1
|
Bayomy HM, Blackmore DPT, Alamri ES, Ozaybi NA, Almasoudi SE, Pearson S, Eyouni L, AlFaris NA, Alshammari GM, Muhammed M, Mohamady Hussein MA. Developing sustainable approach for controlling foodborne pathogens, based on chlorella vulgaris extract/alginate nanoemulsion, and enhanced via the dispersed zinc oxide nanoparticles. Int J Biol Macromol 2025; 305:141241. [PMID: 39986508 DOI: 10.1016/j.ijbiomac.2025.141241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/27/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
A promising antibacterial strategy was developed in this study to effectively eradicate foodborne pathogens via the synergism of Chlorella vulgaris extract (CVE) with zinc oxide nanoparticles (ZNPs) combined into a single nanoform. CVE-alginate nanoemulsion with enhanced antimicrobial and antioxidant properties via the dispersed ZNPs, were prepared and characterized using UV-Vis spectra, FE-SEM-EDX, TEM, DLS, FTIR. The CVE methanol extract was analyzed to record total phenolic and total flavonoid contents. Drug release pattern, encapsulation efficiency, antioxidant, antimicrobial, hemolysis and cytotoxicity were demonstrated. According to TEM and SEM imaging, produced NEs appeared spherical in nanoscale with the range of 17-23.6 nm. The results showed that when the active CVE-NE I dispersed with 1 % or 2 % ZNPs, was applied, exhibited more potent antibacterial properties against the tested foodborne pathogens, including S. aureus, E. coli, S. typhimurium, and B. subtilis, compared to CVE-NE I. CVE was released in slow and sustained manner by addition of ZNPs. All NE samples showed no obvious hemolysis or cytotoxicity when applied on fibroblast cells. These encouraging results offer a fresh approach to the efficient removal of foodborne pathogens, which may be used in food industry.
Collapse
Affiliation(s)
- Hala M Bayomy
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia.
| | | | - Eman S Alamri
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | - Nawal A Ozaybi
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | - Seham E Almasoudi
- Food Science and Nutrition Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | | | | | - Nora A AlFaris
- Department of Sport Health, College of Sports Sciences & Physical Activity, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Mamoun Muhammed
- KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mohamed A Mohamady Hussein
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
2
|
Gunawardana S, Dias B. Methodological advances in formulation and assay of herbal resources-based topical drug delivery systems. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025; 22:74-86. [PMID: 39291730 DOI: 10.1515/jcim-2024-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024]
Abstract
Medicinal plants have been utilized for centuries as a source of healing compounds, which consist of thousands of known bioactive molecules with therapeutic potentials. This article aims to explore and emphasize the significance of medicinal plants and bioactive compounds in the development of topical pharmaceutical formulations. The journey from the extraction of phytochemicals to the development of topical pharmaceutical formulations is described with the aid of scientific evidence selected from PubMed, Google Scholar, ScienceDirect, and Web of Science. Articles published in English during 2018-2023 period were considered and selected randomly. The review discusses the extraction process of medicinal plants, solvent selection, and green synthesis of metal nanoparticles. Subsequently, various biological activities of plant extracts are elaborated especially focusing on antimicrobial, antioxidant, anti-inflammatory, and sun protection activities, along with the corresponding in vitro assays commonly employed for the evaluation. The article presents the process of compound isolation through bioactivity-guided fractionation and also the toxicity evaluation of isolated fractions. Finally, the formulation of medicinal plant extracts into topical pharmaceuticals is addressed, emphasizing the stability evaluation procedures necessary for ensuring product quality and efficacy.
Collapse
Affiliation(s)
- Shehara Gunawardana
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences, 674983 CINEC Campus , Malabe, Sri Lanka
| | - Bhavantha Dias
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences, 674983 CINEC Campus , Malabe, Sri Lanka
| |
Collapse
|
3
|
Ojo OA, Ogunlakin AD, Gyebi GA, Ayokunle DI, Odugbemi AI, Babatunde DE, Akintunde EA, Ezea SC, Asogwa NT, Asaleye RM, Ojo AB. Profiling the antidiabetic potential of GC-MS compounds identified from the methanolic extract of Spilanthes filicaulis: experimental and computational insight. J Biomol Struct Dyn 2025; 43:1392-1413. [PMID: 38084747 DOI: 10.1080/07391102.2023.2291828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/23/2023] [Indexed: 01/04/2025]
Abstract
This study examines the nutritional composition, phytochemical profiling, and antioxidant, antidiabetic, and anti-inflammatory potential of a methanolic extract of Spilanthes filicaulis leaves (MESFL) via in vitro, ex vivo, and in silico studies. In vitro antioxidant, antidiabetic, and anti-inflammatory activities were examined. In the ex vivo study, liver tissues were subjected to FeSO4-induced oxidative damage and treated with varying concentrations of MESFL. MESFL contains a reasonable amount of nitrogen-free extract, moisture, ash content, crude protein, and fat, with a lesser amount of crude fiber. According to GC-MS analysis, MESFL contains ten compounds, the most abundant of which are 13-octadecenal and Ar-tumerone. In this study, MESFL demonstrated anti-inflammatory activities via membrane stabilizing properties, proteinase inhibition, and inhibition of protein denaturation (IC50 = 72.75 ± 11.06 µg/mL). MESFL also strongly inhibited both α-amylase (IC50 = 307.02 ± 4.25 µg/mL) and α-glucosidase (IC50 = 215.51 ± 0.47 µg/mL) activities. Our findings also showed that FeSO4-induced tissue damage decreased the levels of GSH, SOD, and CAT activities while increasing the levels of MDA. In contrast, treatment with MESFL helped to restore these parameters to near-normal levels, which signifies that MESFL has great potential to address complications from oxidative stress. Furthermore, the in silico interaction of the GCMS-identified phytochemicals with the active sites of α-amylase and α-glucosidase via molecular and ensembled-based docking displayed strong binding affinities of Ar-tumerone and 4-hydroxy-3-methylacetophenone to α-amylase and α-glucosidase, respectively. Taken together, the biological activities of MESFL might be a result of the effects of these secondary metabolites.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | - Akingbolabo Daniel Ogunlakin
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | - Adeshina Isaiah Odugbemi
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | - Samson Chukwuemeka Ezea
- Department of Pharmacognosy and Environmental Medicine, University of Nigeria, Nsukka, Nigeria
| | | | | | | |
Collapse
|
4
|
Picheta N, Piekarz J, Daniłowska K, Mazur K, Piecewicz - Szczęsna H, Smoleń A. Phytochemicals in the treatment of patients with depression: a systemic review. Front Psychiatry 2024; 15:1509109. [PMID: 39717381 PMCID: PMC11663887 DOI: 10.3389/fpsyt.2024.1509109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Background Depression is a complex mental disease whose incidence increases every year; 300 million people worldwide currently suffer from it. Women are more likely to suffer from depression, twice the rate as men. It is one of the few illnesses that can lead to suicide, which makes it very dangerous - currently, 700,000 people die from suicide and it is the 4th most common cause of death in people aged 15-29. The treatment strategies for depression is a big challenge for physicians, pharmacists, scientists and classic remedies cause many side effects. Therefore, natural phytotherapy with herbs can prove to be a good solution. Phytotherapy is a popular treatment method used for centuries in Chinese medicine or Ayurveda. Materials and methods The study conducted a comprehensive database search PubMed, ClinicalKey and MedNar covered the years 2015 - 2024 to provide the most up-to-date data. 13 randomized controlled trials and 1 meta - analysis were included in the systematic review. Results Many plants show anti-inflammatory, antioxidant and cognitive enhancing effects, which are particularly important in depression. In the treatment of depression, plants such as Crocus sativus L. stigma, Lavandula angustifolia, Hypericum perforatum L. and Curcuma longa L. have proven to be effective. They show good effectiveness in human studies and alleviate the symptoms of depression. Herbal products can support classical pharmacotherapy, but this requires further research. Non-commercial clinical trials in the future should provide answers to research questions: at what stage of treatment of patients with MDD will the use of phytochemicals be most appropriate in terms of therapy efficacy and safety for the patient. Conclusions Crocus sativus L. stigma, Lavandula angustifolia, Hypericum perforatum L. and Curcuma longa L. in modern medicine can help improve the well-being of patients with depression. The use of herbs as an intervention was associated with a decrease in the concentration of proinflammatory cytokines and an overall improvement in the mood of patients. Further research should be undertaken into combining both therapies in order to improve patients' quality of life and reduce treatment costs.
