1
|
Zhao Y, Li Y, Zou J, Guo T, Zhong Z, Li Y, Chen S, Li J, Huang K, Lian G, Huang Y. Low-dose arsenic trioxide inhibits pancreatic stellate cell activation via LOXL3 expression to enhance immunotherapy in pancreatic cancer. Br J Cancer 2024; 131:1928-1941. [PMID: 39501090 PMCID: PMC11628614 DOI: 10.1038/s41416-024-02880-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is characterized by abnormally fibrotic mesenchyme, which notably influences on the effectiveness of immunotherapy. Low-dose arsenic trioxide (ATO, 1.0 μM) can inhibit the activation of pancreatic stellate cells (PSCs) and affect fibrosis, which is a potential strategy for enhancing the sensitivity to immunotherapy. METHODS Extracellular matrix (ECM) models were employed to assess the regulatory effects of ATO on ECM and peripheral blood mononuclear cells. Orthotopic C57BL/6J models were utilized to evaluate the influence of ATO on CD8+T cell infiltration and immunotherapy in PC. Additionally, nanomaterials loaded with ATO designed to specifically target PSCs (scAbFAP-α-HMSNs-PAA-ATO) were produced to enhance targeting effects of ATO. RESULTS Low-dose ATO (1.0 μM) suppressed PSCs activation, exhibiting potential for synergistic immunotherapy. Under low-dose ATO intervention, ECM underwent remodeling, leading to increases in CD8+T cell infiltration, thereby enhancing anti-PD-L1 therapy effect. We further demonstrated that low-dose ATO remodeled ECM by regulating the expression of LOXL3 in PSCs. scAbFAP-α-HMSNs-PAA-ATO exhibited improved targeting capabilities, and enhanced capacity to inhibit fibrosis and sensitize immunotherapy. CONCLUSIONS Our research reveals that low-dose ATO, by regulating LOXL3, remodels the ECM and enhances CD8+T cell infiltration, thus sensitizing the efficacy of immunotherapy, which provides a novel strategy for comprehensive treatment to PC.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunlong Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinmao Zou
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tairan Guo
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Zhong
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yaqing Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaojie Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiajia Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Kaihong Huang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Guoda Lian
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yuzhou Huang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
2
|
Mahadik SR, Reddy ART, Choudhary K, Nama L, Jamdade MS, Singh S, Murti K, Kumar N. Arsenic induced cardiotoxicity: An approach for molecular markers, epigenetic predictors and targets. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104558. [PMID: 39245244 DOI: 10.1016/j.etap.2024.104558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Arsenic, a ubiquitous environmental toxicant, has been acknowledged as a significant issue for public health due to its widespread pollution of drinking water and food supplies. The present review aimed to study the toxicity associated with the cardiac system. Prolonged exposure to arsenic has been associated with several harmful health outcomes, especially cardiotoxicity. Arsenic-induced cardiotoxicity encompasses a range of cardiovascular abnormalities, including cardiac arrhythmias, ischemic heart disease, and cardiomyopathy. To tackle this toxicity, understanding the molecular markers, epigenetic predictors, and targets involved in arsenic-induced cardiotoxicity is essential for creating preventative and therapeutic approaches. For preventive measures against this heavy metal poisoning of groundwater, it is crucial to regularly monitor water quality, re-evaluate scientific findings, and educate the public about the possible risks. This review thoroughly summarised what is currently known in this field, highlighting the key molecular markers, epigenetic modifications, and potential therapeutic targets associated with arsenic-induced cardiotoxicity.
Collapse
Affiliation(s)
- Sakshi Ramesh Mahadik
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Annem Ravi Teja Reddy
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Khushboo Choudhary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Lokesh Nama
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Mohini Santosh Jamdade
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| |
Collapse
|
3
|
Nędzarek A, Czerniejewski P. Invasive Round Goby ( Neogobius melanostomus) Fish from the Southern Baltic as a Source of Arsenic and Selenium-Food Safety Aspects. Foods 2024; 13:1779. [PMID: 38891007 PMCID: PMC11171617 DOI: 10.3390/foods13111779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Minimizing human exposure to arsenic (As) and ensuring an adequate dietary intake of selenium (Se) are significant issues in research on food sources. This study measured the content of As and Se in the muscles, gills, liver, and gonads of the fish round goby (Neogobius melanostomus) to assess the benefits and risks associated with their consumption. This was achieved by using dietary reference intake (DRI), estimated daily intake (EDI), target hazard quotient (THQ), and carcinogenic risk (CR). The elements were analyzed by atomic absorption spectrometry. The mean concentrations of As and Se (in μg kg-1 wet weight) were 25.1 and 161.4 in muscle, 58.8 and 367.4 in liver, 47.4 and 635.3 in gonads, and 16.4 and 228.5 in gills, respectively. Arsenic in the muscle portion of fish accounted for up to 0.5% of the DRI, while Se constituted approximately 30% of the DRI. The EDI values were below the reference oral dose (RfD). The THQ were much below the permissible levels (THQ < 1), and the CR were at least within the permissible limit (CR < 10-4). With regard to the As content, round goby muscles can be deemed safe for consumers. They may also be a valuable source of Se in the human diet. However, round goby consumption should be monitored for the proper and safe intake of these elements.
