The results indicated that environment II, Hangzhou 2020, exhibited higher bioactive compounds and antioxidant properties than environment I, Hangzhou 2019. The colored potato accessions exhibited higher levels of total phenolic content, total flavonoid content, DPPH, and ABTS activities than the white potato accessions, indicating the superiority of the colored to white potato accessions. The genome sequencing identified 1,101,368 high-quality single-nucleotide polymorphisms (SNPs), and 141,656 insertion/deletions (Indels). A population structure analysis revealed that genotypes can be divided into two subpopulations. Genome-wide association studies (GWAS) identified 128 significant SNPs associated with potato's color, total phenolic content, total flavonoid content, and antioxidant properties. Thus, the study provides new opportunities for strategic breeding and marker-assisted selection of ideal varieties and favorable alleles to enhance bioactive compounds and health-beneficial properties.
Collapse
Affiliation(s)
- Haroon Rasheed
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Bowen Deng
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Daraz Ahmad
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Hsu YC, Yang CY. Assessment of Ethanolic Extraction of Chlorogenic Acid, Cynarin, and Polyphenols from Burdock ( Arctium lappa L.) Roots Under Ultrasound. Molecules 2024; 29:5115. [PMID: 39519756 PMCID: PMC11547627 DOI: 10.3390/molecules29215115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The bioactive compounds in burdock (Arctium lappa L.) roots, including chlorogenic acid (CGA) and cynarin, are valuable for use in nutraceutical foods. The ultrasound-assisted extraction of bioactive substances from dried burdock root powder (DBR) was investigated with 95% ethanol to reduce the impact of polysaccharide inulin on the extraction of free CGA and cynarin. The ethanolic extraction of CGA and cynarin was evaluated under ultrasound (300 W) at 40 kHz (U40) and 120 kHz (U120) with shaking at 120 rpm (S120) for comparison. Using a 1/30 (g/mL-solvent) solid-to-liquid ratio at 30 °C in 120 min, amounts of CGA and cynarin with U40 were as high as 818.74 μg/g-DBR and 173.68 μg/g-DBR, respectively, being much higher than those with U120 and S120. Total phenolic content, total flavonoid content, and antioxidant activity of the extract using U40 were significantly better than using U120 and S120. For U40 and U120, CGA increased with a decreasing solid-to-liquid ratio, while cynarin showed a decrease with a decreasing solid-to-liquid ratio using U120. Moreover, no observable degradations of free CGA and cynarin in ethanol were detected. By combining ultrasound and ethanol, the extracts with high-content CGA and cynarin from burdock roots were effectively achieved for use in health foods.
Collapse
Affiliation(s)
| | - Chun-Yao Yang
- Department of Food Science, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang District, New Taipei City 242062, Taiwan;
| |
Collapse
|
5
|
Sharma E, Lal P, Kumar A, Prasad K, Tiwari RK, Lal MK, Kumar R. Colourful staples on your table: Unus ex genere suo. Food Res Int 2024; 191:114715. [PMID: 39059963 DOI: 10.1016/j.foodres.2024.114715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
The positive health benefits of colored staples have led to a significant increase in interest in them as healthy food ingredients. Numerous in vitro and in vivo studies have demonstrated that colored cereals are rich in antioxidants, carotenoids, and xanthophylls, which are widely used as natural additives in the food industry. Additionally, shifts in consumer preferences have led to a preference for nutritionally balanced diets over traditional high-energy ones. Thus, colored cereals offer additional nutritional value that has been previously untapped. Besides providing essential nutrients, these natural pigments also have the potential to replace synthetic colors and food additives. This review aims to provide insights into the nutritional value of various colored staples compared to conventional starchy staples and their associated health benefits. Colored staples can be incorporated into daily diets, offering a nutritious and healthful addition to the table.
Collapse
Affiliation(s)
- Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Priyanka Lal
- Department of Agricultural Economics and Extension, School of Agriculture, Lovely Professional University, Jalandhar GT Road (NH1), Phagwara, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| | - Killi Prasad
- Department of Horticulture, Tirhut College of Agriculture, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; ICAR-Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh, India
| | - Milan Kumar Lal
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India; ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India.