Collapse
Affiliation(s)
- Natalia Picheta
- Chair and Department of Epidemiology and Clinical Research Methodology, Medical
University of Lublin, Lublin, Poland
| | | | | | | | | | | |
Collapse
|
5
|
Okurut J, Lubega AM, Odia GE, Bbosa GS. Antidepressant-Like Effects of Lavandula angustifolia Mill (Lamiaceae) Aqueous and Total Crude Extracts in Wistar Albino Rats. J Exp Pharmacol 2024; 16:427-439. [PMID: 39600726 PMCID: PMC11590660 DOI: 10.2147/jep.s489987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Background Depression continues to be a serious mental health problem among communities in Uganda, with limited access to mental healthcare services. Communities often use medicinal plants, such as L. angustifolia, in the management of depressive disorders with limited information on its effectiveness. Objective Study assessed antidepressant-like effects of stem-leaf aqueous and total crude extracts of L. angustifolia in depression-like induced behavior in Wistar albino rats. Methods An experimental laboratory study was conducted on 36 Wistar albino rats (18 males, 18 females). Group I received normal saline, Group II received 10 mg/kg bwt escitalopram, Group III received 200 mg/kg bwt, Group IV received 1000 mg/kg bwt aqueous extract and same doses of total crude extract were used for Group V and Group VI, respectively, using intragastric tube. Depression-like behavior in rats was induced by several manipulations of CUS for 1-5 weeks. Sucrose preference test (SPT) was used to confirm depressive-like behaviors. Antidepressant-like effects were determined by FST. Durations of immobility, swimming, and struggling were recorded. Data were analyzed using STATA version 13. Results In the chronic mild stress group, 19.2% preferred sucrose compared to 66.9% in the unstressed group (p<0.05). L. angustifolia extract (LAE) exhibited antidepressant-like effects in the rats in a completely dose dependent manner at aqueous doses of 200 mg/kg bwt and 1000 mg/kg bwt, respectively. In the FST, dose of 200 mg/kg bwt and 1000 mg/kg bwt of the extract showed a significant reduction in mean immobility time of 1.33±0.52 min and 1.83±1.17 min (p<0.0001) as compared to 1.00±0.00 min for escitalopram drug and 3.17±0.41 min of the normal saline control groups. Conclusion Aqueous extract of L. angustifolia at a dose of 200 and 1000 mg/Kg bwt reduced the duration of immobility and similar findings were observed on struggling and swimming. Findings have provided evidence on the use of L. angustifolia by local communities in the management of depressive-like behaviors in Uganda.
Collapse
Affiliation(s)
- Joseph Okurut
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Aloysius Magandaazi Lubega
- Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Gordon Ewa Odia
- Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Godfrey S Bbosa
- Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
6
|
Viswanathan AK, Krishnan R. Antimicrobial role of Lavandula angustifolia towards Candida albicans, Streptococcus mutans, Staphylococcus aureus and anti-adherence effect on denture base resin. J Oral Biol Craniofac Res 2024; 14:815-824. [PMID: 39559748 PMCID: PMC11570514 DOI: 10.1016/j.jobcr.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/07/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
Objectives The objective of the study was to determine the antimicrobial efficacy of Lavandula angustifolia (True Lavender extract) towards Candida albicans, Streptococcus mutans, Staphylococcus aureus pathogens. Varying proportions of the extract was incorporated into polymethyl methacrylate (PMMA) denture base resin and the anti-adherent effect was investigated. Methods An in-vitro study was performed after pure extract was obtained from Lavandula angustifolia (LA) flowers using a solvent based hot extraction process. Chromatographic analysis and computational molecular docking were done to analyze its phytoconstituents with potential target-ligand bond. Tests of antimicrobial susceptibility, minimum inhibitory concentration, minimum bactericidal and fungicidal dosages and in-vitro cytotoxicity were performed. Different proportions of LA extract (0, .5, 1.0, 1.5, and 2.0 %) were added to PMMA resin to assess anti-adherence property. Obtained data were statistically analyzed with One-way ANOVA followed by Tukey post-hoc tests. Results The reports revealed significant antimicrobial susceptibility against the test pathogens compared to control drugs (P > 0.05). A minimum concentration of .02 mg of lavender extract inhibited microbial growth with low cytotoxicity (P < 0.05). The highest anti-adherent activity was observed in the .5 % LA-incorporated PMMA resin group (P = 0.0001). Conclusions Incorporating lavender extract into denture base resin demonstrated promising antimicrobial properties. This investigation encourages further research to understand its effects on mechanical and physical properties of reinforced dental resins.
Collapse
Affiliation(s)
- Anitha Kuttae Viswanathan
- Department of Prosthodontics, SRM Institute of Science and Technology, SRM dental college, Ramapuram campus, Chennai, TamilNadu, India, 600089
| | - Rajkumar Krishnan
- Department of Oral Pathology, SRM Institute of Science and Technology, SRM dental college, Ramapuram campus, Chennai, TamilNadu, India, 600089
| |
Collapse
|
7
|
Kırkıncı S, Gercek YC, Baştürk FN, Yıldırım N, Gıdık B, Bayram NE. Evaluation of lavender essential oils and by-products using microwave hydrodistillation and conventional hydrodistillation. Sci Rep 2024; 14:20922. [PMID: 39251682 PMCID: PMC11385625 DOI: 10.1038/s41598-024-71115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
This study investigated the impact of two extraction methods, traditional hydrodistillation (TDH) and microwave-assisted hydrodistillation (MAH), on the essential oil yield and chemical profile of Lavandula angustifolia L., as well as the bioactive potential of the resulting wastewater. Essential oil composition was analyzed via GC-MS, revealing similar qualitative and quantitative profiles for both methods, with α-terpinolene and (-)borneol as major constituents. Wastewater analysis via LC-MS/MS and spectrophotometric assays demonstrated the presence of significant total phenolic content (3.29-1.78 mg GAE/g) and 32 individual phenolics (463.1 µg/kg for TDH; 479.33 µg/kg for MAH). These findings suggest that both essential oil and wastewater obtained by either method possess considerable bioactive potential, with the MAH method potentially offering advantages over TDH for essential oil extraction. Further exploration of wastewater applications in various industrial sectors is warranted.