Collapse
Affiliation(s)
- Arkadiusz Nędzarek
- Department of Aquatic Bioengineering and Aquaculture, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, K. Królewicza 4, 71-550 Szczecin, Poland
| | - Przemysław Czerniejewski
- Department of Commodity, Quality Assessment, Process Engineering and Human Nutrition, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, K. Królewicza 4, 71-550 Szczecin, Poland;
| |
Collapse
|
4
|
Kabiraj A, Halder U, Chitikineni A, Varshney RK, Bandopadhyay R. Insight into the genome of an arsenic loving and plant growth-promoting strain of Micrococcus luteus isolated from arsenic contaminated groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39063-39076. [PMID: 37864703 DOI: 10.1007/s11356-023-30361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
Contamination of arsenic in drinking water and foods is a threat for human beings. To achieve the goal for the reduction of arsenic availability, besides conventional technologies, arsenic bioremediation by using some potent bacteria is one of the hot topics for researchers. In this context, bacterium, AKS4c was isolated from arsenic contaminated water of Purbasthali, West Bengal, India, and through draft genome sequence; it was identified as a strain of Micrococcus luteus that comprised of 2.4 Mb genome with 73.1% GC content and 2256 protein coding genes. As the accessory genome, about 22 genomic islands (GIs) associated with many metal-resistant genes were identified. This strain was capable to tolerate more than 46,800 mg/L arsenate and 390 mg/L arsenite salts as well as found to be tolerable to multi-metals such as Fe, Pb, Mo, Mn, and Zn up to a certain limit of concentrations. Strain AKS4c was able to oxidize arsenite to less toxic arsenate, and its arsenic adsorption property was qualitatively confirmed through X-ray fluorescence (XRF) and Fourier transform infrared spectroscopy (FTIR) analysis. Quantitative estimation of plant growth-promoting attributes like Indole acetic acid (IAA), Gibberellic acid (GA), and proline production and enhancement of rice seedling growth in laboratory condition leads to its future applicability in arsenic bioremediation as a plant growth-promoting rhizobacteria (PGPR).
Collapse
Affiliation(s)
- Ashutosh Kabiraj
- Microbiology Section, Department of Botany, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Urmi Halder
- Microbiology Section, Department of Botany, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6500, Australia
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6500, Australia
| | - Rajib Bandopadhyay
- Microbiology Section, Department of Botany, The University of Burdwan, Bardhaman, West Bengal, 713104, India.