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
6
|
Pęksa A, Tajner-Czopek A, Gryszkin A, Miedzianka J, Rytel E, Wolny S. Assessment of the Content of Glycoalkaloids in Potato Snacks Made from Colored Potatoes, Resulting from the Action of Organic Acids and Thermal Processing. Foods 2024; 13:1712. [PMID: 38890940 PMCID: PMC11172196 DOI: 10.3390/foods13111712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Glycoalkaloids (TGAs, total glycoalkaloids), toxic secondary metabolites, are found in potatoes (110-335 mg·kg-1 DW), mainly in the peel. Colorful, unpeeled potatoes are an innovative raw material for the production of snacks which are poorly tested in terms of their glycoalkaloid content. Third-generation snacks and French fries made from red-fleshed Mulberry Beauty (MB) and purple-fleshed Double Fun (DF) potatoes were produced with the use of 1% solutions of ascorbic, citric, lactic, malic, and tartaric acids to stabilize the structure of anthocyanins in the raw material and maintain their color in obtained products. The influence of the type of acid and thermal processes, like frying, microwaving, and baking, on the content of glycoalkaloids in ready-made products was examined. Only 0.45-1.26 mg·100 g-1 of TGA was found in pellet snacks and 1.32-1.71 mg·100 g-1 in French fries. Soaking blanched potatoes in organic acid solution reduced the α-chaconine content by 91-97% in snacks and by 57-93% in French fries in relation to the raw material to the greatest extent after the use of malic acid and the DF variety. The effect of lactic and citric acid was also beneficial, especially in the production of baked French fries from MB potatoes.
Collapse
Affiliation(s)
| | - Agnieszka Tajner-Czopek
- Department of Food Storage and Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 37, 51-630 Wrocław, Poland; (A.P.); (A.G.); (J.M.); (E.R.); (S.W.)
| | | | | | | | | |
Collapse
|
7
|
Di X, Wang Q, Zhang F, Feng H, Wang X, Cai C. Advances in the Modulation of Potato Tuber Dormancy and Sprouting. Int J Mol Sci 2024; 25:5078. [PMID: 38791120 PMCID: PMC11121589 DOI: 10.3390/ijms25105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The post-harvest phase of potato tuber dormancy and sprouting are essential in determining the economic value. The intricate transition from dormancy to active growth is influenced by multiple factors, including environmental factors, carbohydrate metabolism, and hormonal regulation. Well-established environmental factors such as temperature, humidity, and light play pivotal roles in these processes. However, recent research has expanded our understanding to encompass other novel influences such as magnetic fields, cold plasma treatment, and UV-C irradiation. Hormones like abscisic acid (ABA), gibberellic acid (GA), cytokinins (CK), auxin, and ethylene (ETH) act as crucial messengers, while brassinosteroids (BRs) have emerged as key modulators of potato tuber sprouting. In addition, jasmonates (JAs), strigolactones (SLs), and salicylic acid (SA) also regulate potato dormancy and sprouting. This review article delves into the intricate study of potato dormancy and sprouting, emphasizing the impact of environmental conditions, carbohydrate metabolism, and hormonal regulation. It explores how various environmental factors affect dormancy and sprouting processes. Additionally, it highlights the role of carbohydrates in potato tuber sprouting and the intricate hormonal interplay, particularly the role of BRs. This review underscores the complexity of these interactions and their importance in optimizing potato dormancy and sprouting for agricultural practices.