Collapse
Affiliation(s)
- Seran Kırkıncı
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul, Turkey
| | - Yusuf Can Gercek
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey.
- Centre for Plant and Herbal Products Research-Development, Istanbul, Turkey.
| | - Fatma Nur Baştürk
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul, Turkey
| | - Nazlıcan Yıldırım
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul, Turkey
| | - Betül Gıdık
- Department of Organic Farming Management, Faculty of Applied Science, Bayburt University, Bayburt, 69000, Turkey
| | - Nesrin Ecem Bayram
- Department of Food Processing, Aydıntepe Vocational College, Bayburt University, Bayburt, Turkey.
| |
Collapse
|
8
|
Miteva D, Kitanova M, Velikova T. Biomacromolecules as Immunomodulators: Utilizing Nature’s Tools for Immune Regulation. MACROMOL 2024; 4:610-633. [DOI: 10.3390/macromol4030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Although there are numerous available immunomodulators, those of natural origin would be preferable based on their safety profile and effectiveness. The research and clinical interest in immunomodulators have increased in the last decades, especially in the immunomodulatory properties of plant-based therapies. Innovative technologies and extensive study on immunomodulatory natural products, botanicals, extracts, and active moieties with immunomodulatory potential could provide us with valuable entities to develop as novel immunomodulatory medicines to enhance current chemotherapies. This review focuses on plant-based immunomodulatory drugs that are currently in clinical studies. However, further studies in this area are of utmost importance to obtain complete information about the positive effects of medicinal plants and their chemical components and molecules as an alternative to combatting various diseases and/or prevention.
Collapse
Affiliation(s)
- Dimitrina Miteva
- Faculty of Biology, Sofia University St. Kliment Ohridski, Dragan Tzankov 8 blv., 1164 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
| | - Meglena Kitanova
- Faculty of Biology, Sofia University St. Kliment Ohridski, Dragan Tzankov 8 blv., 1164 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
| |
Collapse
|
9
|
Mykhailenko O, Hurina V, Ivanauskas L, Marksa M, Skybitska M, Kovalenko O, Lytkin D, Vladymyrova I, Georgiyants V. Lavandula angustifolia Herb from Ukraine: Comparative Chemical Profile and in vitro Antioxidant Activity. Chem Biodivers 2024; 21:e202400640. [PMID: 39129131 DOI: 10.1002/cbdv.202400640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/21/2024] [Indexed: 08/13/2024]
Abstract
Lavandula L. genus plants have always been relevant as medicines for various purposes in food, medicine, pharmaceuticals, cosmetology and aromology. Ukraine is a new territory in the mass plant cultivation and lavender essential oil production. Therefore, the issue of integrated use of herbal raw materials and their intended use is still relevant. For the first time, ten samples of Lavendula angustifolia herb from 5 growing regions of Ukraine were studied for the composition and content of polyphenols and terpenoids using HPLC and HPTLC methods, respectively, to assess the prospects and quality of herbal raw materials. The results obtained showed that L. angustifolia herb has pronounced antioxidant activity due to the high content of phenolic compounds, namely hyperoside (5.665-11.629 mg/g), vanillic acid (5.986-11.196 mg/g), rosmarinic acid (0.211 to 1.488 mg/g), caffeic acid (0.369-3.835 mg/g), chlorogenic acid (0.239-4.619 mg/g), genistein-7-O-glucoside, as well as due to the presence of linalool and linalyl acetate, which was confirmed by qualitative analysis. The total antioxidant activity was the highest in samples from Lviv Botanical Garden (0.293 Trolox mg/mL), Kyiv OLawander (0.288 Trolox mg/mL), Kharkiv Bohodukhiv (0.270 Trolox mg/mL) which is due to the qualitative composition of phenolic compounds. At the same time, the most intense zones of terpenoids in lavender herb were noted for images from Kharkiv region Lebiazhe and Kitchenkivka villiges. Cluster analysis showed priority in the selection of marker compounds (vanillic acid, hyperoside, chlorogenic acid, rosmarinic acid) for lavender herb based on their quantitative content in the samples. In the future, lavender herb from Ukraine can be considered as a promising raw material with neuroprotective properties as part of its complex use, as research continues.
Collapse
Affiliation(s)
- Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentynivska str., 61168, Kharkiv, Ukraine Tel:
- Pharmacognosy and Phytotherapy Group, UCL School of Pharmacy, 29-39 Brunswick Square, WC1 N 1AX, London, United Kingdom
| | - Viktoriia Hurina
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentynivska str., 61168, Kharkiv, Ukraine Tel:
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, 9-A. Mickevičiaus g., 44307, Kaunas, Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, 9-A. Mickevičiaus g., 44307, Kaunas, Lithuania
| | - Mariia Skybitska
- Botanical Garden of the Lviv National Ivan Franko University, 44-Cheremshini str., 79000, Lviv, Ukraine
| | - Oleh Kovalenko
- Mykolayiv National Agrarian University, Department of Plant Growing and Landscape Gardening, 9-Georgiy Gongadze st., 54000, Mykolaiv, Ukraine
| | - Dmytro Lytkin
- Educational and Scientific Institute of Applied Pharmacy, National University of Pharmacy of Ministry of Health of Ukraine, 12 Kulykivska str., 61000, Kharkiv, Ukraine
| | - Inna Vladymyrova
- Department of Pharmaceutical Technologies and Medicines Quality Assurance, National University of Pharmacy, 4-Valentynivska st., 61168, Kharkiv, Ukraine
| | - Victoriya Georgiyants
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentynivska str., 61168, Kharkiv, Ukraine Tel:
| |
Collapse
|
10
|
Massoud RI, Bouaziz M, Abdallah H, Zeiz A, Flamini G, El-Dakdouki MH. Comparative Study on the Chemical Composition and Biological Activities of the Essential Oils of Lavandula angustifolia and Lavandula x intermedia Cultivated in Lebanon. ACS OMEGA 2024; 9:30244-30255. [PMID: 39035964 PMCID: PMC11256343 DOI: 10.1021/acsomega.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 07/23/2024]
Abstract
The phytochemical profile of essential oils is influenced by genetic and paragenetic factors. In this research, we studied the essential oils of Lavandula angustifolia and Lavandula x intermedia cultivated in Lebanon. The latter is a cross hybrid between Lavandula angustifolia and Lavandula latifolia and is also known as lavandin and Lavandula hybrida. Specifically, the chemical composition and biological activities (antibacterial, antioxidant, anticancer, and hemolytic) of the essential oils were assessed. GC-MS results showed marked differences in the chemical compositions of the oils. For example, linalool was more abundant in L. x intermedia (44.15%) than in L. angustifolia (32%), while an opposite trend was observed for the percentages of 1,8-cineole (8.6% in L. angustifolia and 4.0% in L. x intermedia). FTIR analysis confirmed the richness of both oils in monoterpenes and sesquiterpenes. In terms of antioxidant activity, L. angustifolia essential oil demonstrated significantly better activity (IC50= 5.24 ± 1.20 mg/mL) compared to L. x intermedia oil in the DPPH radical scavenging assay. MTT cell viability assays revealed that L. angustifolia essential oil was a slightly more potent antiproliferative agent than L. x intermedia oil on human colorectal (HCT-116) and human breast (MCF-7) cancer cells. The antibacterial activity of the essential oils was tested against Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, and Serratia marcescens. Both oils showed good antibacterial activities with MIC values of 0.174 and 0.169 mg/mL for L. angustifolia and L. x intermedia oils, respectively. MBC determinations revealed that the antibacterial activity was bactericidal against all bacteria, except Staphylococcus aureus. Furthermore, both essential oils did not exhibit notable hemolytic activity on red blood cells. Overall, Lebanese L. angustifolia and L. x intermedia essential oils have promising industrial and medicinal values.