| |
Collapse
|
5
|
Ganie SY, Javaid D, Hajam YA, Reshi MS. Arsenic toxicity: sources, pathophysiology and mechanism. Toxicol Res (Camb) 2024; 13:tfad111. [PMID: 38178998 PMCID: PMC10762673 DOI: 10.1093/toxres/tfad111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
Background Arsenic is a naturally occurring element that poses a significant threat to human health due to its widespread presence in the environment, affecting millions worldwide. Sources of arsenic exposure are diverse, stemming from mining activities, manufacturing processes, and natural geological formations. Arsenic manifests in both organic and inorganic forms, with trivalent meta-arsenite (As3+) and pentavalent arsenate (As5+) being the most common inorganic forms. The trivalent state, in particular, holds toxicological significance due to its potent interactions with sulfur-containing proteins. Objective The primary objective of this review is to consolidate current knowledge on arsenic toxicity, addressing its sources, chemical forms, and the diverse pathways through which it affects human health. It also focuses on the impact of arsenic toxicity on various organs and systems, as well as potential molecular and cellular mechanisms involved in arsenic-induced pathogenesis. Methods A systematic literature review was conducted, encompassing studies from diverse fields such as environmental science, toxicology, and epidemiology. Key databases like PubMed, Scopus, Google Scholar, and Science Direct were searched using predetermined criteria to select relevant articles, with a focus on recent research and comprehensive reviews to unravel the toxicological manifestations of arsenic, employing various animal models to discern the underlying mechanisms of arsenic toxicity. Results The review outlines the multifaceted aspects of arsenic toxicity, including its association with chronic diseases such as cancer, cardiovascular disorders, and neurotoxicity. The emphasis is placed on elucidating the role of oxidative stress, genotoxicity, and epigenetic modifications in arsenic-induced cellular damage. Additionally, the impact of arsenic on vulnerable populations and potential interventions are discussed. Conclusions Arsenic toxicity represents a complex and pervasive public health issue with far-reaching implications. Understanding the diverse pathways through which arsenic exerts its toxic effects is crucial to developing effective mitigation strategies and interventions. Further research is needed to fill gaps in our understanding of arsenic toxicity and to inform public health policies aimed at minimising exposure.Arsenic toxicity is a crucial public health problem influencing millions of people around the world. The possible sources of arsenic toxicity includes mining, manufacturing processes and natural geological sources. Arsenic exists in organic as well as in inorganic forms. Trivalent meta-arsenite (As3+) and pentavalent arsenate (As5+) are two most common inorganic forms of arsenic. Trivalent oxidation state is toxicologically more potent due to its potential to interact with sulfur containing proteins. Humans are exposed to arsenic in many ways such as environment and consumption of arsenic containing foods. Drinking of arsenic-contaminated groundwater is an unavoidable source of poisoning, especially in India, Bangladesh, China, and some Central and South American countries. Plenty of research has been carried out on toxicological manifestation of arsenic in different animal models to identify the actual mechanism of aresenic toxicity. Therefore, we have made an effort to summarize the toxicology of arsenic, its pathophysiological impacts on various organs and its molecular mechanism of action.
Collapse
Affiliation(s)
- Shahid Yousuf Ganie
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| | - Darakhshan Javaid
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab 144030, India
| | - Mohd Salim Reshi
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| |
Collapse
|
6
|
Pan X, Huang J, Liu S, Shao Y, Xi J, He R, Shi T, Zhuang R, Yu W. pH-Responsive and liver-targeting drug delivery system for combination delivery of artesunate with arsenic trioxide prodrug against hepatocellular carcinoma. Drug Dev Ind Pharm 2023; 49:485-496. [PMID: 37470495 DOI: 10.1080/03639045.2023.2239342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE Arsenic trioxide (ATO) exerts therapeutic effects on various solid tumors, and artesunate (ART) synergizes with antitumor drugs. We herein combined ART and an ATO prodrug (ATOP) in pH-responsive and liver-targeting liposomes to improve targeted hepatocellular carcinoma (HCC) treatment. METHODS 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-hydrazone (HYD)-polyethylene glycol (PEG)-glycyrrhetinic acid (GA) (DSPE-HYD-PEG-GA) was synthesized and characterized. The optimal ratio of ART and ATOP was selected. Calcium arsenate nanoparticles (CaAs NPs) and DSPE-HYD-PEG-GA@ART/CaAs NPs liposomes were prepared and their physicochemical properties were characterized. Their intracellular uptake, intracellular localization, uptake pathway identification, cytotoxicity, proapoptotic effects, and relevant mechanisms were studied. RESULTS The DSPE-HYD-PEG-GA was successfully synthesized. The best ratio of ART and ATOP was 7:1. The particle size of CaAs NPs under transmission electron microscopy was 142.39 ± 21.50 nm. Arsenic (As), calcium, and oxygen elements were uniformly distributed in CaAs NPs, and the drug loading and encapsulation efficiency of As are 37.28% and 51.40%, respectively. The liposomes were elliptical, and the particle size was 100.91 ± 39.31 nm. The liposome cell intake was significantly increased in Huh-7 cells. The liposomes entered the cell through macropinocytosis and caveolin-mediated endocytosis and were predominantly distributed in the cytoplasm. They exerted an excellent inhibitory effect on Huh-7 cells and promoted tumor cell apoptosis through lipid peroxidation, mitochondrial membrane potential reduction, and cell-cycle blockage. CONCLUSIONS The pH-responsive and liver-targeting drug delivery system for the combination delivery of ART with ATOP showed promising effects on hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Xuwang Pan
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinsong Huang
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shourong Liu
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yidan Shao
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruoyu He
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tingting Shi
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenying Yu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Sun J, Cheng M, Ye T, Li B, Wei Y, Zheng H, Zheng H, Zhou M, Piao JG, Li F. Nanocarrier-based delivery of arsenic trioxide for hepatocellular carcinoma therapy. Nanomedicine (Lond) 2022; 17:2037-2054. [PMID: 36789952 DOI: 10.2217/nnm-2022-0250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a severe threat to human health and economic development. Despite many attempts at HCC treatment, most are inevitably affected by the genetic instability and variability of tumor cells. Arsenic trioxide (ATO) has shown to be effective in HCC. However, time-consuming challenges, especially the optimal concentration in tumor tissue and bioavailability of ATO, remain to be overcome for its transition from the bench to the bedside. To bypass these issues, nanotechnology-based delivery systems have been developed for prevention, diagnosis, monitoring and treatment in recent years. This article is a systematic overview of the latest contributions and detailed insights into ATO-loaded nanocarriers, with particular attention paid to strategies for improving the efficacy of nanocarriers of ATO.