Collapse
Affiliation(s)
- Xueni Di
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Feng Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Haojie Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiyao Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengcheng Cai
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Agrawal S, Kumar A, Gupta Y, Trivedi A. Potato Biofortification: A Systematic Literature Review on Biotechnological Innovations of Potato for Enhanced Nutrition. HORTICULTURAE 2024; 10:292. [DOI: 10.3390/horticulturae10030292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Potato biofortification is a comprehensive approach aimed at enhancing the nutritional content of potatoes, addressing widespread nutrient deficiencies and contributing to global food security. This systematic review examines the existing literature on various aspects of potato biofortification, encompassing genetic, agronomic, and biotechnological strategies. The review highlights the nutritional significance of potatoes, emphasizing their role as a staple food in many regions. Genetic approaches to biofortification involve the identification and use of natural variations in potato germplasm to develop varieties with elevated levels of essential nutrients. This includes targeting key micronutrients, such as iron, zinc, and vitamins, through traditional breeding methods. The review explores the genetic diversity within potato germplasm and the potential for breeding programs to develop nutrient-rich varieties. Agronomic practices play a crucial role in potato biofortification, with studies demonstrating the impact of tuber priming and the application of mineral fertilizers on nutrient concentrations in potatoes. The review delves into the intricacies of agronomic biofortification, emphasizing the importance of precise dosages and timing for optimal results. Biotechnological tools, including transgenic and non-transgenic approaches, are discussed in the context of potato biofortification. The review evaluates the efficiency and ethical considerations associated with the development of biofortified transgenic potatoes and emphasizes the significance of non-transgenic approaches in addressing consumer concerns and regulatory barriers. Overall, this systematic review provides a comprehensive overview of the current state of potato biofortification research. It synthesizes findings from diverse studies, offering insights into the potential of biofortified potatoes to address hidden hunger and contribute to improved nutritional outcomes. This review also identifies knowledge gaps and areas for future research, guiding the direction of efforts to harness the full potential of potato biofortification for global food and nutrition security.
Collapse
Affiliation(s)
- Smita Agrawal
- Department of Horticulture, B.M. College of Agriculture Khandwa, Khandwa 450001, Madhya Pradesh, India
| | - Amit Kumar
- Department of Horticulture, B.M. College of Agriculture Khandwa, Khandwa 450001, Madhya Pradesh, India
| | - Yash Gupta
- Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Ayushi Trivedi
- Department of Natural Resource Management, College of Forestry and Research Station, Sankra Patan, Durg 491111, Chhattisgarh, India
| |
Collapse
|
9
|
Jimenez-Champi D, Romero-Orejon FL, Moran-Reyes A, Muñoz AM, Ramos-Escudero F. Bioactive compounds in potato peels, extraction methods, and their applications in the food industry: a review. CYTA - JOURNAL OF FOOD 2023; 21:418-432. [DOI: 10.1080/19476337.2023.2213746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/10/2023] [Indexed: 01/05/2025]
Affiliation(s)
- Diana Jimenez-Champi
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Campus Gran Almirante Miguel Grau, Lima, Perú
| | - Frank L. Romero-Orejon
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Campus Gran Almirante Miguel Grau, Lima, Perú
| | - Angie Moran-Reyes
- Facultad de Nutrición y Alimentación, Escuela Profesional de Nutrición y Dietética, Universidad Femenina del Sagrado Corazón (UNIFE), Lima, Perú
| | - Ana María Muñoz
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Campus Gran Almirante Miguel Grau, Lima, Perú
- Instituto de Ciencias de Los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Lima, Perú
| | - Fernando Ramos-Escudero
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Campus Gran Almirante Miguel Grau, Lima, Perú
- Facultad de Ciencias de la Salud, Universidad San Ignacio de Loyola, Lima, Perú
| |
Collapse
|
10
|
Athanasiadis V, Chatzimitakos T, Kotsou K, Kalompatsios D, Bozinou E, Lalas SI. Polyphenol Extraction from Food (by) Products by Pulsed Electric Field: A Review. Int J Mol Sci 2023; 24:15914. [PMID: 37958898 PMCID: PMC10650265 DOI: 10.3390/ijms242115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Nowadays, more and more researchers engage in studies regarding the extraction of bioactive compounds from natural sources. To this end, plenty of studies have been published on this topic, with the interest in the field growing exponentially. One major aim of such studies is to maximize the extraction yield and, simultaneously, to use procedures that adhere to the principles of green chemistry, as much as possible. It was not until recently that pulsed electric field (PEF) technology has been put to good use to achieve this goal. This new technique exhibits many advantages, compared to other techniques, and they have successfully been reaped for the production of extracts with enhanced concentrations in bioactive compounds. In this advancing field of research, a good understanding of the existing literature is mandatory to develop more advanced concepts in the future. The aim of this review is to provide a thorough discussion of the most important applications of PEF for the enhancement of polyphenols extraction from fresh food products and by-products, as well as to discuss the current limitations and the prospects of the field.