Collapse
Affiliation(s)
- Rana I. Massoud
- Department
of Chemistry, Faculty of Science, Beirut
Arab University, P.O.
Box 11-5020, Riad El Solh, Beirut 11072809, Lebanon
| | - Mohamed Bouaziz
- Laboratory
of Electrochemistry and Environment, National School of Engineers
of Sfax, University of Sfax, Sfax BP117 33038, Tunisia
| | - Hiba Abdallah
- Department
of Chemistry, Faculty of Sciences I, Lebanese
University, Hadath Campus, Beirut 11-5020, Lebanon
| | - Ali Zeiz
- Department
of Biological Sciences, Faculty of Science, Beirut Arab University, P.O. Box 11-5020, Beirut 11072809, Lebanon
| | - Guido Flamini
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Mohammad H. El-Dakdouki
- Department
of Chemistry, Faculty of Science, Beirut
Arab University, P.O.
Box 11-5020, Riad El Solh, Beirut 11072809, Lebanon
| |
Collapse
|
11
|
Gerasimova A, Nikolova K, Petkova N, Ivanov I, Dincheva I, Tumbarski Y, Yanakieva V, Todorova M, Gentscheva G, Gavrilova A, Yotkovska I, Nikolova S, Slavov P, Harbaliev N. Metabolic Profile of Leaves and Pulp of Passiflora caerulea L. (Bulgaria) and Their Biological Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1731. [PMID: 38999571 PMCID: PMC11243431 DOI: 10.3390/plants13131731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
At present, there are no data in the scientific literature on studies aimed at characterizing Passiflora caerulea L. growing in Bulgaria. The present study aimed to investigate the metabolic profile and elemental composition of the leaves and pulp of this Passiflora, as well as to evaluate the antioxidant, antimicrobial and anti-inflammatory activities of its leaf and pulp extracts. The results showed that the pulp predominantly contained the essential amino acid histidine (7.81 mg g-1), while it was absent in the leaves, with the highest concentration being tryptophan (8.30 mg g-1). Of the fatty acids, palmitoleic acid predominated both in the pulp and in the leaves. A major sterol component was β-sitosterol. Fructose (7.50%) was the predominant sugar in the pulp, while for the leaves, it was glucose-1.51%. Seven elements were identified: sodium, potassium, iron, magnesium, manganese, copper and zinc. The highest concentrations of K and Mg were in the pulp (23,946 mg kg-1 and 1890 mg kg-1) and leaves (36,179 mg kg-1 and 5064 mg kg-1). According to the DPPH, FRAP and CUPRAC methods, the highest values for antioxidant activity were found in 70% ethanolic extracts of the leaves, while for the ABTS method, the highest value was found in 50% ethanolic extracts. In the pulp, for all four methods, the highest values were determined at 50% ethanolic extracts. Regarding the antibacterial activity, the 50% ethanolic leaf extracts were more effective against the Gram-positive bacteria. At the same time, the 70% ethanolic leaf extract was more effective against Gram-negative bacteria such as Salmonella enteritidis ATCC 13076. The leaf extracts exhibited higher anti-inflammatory activity than the extracts prepared from the pulp. The obtained results revealed that P. caerulea is a plant that can be successfully applied as an active ingredient in various nutritional supplements or cosmetic products.
Collapse
Affiliation(s)
- Anelia Gerasimova
- Department of Chemistry, Faculty of Pharmacy, Medical University—Varna, 9000 Varna, Bulgaria;
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University—Varna, 9000 Varna, Bulgaria
| | - Nadezhda Petkova
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 4002 Plovdiv, Bulgaria; (N.P.); (I.I.)
| | - Ivan Ivanov
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 4002 Plovdiv, Bulgaria; (N.P.); (I.I.)
| | - Ivayla Dincheva
- Department of Agrobiotechnologies, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria;
| | - Yulian Tumbarski
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (Y.T.); (V.Y.)
| | - Velichka Yanakieva
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (Y.T.); (V.Y.)
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.T.); (S.N.)
| | - Galia Gentscheva
- Department of Chemistry and Biochemistry, Medical University—Pleven, 5800 Pleven, Bulgaria;
| | - Anna Gavrilova
- Department of Pharmaceutical Chemistry and Pharmacognosy, Medical University—Pleven, 5800 Pleven, Bulgaria;
| | - Ina Yotkovska
- Department of Chemistry and Biochemistry, Medical University—Pleven, 5800 Pleven, Bulgaria;
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.T.); (S.N.)
| | - Pavlo Slavov
- Faculty of Medicine, Medical University—Varna, 9000 Varna, Bulgaria; (P.S.); (N.H.)
| | - Nikolay Harbaliev
- Faculty of Medicine, Medical University—Varna, 9000 Varna, Bulgaria; (P.S.); (N.H.)
| |
Collapse
|
12
|
Betlej I, Andres B, Cebulak T, Kapusta I, Balawejder M, Żurek N, Jaworski S, Lange A, Kutwin M, Pisulewska E, Kidacka A, Krochmal-Marczak B, Boruszewski P, Borysiuk P. Phytochemical Composition and Antimicrobial Properties of New Lavandula angustifolia Ecotypes. Molecules 2024; 29:1740. [PMID: 38675563 PMCID: PMC11052340 DOI: 10.3390/molecules29081740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The purpose of this study was to characterize ethanol extracts from leaves and flowers of two ecotypes (PL-intended for industrial plantations and KC-intended for cut flowers) of Lavandula angustifolia Mill. The plant was cultivated in 2019 in southern Poland as part of a long-term research plan to develop new varieties resistant to difficult environmental conditions. The collected leaves and flowers were used to prepare ethanol extracts, which were then analyzed in terms of phytochemical composition and antioxidant, bactericidal, and fungicidal properties. Using UPLC techniques, 22 compounds belonging to phenolic acids and flavonoids were identified. UPLC test results indicated that ethanol extracts from leaves and flowers differ in phytochemical composition. Lower amounts of phenolic acids and flavonoids were identified in leaf extracts than in flower extracts. The predominant substances in the flower extracts were rosmarinic acid (829.68-1229.33 µg/g), ferulic acid glucoside III (810.97-980.55 µg/g), and ferulic acid glucoside II (789.30-885.06 µg/g). Ferulic acid glucoside II (3981.95-6561.19 µg/g), ferulic acid glucoside I (2349.46-5503.81 µg/g), and ferulic acid glucoside III (1303.84-2774.17 µg/g) contained the highest amounts in the ethanol extracts of the leaves. The following substances were present in the extracts in trace amounts or at low levels: apigenin, kaempferol, and caftaric acid. Leaf extracts of the PL ecotype quantitatively (µg/g) contained more phytochemicals than leaf extracts of the KC ecotype. The results obtained in this study indicate that antioxidant activity depends on the ecotype. Extracts from the PL ecotype have a better ability to eliminate free radicals than extracts from the KC ecotype. At the same time, it was found that the antioxidant activity (total phenolic content, ABTS•+, DPPH•, and FRAP) of PL ecotype leaf extracts was higher (24.49, 177.75, 164.88, and 89.10 μmol (TE)/g) than that determined in flower extracts (15.84, 125.05, 82.35, and 54.64 μmol (TE)/g). The test results confirmed that leaf and flower extracts, even at low concentrations (0.313-0.63%), significantly inhibit the growth of selected Gram-negative and Gram-positive bacteria and Candida yeasts. Inhibition of mold growth was observed at a dose extract of at least 1 mL/100 mL.