Collapse
Affiliation(s)
- Jiang Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengying Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Tingxian Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bin Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yinghui Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hangsheng Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Meiqi Zhou
- Department of Oncology Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ji-Gang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology & Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology & Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
8
|
Linking the Low-Density Lipoprotein-Cholesterol (LDL) Level to Arsenic Acid, Dimethylarsinic, and Monomethylarsonic: Results from a National Population-Based Study from the NHANES, 2003–2020. Nutrients 2022; 14:nu14193993. [PMID: 36235646 PMCID: PMC9573665 DOI: 10.3390/nu14193993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Arsenic (As) contamination is a global public health problem. Elevated total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) are risk factors for cardiovascular diseases, but data on the association of urinary arsenic species’ level and LDL-C are limited. We performed an association analysis based on urinary arsenic species and blood TC and LDL-C in US adults. Methods: Urinary arsenic, arsenic acid (AA), dimethylarsinic (DMA), monomethylarsonic (MMA), TC, LDL-C, and other key covariates were obtained from the available National Health and Nutrition Examination Survey (NHANES) data from 2003 to 2020. Multiple linear regression analysis and generalized linear model are used to analyze linear and nonlinear relationships, respectively. Results: In total, 6633 adults aged 20 years were enrolled into the analysis. The median total urinary arsenic level was 7.86 µg/L. A positive association of urinary arsenic concentration quartiles was observed with TC (β: 2.42 95% CI 1.48, 3.36). The OR for TC of participants in the 80th versus 20th percentiles of urinary total arsenic was 1.34 (95% CI 1.13, 1.59). The OR for LDL-C of participants in the 80th versus 20th percentiles of urinary total arsenic was 1.36 (95% CI 1.15, 1.62). For speciated arsenics analysis, the OR for arsenic acid and TC was 1.35 (95% CI 1.02, 1.79), whereas the OR for DMA and LDL-L was 1.20 (95% CI 1.03, 1.41), and the OR for MMA and LDL-L was 1.30 (95% CI 1.11, 1.52). Conclusions: Urinary arsenic and arsenic species were positively associated with increased LDL-C concentration. Prevention of exposure to arsenic and arsenic species maybe helpful for the control of TC and LDL-C level in adults.
Collapse
|
9
|
Mitochondrial ROS, ER Stress, and Nrf2 Crosstalk in the Regulation of Mitochondrial Apoptosis Induced by Arsenite. Antioxidants (Basel) 2022; 11:antiox11051034. [PMID: 35624898 PMCID: PMC9137803 DOI: 10.3390/antiox11051034] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023] Open
Abstract
Long-term ingestion of arsenicals, a heterogeneous group of toxic compounds, has been associated with a wide spectrum of human pathologies, which include various malignancies. Although their mechanism of toxicity remains largely unknown, it is generally believed that arsenicals mainly produce their effects via direct binding to protein thiols and ROS formation in different subcellular compartments. The generality of these mechanisms most probably accounts for the different effects mediated by different forms of the metalloid in a variety of cells and tissues. In order to learn more about the molecular mechanisms of cyto- and genotoxicity, there is a need to focus on specific arsenic compounds under tightly controlled conditions. This review focuses on the mechanisms regulating the mitochondrial formation of ROS after exposure to low concentrations of a specific arsenic compound, NaAsO2, and their crosstalk with the nuclear factor (erythroid-2 related) factor 2 antioxidant signaling and the endoplasmic reticulum stress response.
Collapse
|