Collapse
Affiliation(s)
| | - Theodoros Chatzimitakos
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera str., 43100 Karditsa, Greece; (V.A.); (K.K.); (D.K.); (E.B.); (S.I.L.)
| | | | | | | | | |
Collapse
|
11
|
Content and Stability of Hydroxycinnamic Acids during the Production of French Fries Obtained from Potatoes of Varieties with Light-Yellow, Red and Purple Flesh. Antioxidants (Basel) 2023; 12:antiox12020311. [PMID: 36829870 PMCID: PMC9951911 DOI: 10.3390/antiox12020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Potatoes with different flesh colours contain health-promoting compounds, i.e., hydroxycinnamic acids, which vary in content and stability during thermal processing. The aim of this study was to determine the effect of the technological stages of the production of French fries obtained from potatoes with different flesh colours on the content of selected hydroxycinnamic acids, as well as the stability of these acids, their percentage in sum of acids, total phenolic content and antioxidant activity (ABTS, DPPH) in semi-products and ready-to-eat products. During the production of French fries, samples of unpeeled, peeled, cut, blanched, pre-dried and fried potatoes were collected. After peeling, coloured potatoes, especially purple ones, had more hydroxycinnamic (5-CQA, 4-CQA, 3-CQA and CA) acids remaining in the flesh than in the flesh of the light-yellow variety. The greatest losses of the determined hydroxycinnamic acids, regardless of the given potato's variety, were caused by the stage of pre-drying (about 91%) and frying (about 97%). The French fries obtained from the potatoes with coloured flesh, especially those with purple flesh, had the highest amount of stable 5-CQA and 4-CQA acids as well as 3-CQA acid, already absent in light-yellow French fries. The least stable acid was CA acid, which was not found in any of the ready snacks.
Collapse
|
12
|
Castro-Cegrí A, Sierra S, Hidalgo-Santiago L, Esteban-Muñoz A, Jamilena M, Garrido D, Palma F. Postharvest Treatment with Abscisic Acid Alleviates Chilling Injury in Zucchini Fruit by Regulating Phenolic Metabolism and Non-Enzymatic Antioxidant System. Antioxidants (Basel) 2023; 12:211. [PMID: 36671073 PMCID: PMC9854589 DOI: 10.3390/antiox12010211] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Reports show that phytohormone abscisic acid (ABA) is involved in reducing zucchini postharvest chilling injury. During the storage of harvested fruit at low temperatures, chilling injury symptoms were associated with cell damage through the production of reactive oxygen species. In this work, we have studied the importance of different non-enzymatic antioxidants on tolerance to cold stress in zucchini fruit treated with ABA. The application of ABA increases the antioxidant capacity of zucchini fruit during storage through the accumulation of ascorbate, carotenoids and polyphenolic compounds. The quantification of specific phenols was performed by UPLC/MS-MS, observing that exogenous ABA mainly activated the production of flavonoids. The rise in all these non-enzymatic antioxidants due to ABA correlates with a reduction in oxidative stress in treated fruit during cold stress. The results showed that the ABA mainly induces antioxidant metabolism during the first day of exposure to low temperatures, and this response is key to avoiding the occurrence of chilling injury. This work suggests an important protective role of non-enzymatic antioxidants and polyphenolic metabolism in the prevention of chilling injury in zucchini fruit.