Collapse
Affiliation(s)
- Izabela Betlej
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland; (B.A.); (P.B.)
| | - Bogusław Andres
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland; (B.A.); (P.B.)
| | - Tomasz Cebulak
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszów, Poland; (T.C.); (I.K.); (N.Ż.)
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszów, Poland; (T.C.); (I.K.); (N.Ż.)
| | - Maciej Balawejder
- Department of Chemistry and Food Toxicology, University of Rzeszów, 1a Ćwiklińskiej St., 35-601 Rzeszów, Poland;
| | - Natalia Żurek
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszów, Poland; (T.C.); (I.K.); (N.Ż.)
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 8 Ciszewskiego St., 02-786 Warsaw, Poland; (S.J.); (A.L.); (M.K.)
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 8 Ciszewskiego St., 02-786 Warsaw, Poland; (S.J.); (A.L.); (M.K.)
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 8 Ciszewskiego St., 02-786 Warsaw, Poland; (S.J.); (A.L.); (M.K.)
| | - Elżbieta Pisulewska
- Department of Plant Production and Food Safety, Carpathian State College in Krosno, 38-400 Krosno, Poland; (E.P.); (B.K.-M.)
| | - Agnieszka Kidacka
- Breeding Department, Małopolska Plant Breeding Company sp. z o. o., 4 Zbożowa St., 30-002 Kraków, Poland;
| | - Barbara Krochmal-Marczak
- Department of Plant Production and Food Safety, Carpathian State College in Krosno, 38-400 Krosno, Poland; (E.P.); (B.K.-M.)
| | - Piotr Boruszewski
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland; (B.A.); (P.B.)
| | - Piotr Borysiuk
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland; (B.A.); (P.B.)
| |
Collapse
|
13
|
Chelly M, Chelly S, Ferlazzo A, Neri G, Bouaziz-Ketata H. Lavandula multifida as a novel eco-friendly fluorescent-blue material for mercury ions sensing in seawater at femto-molar concentration. CHEMOSPHERE 2024; 352:141409. [PMID: 38346515 DOI: 10.1016/j.chemosphere.2024.141409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
In this paper, we present a novel fluorescent material based on the herbal tea of Lavandula multifida (Lm). The fluorescence properties of Lm aqueous extract were analyzed under various excitation wavelengths in the range of 290-450 nm. The Lm herbal infusion was found to be highly fluorescent, with an emission maximum at 450 nm under excitation at 390 nm. Consequently, it was exploited to develop a fluorescence method for detecting metal ions. Results obtained upon the addition of Hg2+, Na+, K+, Ca2+, Mg2+, Pb2+, Cd2+, Cu2+, Ni2+, Bi3+, Mn2+, Fe3+ and Co2+ ions showed that the fluorescence intensity of the Lm aqueous extract decreased strongly with the presence of mercury ions. A solid-state fluorescent sensor, based on Lm embedded into a Nafion membrane and deposited on a transparent polyethylene terephthalate (PET) sheet, has also been developed for the effective detection of Hg2+ ions. The Lm-Nafion-PET sensor exhibited good stability, high repeatability, and reproducibility. Furthermore, the Lm-Nafion/PET sensor demonstrated remarkable sensitivity to Hg2+ in sea water, with a limit of detection of 0.25 fM. To our knowledge, this is the first study which reports Lavandula multifida plant for making a novel eco-friendly fluorescent solid-state sensor for the detection of mercury ions at femto-molar concentrations in seawater.
Collapse
Affiliation(s)
- Meryam Chelly
- Department of Engineering, University of Messina, C.da Di Dio, I-98166, Messina, Italy; Laboratory of Toxicology-Microbiology Environmental and Health, LR17ES06, Sfax, Tunisia
| | - Sabrine Chelly
- Department of Engineering, University of Messina, C.da Di Dio, I-98166, Messina, Italy; Laboratory of Toxicology-Microbiology Environmental and Health, LR17ES06, Sfax, Tunisia
| | - Angelo Ferlazzo
- Department of Engineering, University of Messina, C.da Di Dio, I-98166, Messina, Italy; Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.da Di Dio, I-98166, Messina, Italy.
| | - Hanen Bouaziz-Ketata
- Laboratory of Toxicology-Microbiology Environmental and Health, LR17ES06, Sfax, Tunisia.
| |
Collapse
|
14
|
Molina R, López-Santos C, Balestrasse K, Gómez-Ramírez A, Sauló J. Enhancing Essential Oil Extraction from Lavandin Grosso Flowers via Plasma Treatment. Int J Mol Sci 2024; 25:2383. [PMID: 38397059 PMCID: PMC10889515 DOI: 10.3390/ijms25042383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
This study explores the impact of plasma treatment on Lavandin Grosso flowers and its influence on the extraction of essential oils (EOs) via hydrodistillation. Short plasma treatment times enhance the yield of EO extraction from 3.19% in untreated samples to 3.44%, corresponding to 1 min of plasma treatment, while longer treatment times (10 min) show diminishing returns to 3.07% of yield extraction. Chemical characterization (GC/MS and ATR-FTIR) indicates that plasma treatments do not significantly alter the chemical composition of the extracted EOs, preserving their aromatic qualities. Investigations into plasma-surface interactions reveal changes at the nanometer level, with XPS confirming alterations in the surface chemistry of Lavandin Grosso flowers by reducing surface carbon and increasing oxygen content, ultimately resulting in an increased presence of hydrophilic groups. The presence of hydrophilic groups enhances the interaction between the surface membrane of the glandular trichomes on Lavandin Grosso flowers and water vapor, consequently increasing the extraction of EOs. Furthermore, microscopic SEM examinations demonstrate that plasma treatments do not affect the morphology of glandular trichomes, emphasizing that surface modifications primarily occur at the nanoscale. This study underscores the potential of plasma technology as a tool to enhance EO yields from botanical sources while maintaining their chemical integrity.
Collapse
Affiliation(s)
- Ricardo Molina
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), 08034 Barcelona, Spain
| | - Carmen López-Santos
- Nanotechnology on Surfaces and Plasma Group, Institute of Materials Science of Seville (US-CSIC), 41092 Sevilla, Spain; (C.L.-S.); (A.G.-R.)