Collapse
Affiliation(s)
- Alejandro Castro-Cegrí
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | - Sandra Sierra
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | - Laura Hidalgo-Santiago
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | | | - Manuel Jamilena
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), University of Almería, 04120 Almería, Spain
| | - Dolores Garrido
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | - Francisco Palma
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| |
Collapse
|
13
|
Behn A, Lizana C, Zapata F, Gonzalez A, Reyes-Díaz M, Fuentes D. Phenolic and anthocyanin content characterization related to genetic diversity analysis of Solanum tuberosum subsp. tuberosum Chilotanum Group in southern Chile. FRONTIERS IN PLANT SCIENCE 2023; 13:1045894. [PMID: 36704150 PMCID: PMC9872146 DOI: 10.3389/fpls.2022.1045894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
The potato (Solanum tuberosum L) is one of the four most important crops worldwide in production and consumption. It originated from South America along the Andes, where six hotspots of diversity known as subcenters of origin are described from Venezuela to Chiloe Island in Chile, and where the greatest diversity of potatoes in the world is found. Today, the use of ancestral genetic resources has gained significant relevance, recovering and producing foods with a greater nutrient content and beneficial to human health. Therefore, native potatoes possess a set of characteristics with great potential for use in potato breeding guided primarily to produce better feed, especially potatoes of the Chilotanum Group that are easily crossed with conventional varieties. The primary objective of this study was to evaluate 290 accessions of S. tuberosum subsp tuberosum belonging to the Chilotanum Group using a set of molecular markers and correlate them to its phenotypic traits for future use in breeding programs. For this purpose, 290 accessions were analysed through 22 specific microsatellites described previously, correlating them with flesh and skin colour, total phenolic content, and anthocyanin content. A division into groups considering all the 290 accessions resulted in two clusters using STRUCTURE analysis and seven different genetic clusters using UPGMA. The latter exhibited common phenotypic characteristics as well as anthocyanin content, strongly supporting a correlation between phenotypic traits and the genetic fingerprint. These results will enable breeders to focus on the development of potatoes with high polyphenol and anthocyanin content.
Collapse
Affiliation(s)
- Anita Behn
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Lizana
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia, Chile
| | - Felipe Zapata
- Biocomputing and Applied Genetics, Center for Systems Biotechnology, Fraunhofer Chile Research Foundation, Santiago, Chile
| | - Alvaro Gonzalez
- Biocomputing and Applied Genetics, Center for Systems Biotechnology, Fraunhofer Chile Research Foundation, Santiago, Chile
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Derie Fuentes
- Biocomputing and Applied Genetics, Center for Systems Biotechnology, Fraunhofer Chile Research Foundation, Santiago, Chile
- Centro de Biotecnología de Sistemas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
14
|
Cebulak T, Krochmal-Marczak B, Stryjecka M, Krzysztofik B, Sawicka B, Danilčenko H, Jarienè E. Phenolic Acid Content and Antioxidant Properties of Edible Potato ( Solanum tuberosum L.) with Various Tuber Flesh Colours. Foods 2022; 12:foods12010100. [PMID: 36613318 PMCID: PMC9818533 DOI: 10.3390/foods12010100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The aim of the paper was to evaluate the phenolic acid content and antioxidant properties in potato cultivars with coloured flesh and bright flesh. The study material included eight cultivars of edible potato grown in a temperate climate in Poland. Five cultivars were potato tubers with coloured flesh: "Rote Emma", "Blue Salad", "Vitelotte", "Red Emmalie", and "Blue Congo"; and three were potato tubers with bright flesh: "Bella Rosa", "Lord", and "Tajfun". In all potato samples under study, four phenolic acids were identified: chlorogenic acid, gallic acid, p-coumaric acid, and caffeic acid. The predominant acid was chlorogenic acid, the levels of which ranged from 62.95 mg·100 g-1 FM to 126.77 mg·100 g-1 FM. The total concentration of the identified phenolic acids was diverse and depended on the genotype of the cultivar and the tuber flesh colour, with coloured-fleshed potatoes having higher phenolic acid contents in comparison to bright-fleshed potato cultivars. The average concentration of phenolic acids in the samples was 89.19 mg∙100 g-1 FM, and the average concentrations of the individual phenolic acids identified were as follows: chlorogenic acid (86.19 mg∙100 g-1 FM), gallic acid (1.18 mg∙100 g-1 FM), p-coumaric acid (0.64 mg∙100 g-1 FM), and caffeic acid (1.18 mg∙100 g-1 FM). In addition, three groups of anthocyanins were identified: pelargonidin-3,5-di-O-glucoside, peonidin-3,5-di-O-glucoside, and petunidin-3,5-di-O-glucoside. Anthocyanins were not found in the "Lord" or "Tajfun" varieties characterised by white tuber flesh. The predominant pigment was petunidin-3,5-di-O-glucoside, with an average content of 23.15 mg∙100 g-1 FM, and the highest value was observed in the "Vitelotte" variety (51.27 mg∙100 g-1 FM). The antioxidant activity of the flesh of the potatoes under study was diverse depending on flesh colour. The FRAP (Ferric Reducing Antioxidant Power) assay indicated higher antioxidant activity of coloured-fleshed potato cultivars. The highest concentration was identified in the "Vitelotte" cultivar flesh and was 114% higher than in the "Lord" cultivar. Similar dependencies were found in the case of the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay; however, in this case, the "Vitelotte" cultivar flesh demonstrated nearly 6.4 times higher antioxidant activity than the "Lord" cultivar. Summarizing our own research, we can conclude that potato varieties with coloured flesh are characterised by a higher content of biologically active substances, including phenolic acids, and antioxidant properties compared to potato tubers with bright flesh.
Collapse
Affiliation(s)
- Tomasz Cebulak
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 35-601 Rzeszów, Poland
- Correspondence: (T.C.); (B.M.-K.)
| | - Barbara Krochmal-Marczak
- Department of Plant Production and Food Safety, Carpathian State College in Krosno, 38-400 Krosno, Poland
- Correspondence: (T.C.); (B.M.-K.)
| | - Małgorzata Stryjecka
- The Institute of Human Nutrition Science and Agricultural, University College of Applied Sciences in Chełm, 22-100 Chełm, Poland
| | - Barbara Krzysztofik
- Department of Plant Production and Food Safety, Carpathian State College in Krosno, 38-400 Krosno, Poland
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodity Sciences, University of Life Sciences, 20-950 Lublin, Poland
| | - Honorata Danilčenko
- Department of Plant Biology and Food Sciences, Vytautas Magnus University, Agriculture Academy, LT-53361 Kauno, Lithuania
| | - Elvyra Jarienè
- Department of Plant Biology and Food Sciences, Vytautas Magnus University, Agriculture Academy, LT-53361 Kauno, Lithuania
| |
Collapse
|
15
|
Recent Advances in Molecular Improvement for Potato Tuber Traits. Int J Mol Sci 2022; 23:ijms23179982. [PMID: 36077378 PMCID: PMC9456189 DOI: 10.3390/ijms23179982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Potato is an important crop due to its nutritional value and high yield potential. Improving the quality and quantity of tubers remains one of the most important breeding objectives. Genetic mapping helps to identify suitable markers for use in the molecular breeding, and combined with transgenic approaches provides an efficient way for gaining desirable traits. The advanced plant breeding tools and molecular techniques, e.g., TALENS, CRISPR-Cas9, RNAi, and cisgenesis, have been successfully used to improve the yield and nutritional value of potatoes in an increasing world population scenario. The emerging methods like genome editing tools can avoid incorporating transgene to keep the food more secure. Multiple success cases have been documented in genome editing literature. Recent advances in potato breeding and transgenic approaches to improve tuber quality and quantity have been summarized in this review.