- Departamento de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - Karina Balestrasse
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1417DSE, Argentina;
- Cátedra de Bioquímica, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Ana Gómez-Ramírez
- Nanotechnology on Surfaces and Plasma Group, Institute of Materials Science of Seville (US-CSIC), 41092 Sevilla, Spain; (C.L.-S.); (A.G.-R.)
- Departamento de Física Atómica, Molecular y Nuclear, Facultad de Física, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Jordi Sauló
- Laboratory of Dioxins, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA), Spanish National Research Council (CSIC), 08034 Barcelona, Spain;
| |
Collapse
|
15
|
Tavan M, Hanachi P, de la Luz Cádiz-Gurrea M, Segura Carretero A, Mirjalili MH. Natural Phenolic Compounds with Neuroprotective Effects. Neurochem Res 2024; 49:306-326. [PMID: 37940760 DOI: 10.1007/s11064-023-04046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023]
Abstract
Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases are three of the major neurodegenerative diseases. To date, researchers have found various natural phytochemicals that could potentially be used to treat neurodegenerative diseases. Particularly, the application of natural phenolic compounds has gained significant traction in recent years, driven by their various biological activities and therapeutic efficacy in human health. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and can neutralize the effects of oxidative stress, inflammation, and apoptosis in animal models. This review focuses on the current state of knowledge on phenolic compounds, including phenolic acids, flavonoids, stilbenes, and coumarins, as well as their beneficial effects on human health. We further provide an overview of the therapeutic potential and mechanisms of action of natural dietary phenolics in curing neurodegenerative diseases in animal models.
Collapse
Affiliation(s)
- Mansoureh Tavan
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran.
| | - Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | | | | | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
16
|
Qneibi M, Bdir S, Maayeh C, Bdair M, Sandouka D, Basit D, Hallak M. A Comprehensive Review of Essential Oils and Their Pharmacological Activities in Neurological Disorders: Exploring Neuroprotective Potential. Neurochem Res 2024; 49:258-289. [PMID: 37768469 DOI: 10.1007/s11064-023-04032-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Numerous studies have demonstrated essential oils' diverse chemical compositions and pharmacological properties encompassing antinociceptive, anxiolytic-like, and anticonvulsant activities, among other notable effects. The utilization of essential oils, whether inhaled, orally ingested, or applied topically, has commonly been employed as adjunctive therapy for individuals experiencing anxiety, insomnia, convulsions, pain, and cognitive impairment. The utilization of synthetic medications in the treatment of various disorders and symptoms is associated with a wide array of negative consequences. Consequently, numerous research groups across the globe have been prompted to explore the efficacy of natural alternatives such as essential oils. This review provides a comprehensive overview of the existing literature on the pharmacological properties of essential oils and their derived compounds and the underlying mechanisms responsible for these observed effects. The primary emphasis is on essential oils and their constituents, specifically targeting the nervous system and exhibiting significant potential in treating neurodegenerative disorders. The current state of research in this field is characterized by its preliminary nature, highlighting the necessity for a more comprehensive overlook of the therapeutic advantages of essential oils and their components. Integrating essential oils into conventional therapies can enhance the effectiveness of comprehensive treatment regimens for neurodegenerative diseases, offering a more holistic approach to addressing the multifaceted nature of these conditions.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Diana Basit
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mira Hallak
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
17
|
Șuică-Bunghez IR, Senin RM, Sorescu AA, Ganciarov M, Răut I, Firincă C, Constantin M, Gifu IC, Stoica R, Fierăscu I, Fierăscu RC. Application of Lavandula angustifolia Mill. Extracts for the Phytosynthesis of Silver Nanoparticles: Characterization and Biomedical Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:333. [PMID: 38337867 PMCID: PMC10857192 DOI: 10.3390/plants13030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
Nanotechnology can offer a series of new "green" and eco-friendly methods for developing different types of nanoparticles, among which the development of nanomaterials using plant extracts (phytosynthesis) represents one of the most promising areas of research. This present study details the use of lavender flowers (Lavandula angustifolia Mill., well-known for their use in homeopathic applications) for the biosynthesis of silver nanoparticles with enhanced antioxidant and antibacterial properties. Several qualitative and quantitative assays were carried out in order to offer an image of the extracts' composition (the recorded total phenolics content varied between 21.0 to 40.9 mg GAE (gallic acid equivalents)/g dry weight (d.w.), while the total flavonoids content ranged between 3.57 and 16.8 mg CE (catechin equivalents)/g d.w.), alongside modern analytical methods (such as gas chromatography-mass spectrometry-GC-MS, quantifying 12 phytoconstituents present in the extracts). The formation of silver nanoparticles (AgNPs) using lavender extract was studied by UV-Vis spectroscopy, Fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS)/zeta potential, with the selected nanoparticles having crystallite sizes of approx. 14.55 nm (AgNP-L2) and 4.61 nm, respectively (for AgNP-L4), and hydrodynamic diameters of 392.4 nm (for AgNP-L2) and 391.6 nm (for AgNP-L4), determined by DLS. A zeta potential of around -6.4 mV was displayed for both samples while presenting as large aggregates, in which nanoparticle clusters with dimensions of around 130-200 nm can be observed. The biomedical applications of the extracts and the corresponding phytosynthesized nanoparticles were evaluated using antioxidant and antimicrobial assays. The obtained results confirmed the phytosynthesis of the silver nanoparticles using Lavandula angustifolia Mill. extracts, as well as their antioxidant and antimicrobial potential.
Collapse
Affiliation(s)
- Ioana Raluca Șuică-Bunghez
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
| | - Raluca Mădălina Senin
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
| | - Ana Alexandra Sorescu
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
| | - Mihaela Ganciarov
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
| | - Iuliana Răut
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
| | - Cristina Firincă
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
- Faculty of Biology, University of Bucharest, 91 Splaiul Independenței, 050104 Bucharest, Romania
| | - Mariana Constantin
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
- Faculty of Pharmacy, “Titu Maiorescu” University, 187 Calea Vacaresti, 040051 Bucharest, Romania
| | - Ioana Cătălina Gifu
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
| | - Rusăndica Stoica
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
| | - Irina Fierăscu
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Radu Claudiu Fierăscu
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania
| |
Collapse
|
18
|
Marchidan IG, Ortan A, Marcu Spinu S, Avramescu SM, Avram I, Fierascu RC, Babeanu N. Chemical Composition and Biological Properties of New Romanian Lavandula Species. Antioxidants (Basel) 2023; 12:2127. [PMID: 38136246 PMCID: PMC10741150 DOI: 10.3390/antiox12122127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The aims of the present study were to evaluate for the first time the chemical composition and antioxidant, antibacterial, antifungal and antiproliferative potentials of the Romanian George 90 lavender species, as well as parental species, L. angustifolia and L. latifolia. The L. angustifolia, L. latifolia and George 90 essential oils were analyzed by GC-MS/MS and the L. angustifolia, L. latifolia and George 90 hydroalcoholic extracts were analyzed by HPLC-DAD. The antioxidant, antibacterial, antifungal and antiproliferative assays revealed that all the investigated species showed significant activities. The results highlighted the chemical composition and the promising biological potentials of the L. angustifolia, L. latifolia and George 90 lavender species, validating their ethnomedicinal value, which offers potential applications as natural drugs.