Collapse
|
16
|
Metabolic Profiling of Bulgarian Potato Cultivars. Foods 2022; 11:foods11131981. [PMID: 35804796 PMCID: PMC9265564 DOI: 10.3390/foods11131981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Potatoes (Solanum tuberosum L.) are the fourth most economically important crop in the world. They have a short period of vegetation and are an excellent source of carbohydrates, amino acids, vitamins, organic acids, minerals and phenolics as antioxidant substances. Potato can be a major dietary source of various bioactive compounds. In this study, we applied gas chromatography coupled with mass spectrometry (GC-MS) metabolite profiling to classify eight Bulgarian potato cultivars bred in the Maritsa Vegetable Crops Research Institute (VCRI), Plovdiv, according to their metabolite contents. Altogether, we determine their flavonoids/phenolics to evaluate their nutritive quality for the breeding program with the target of determining strong health-promoting compounds. The “Kalina” cultivar is highlighted as the best one with the highest number of metabolites, containing 14 out of the 26 evaluated; it was selected as the highest-quality cultivar, compared with the other seven cultivars studied. According to the grouping of the cultivars in principal component analysis PCA, their positive distribution is explained mainly by them having the highest contents of aminobutyric and isocitric acids, methionine and alanine and lower levels of fumaric acid, pyroglutamic acid and glycine, in contrast to the cultivars distributed negatively, which had high contents of carbohydrates and relatively low contents of most of the amino acids. The highest number of amino acids was found in the cultivar “Kalina”, followed by “Perun” and “Bor”. The highest number of carbohydrates was found in “Pavelsko” and “Iverce”, while the prominent accumulation of organic acids was found in “Kalina”, “Bor” and “Rozhen”. The highest number of flavonoids in the flesh of the tubers was found in the cultivars “Nadezhda” and “Pavelsko”, followed by “Bor”. The highest ratio of flavonoids/phenolics in the flesh was found in “Pavelsko” and in “Nadezhda”, followed by “Iverce”.
Collapse
|
17
|
Ultrasound-Assisted Aqueous Extraction of Chlorogenic Acid and Cynarin with the Impact of Inulin from Burdock ( Arctium lappa L.) Roots. Antioxidants (Basel) 2022; 11:antiox11071219. [PMID: 35883710 PMCID: PMC9311675 DOI: 10.3390/antiox11071219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
The ultrasound-assisted aqueous extraction of chlorogenic acid (CGA) and cynarin with the impact of inulin from burdock (Arctium lappa L.) roots was investigated. Three extraction modes, ultrasound at 40 kHz/300 W (U-40), ultrasound at 120 kHz/300 W (U-120), and shaking at 120 rpm (S-120), were compared. The effects of process parameters on the extraction of polyphenols, CGA, cynarin, inulin, and antioxidant activity using U-40 were evaluated. In 10 min, 50 °C, and 1/30 (g/mL-water) of solid-to-liquid ratio, the order of CGA content in the dried burdock root powder (DBR) was U-40 (484.65 μg/g-DBR) > U-120 (369.93 μg/g-DBR) > S-120 (176.99 μg/g-DBR), while the order of cynarin content in DBR was U-120 (376.47 μg/g-DBR) > U-40 (341.54 μg/g-DBR) > S-120 (330.44 μg/g-DBR), showing the selective extraction of CGA and cynarin between using 40 and 120 kHz of ultrasound. The profiles of increase and then decrease in free CGA and cynarin concentrations against time revealed their degradation, including their interactions with the abundant inulin. The kinetic model, considering extraction followed by degradation, was proposed to describe the variations of free CGA and cynarin against time. This study provides an effective method using water to extract CGA, cynarin, and inulin from burdock roots.
Collapse
|
18
|
Bounegru AV, Apetrei C. Simultaneous Determination of Caffeic Acid and Ferulic Acid Using a Carbon Nanofiber-Based Screen-Printed Sensor. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22134689. [PMID: 35808187 PMCID: PMC9268774 DOI: 10.3390/s22134689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 05/06/2023]
Abstract
This work aims to achieve the simultaneous qualitative and quantitative determination of two hydroxycinnamic acids (ferulic acid and caffeic acid) from standard solutions and from a phyto-homeopathic product using a carbon nanofiber-based screen-printed sensor (CNF/SPE). The two compounds are mentioned in the manufacturer's specifications but without indicating their concentrations. The stability and reproducibility of the CNF/SPE were found to be effective and the sensitivity was high for both caffeic acid-CA (limit of detection 2.39 × 10-7 M) and ferrulic acid-FA (limit of detection 2.33 × 10-7 M). The antioxidant capacity of the compounds in the analyzed product was also determined by the DPPH (2,2-diphenyl-1-picrylhydrazyl) method. The electrochemical method was efficient and less expensive than other analytical methods; therefore, its use can be extended for the detection of these phenolic compounds in various dietary supplements or pharmaceutical products.
Collapse
|