Collapse
Affiliation(s)
- Ionuț Georgică Marchidan
- Biotechnologies Department, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania; (I.G.M.); (N.B.)
| | - Alina Ortan
- Mathematics, Physics and Measurements Department, Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania;
| | - Simona Marcu Spinu
- Mathematics, Physics and Measurements Department, Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania;
| | - Sorin Marius Avramescu
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Soseaua Panduri, 050663 Bucharest, Romania;
| | - Ionela Avram
- Department of Genetics, University of Bucharest, 1-3-Aleea Portocalelor, 060101 Bucharest, Romania
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM–Bucharest, 060021 Bucharest, Romania;
| | - Narcisa Babeanu
- Biotechnologies Department, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania; (I.G.M.); (N.B.)
| |
Collapse
|
19
|
Vilas-Boas AA, Goméz-García R, Machado M, Nunes C, Ribeiro S, Nunes J, Oliveira ALS, Pintado M. Lavandula pedunculata Polyphenol-Rich Extracts Obtained by Conventional, MAE and UAE Methods: Exploring the Bioactive Potential and Safety for Use a Medicine Plant as Food and Nutraceutical Ingredient. Foods 2023; 12:4462. [PMID: 38137266 PMCID: PMC10742868 DOI: 10.3390/foods12244462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Nowadays, plant-based bioactive compounds (BCs) are a key focus of research, supporting sustainable food production and favored by consumers for their perceived safety and health advantages over synthetic options. Lavandula pedunculata (LP) is a Portuguese, native species relevant to the bioeconomy that can be useful as a source of natural BCs, mainly phenolic compounds. This study compared LP polyphenol-rich extracts from conventional maceration extraction (CE), microwave and ultrasound-assisted extraction (MAE and UAE). As a result, rosmarinic acid (58.68-48.27 mg/g DE) and salvianolic acid B (43.19-40.09 mg/g DE) were the most representative phenolic compounds in the LP extracts. The three methods exhibited high antioxidant activity, highlighting the ORAC (1306.0 to 1765.5 mg Trolox equivalents (TE)/g DE) results. In addition, the extracts obtained with MAE and CE showed outstanding growth inhibition for B. cereus, S. aureus, E. coli, S. enterica and P. aeruginosa (>50%, at 10 mg/mL). The MAE extract showed the lowest IC50 (0.98 mg DE/mL) for angiotensin-converting enzyme inhibition and the best results for α-glucosidase and tyrosinase inhibition (at 5 mg/mL, the inhibition was 87 and 73%, respectively). The LP polyphenol-rich extracts were also safe on caco-2 intestinal cells, and no mutagenicity was detected. The UAE had lower efficiency in obtaining LP polyphenol-rich extracts. MAE equaled CE's efficiency, saving time and energy. LP shows potential as a sustainable raw material, allowing diverse extraction methods to safely develop health-promoting food and nutraceutical ingredients.
Collapse
Affiliation(s)
- Ana A. Vilas-Boas
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
| | - Ricardo Goméz-García
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
- Centro de Investigación e Innovación Científica y Tecnológica—CIICYT, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Manuela Machado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
| | - Catarina Nunes
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 3045-155 Oliveira do Hospital, Portugal; (C.N.); (S.R.); (J.N.)
| | - Sónia Ribeiro
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 3045-155 Oliveira do Hospital, Portugal; (C.N.); (S.R.); (J.N.)
| | - João Nunes
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 3045-155 Oliveira do Hospital, Portugal; (C.N.); (S.R.); (J.N.)
| | - Ana L. S. Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
| |
Collapse
|
20
|
Tundis R, Grande F, Occhiuzzi MA, Sicari V, Loizzo MR, Cappello AR. Lavandula angustifolia mill. (Lamiaceae) ethanol extract and its main constituents as promising agents for the treatment of metabolic disorders: chemical profile, in vitro biological studies, and molecular docking. J Enzyme Inhib Med Chem 2023; 38:2269481. [PMID: 37850338 PMCID: PMC10586085 DOI: 10.1080/14756366.2023.2269481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
Lavandula angustifolia Mill. (lavender) is one of the most used medicinal plants. Herein, we chemically characterised and investigated the antioxidant properties and the capability to inhibit key enzymes for the treatment of type 2 diabetes (TD2) and obesity such as pancreatic lipase, α-glucosidase, and α-amylase of the ethanolic extract of two lavender samples (La1 and La2) from southern Italy. Both extracts significantly inhibited α-glucosidase, while La1 inhibited α-amylase and lipase more effectively than La2. To investigate whether these properties could be due to a direct interaction of the main constituents of the extracts with the targeted enzymes, molecular docking studies have been performed. As a result, the selected compounds were able to interact with the key residues of the binding site of the three proteins, thus supporting biological data. Current findings indicate the new potential of lavender ethanolic extract for the development of novel agents for T2D and obesity.
Collapse
Affiliation(s)
- Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria A. Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Vincenzo Sicari
- Department of Agraria, Mediterranean University of Reggio Calabria, Reggio Calabria, Italy
| | - Monica R. Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Anna R. Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
21
|
Weremczuk-Jeżyna I, Gonciarz W, Grzegorczyk-Karolak I. Antioxidant and Anti-Inflammatory Activities of Phenolic Acid-Rich Extract from Hairy Roots of Dracocephalum moldavica. Molecules 2023; 28:6759. [PMID: 37836602 PMCID: PMC10574805 DOI: 10.3390/molecules28196759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
This study evaluates the antioxidant properties and anti-inflammatory potential of polyphenolic acid-rich fractions of 80% methanolic extract from the hairy roots of Dracocephalum moldavica. The fractionation of the crude extract yielded the following: a diethyl ether fraction rich in caffeic acid (DM1) (25.85 mg/g DWE), an n-butyl fraction rich in rosmarinic acid (DM3) (43.94 mg/g DWE) and a water residue rich in salvianolic acid B (DM4) (51.46 mg/g DWE). The content of these compounds was determined using high-performance liquid chromatography (HPLC). Their antioxidant activity was evaluated based on DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt) and FRAP assays. The anti-inflammatory activity of the fractions was determined by their effect on nuclear factor kappa-B (NF-κB) activation and interleukin-1β (IL-1β) production in LPS E. coli stimulated monocytes. The level of pro-inflammatory IL-1β in cells was measured using ELISA. The activation of NF-κB in THP1-Blue™ cells, resulting in the secretion of SEAP (secreted embryonic alkaline phosphatase), was detected spectrophotometrically using Quanti-Blue reagent. Among the tested fractions, the diethyl ether fraction (DM1) showed the highest antioxidant potential, with an EC50 value of 15.41 µg/mL in the DPPH assay and 11.47 µg/mL in ABTS and a reduction potential of 10.9 mM Fe(II)/g DWE in FRAP. DM1 at a concentration of 10 mg/mL also efficiently reduced LPS-induced SEAP secretion (53% inhibition) and IL-1β production (47% inhibition) without affecting the normal growth of L929 fibroblast cells.
Collapse
Affiliation(s)
- Izabela Weremczuk-Jeżyna
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Weronika Gonciarz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Izabela Grzegorczyk-Karolak
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
22
|
Betlej I, Andres B, Cebulak T, Kapusta I, Balawejder M, Jaworski S, Lange A, Kutwin M, Pisulewska E, Kidacka A, Krochmal-Marczak B, Borysiuk P. Antimicrobial Properties and Assessment of the Content of Bioactive Compounds Lavandula angustifolia Mill. Cultivated in Southern Poland. Molecules 2023; 28:6416. [PMID: 37687245 PMCID: PMC10490438 DOI: 10.3390/molecules28176416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Lavender is a valued plant due to its cosmetic, perfumery, culinary, and health benefits. A wide range of applications is related to the composition of bioactive compounds, the quantity and quality of which is determined by various internal and external factors, i.e., variety, morphological part of the plant, and climatic and soil conditions during vegetation. In the presented work, the characterization of antimicrobial properties as well as the qualitative and quantitative assessment of bioactive compounds in the form of polyphenols in ethanol extracts from leaves and flowers of Lavandula angustifolia Mill. intended for border hedges, cultivated in the region of southern Poland, were determined. The composition of the fraction of volatile substances and antioxidant properties were also assessed. The conducted research shows that extracts from leaves and flowers significantly affected the viability of bacterial cells and the development of mold fungi. A clear decrease in the viability of bacteria and C. albicans cells was shown in the concentration of 0.32% of extracts. Leaf extracts were characterized by a much higher content of polyphenols and antioxidant properties than flower extracts. The composition of volatiles measured by GC-MS was significantly different between the extracts. Linalyl acetate and ocimene isomers mix dominated in flower extracts, whereas coumarin, γ-cadinene, and 7-methoxycoumarin were identified as dominant in leaf extracts.
Collapse
Affiliation(s)
- Izabela Betlej
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Bogusław Andres
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Tomasz Cebulak
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszów, Poland; (T.C.); (I.K.)
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszów, Poland; (T.C.); (I.K.)
| | - Maciej Balawejder
- Department of Chemistry and Food Toxicology, University of Rzeszow, 1a Ćwiklińskiej St., 35-601 Rzeszow, Poland;
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 8 Ciszewskiego St., 02-786 Warsaw, Poland; (S.J.); (A.L.); (M.K.)
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 8 Ciszewskiego St., 02-786 Warsaw, Poland; (S.J.); (A.L.); (M.K.)
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 8 Ciszewskiego St., 02-786 Warsaw, Poland; (S.J.); (A.L.); (M.K.)
| | - Elżbieta Pisulewska
- Department of Plant Production and Food Safety, Carpathian State College in Krosno, 38-400 Krosno, Poland; (E.P.); (B.K.-M.)
| | - Agnieszka Kidacka
- Breeding Department, Małopolska Plant Breeding Company sp. z o. o., 4 Zbożowa St., 30-002 Kraków, Poland;
| | - Barbara Krochmal-Marczak
- Department of Plant Production and Food Safety, Carpathian State College in Krosno, 38-400 Krosno, Poland; (E.P.); (B.K.-M.)
| | - Piotr Borysiuk
- Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland;
| |
Collapse
|
23
|
Bungau AF, Radu AF, Bungau SG, Vesa CM, Tit DM, Purza AL, Endres LM. Emerging Insights into the Applicability of Essential Oils in the Management of Acne Vulgaris. Molecules 2023; 28:6395. [PMID: 37687224 PMCID: PMC10489792 DOI: 10.3390/molecules28176395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The occurrence of pustules, comedones, nodules, and cysts defines acne vulgaris, a prevalent chronic inflammatory dermatological condition. In the past few decades, essential oils extracted from varied natural sources have acquired recognition due to their potential medicinal applications in acne therapy. However, there is not yet sufficient medical data to fully characterize this interaction. Multiple factors contribute to the development of acne vulgaris, including excessive sebaceous production, inflammatory processes, hyperkeratinization, and infection with Cutibacterium acnes. Essential oils, including oregano, lavender, lemon grass, myrtle, lemon, thyme, eucalyptus, rosemary, and tea tree, have been found to possess anti-inflammatory, antioxidant, and antimicrobial properties, which may target the multifactorial causes of acne. Analytical methods for determining antioxidant potential (i.e., total phenolic content, diphenyl-1-picrylhydrazyl free radical scavenging assay, reducing power assay, ferrous ion chelating activity, thiobarbituric acid reactive species assay, β-carotene bleaching assay, etc.) are essential for the evaluation of these essential oils, and their method optimization is crucial. Further studies could include the development of novel acne treatments incorporating essential oils and an assessment of their efficacy in large clinical trials. In addition, further research is necessary to ascertain the mechanisms of action of essential oils and their optimal doses and safety profiles for optimal implementation in the management of acne vulgaris.
Collapse
Affiliation(s)
- Alexa Florina Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Cosmin Mihai Vesa
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.F.B.); (C.M.V.); (D.M.T.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Anamaria Lavinia Purza
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Laura Maria Endres
- Department of Psycho-Neurosciences and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
24
|
Habán M, Korczyk-Szabó J, Čerteková S, Ražná K. Lavandula Species, Their Bioactive Phytochemicals, and Their Biosynthetic Regulation. Int J Mol Sci 2023; 24:ijms24108831. [PMID: 37240177 DOI: 10.3390/ijms24108831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Lavandula species are one of the most useful aromatic and medicinal plants and have great economic potential. The phytopharmaceutical contribution of the secondary metabolites of the species is unquestionable. Most recent studies have been focusing on the elucidation of the genetic background of secondary metabolite production in lavender species. Therefore, knowledge of not only genetic but especially epigenetic mechanisms for the regulation of secondary metabolites is necessary for the modification of those biosynthesis processes and the understanding of genotypic differences in the content and compositional variability of these products. The review discusses the genetic diversity of Lavandula species in relation to the geographic area, occurrence, and morphogenetic factors. The role of microRNAs in secondary-metabolites biosynthesis is described.
Collapse
Affiliation(s)
- Miroslav Habán
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Joanna Korczyk-Szabó
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Simona Čerteková
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Katarína Ražná
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
25
|
Cáceres-Cevallos GJ, Quílez M, Ortiz de Elguea-Culebras G, Melero-Bravo E, Sánchez-Vioque R, Jordán MJ. Agronomic Evaluation and Chemical Characterization of Lavandula latifolia Medik. under the Semiarid Conditions of the Spanish Southeast. PLANTS (BASEL, SWITZERLAND) 2023; 12:1986. [PMID: 37653903 PMCID: PMC10221659 DOI: 10.3390/plants12101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/13/2023] [Indexed: 09/02/2023]
Abstract
Lavandula latifolia is one of the main rainfed crops of aromatic and medicinal plants produced in Spain. As a global concern, the agronomic productivity of this aromatic crop is also threatened by the consequences of imminent climate change. On this basis, the study of the agronomic production of two drought-tolerant ecotypes, after three years of cultivations practices, constitutes the main objective of the present study. For this trial, clones of the two pre-selected ecotypes, along with clones from two commercial plants (control), were grown in an experimental plot. The main results confirmed an increase in biomass and essential oil production with plant age. The essential oil chemotype defined by 1,8-cineol, linalool, and camphor was maintained over time, but a decrease in 1,8-cineol in the benefit of linalool was detected. In the phenolic profile, 14 components were identified, with salvianic acid and a rosmarinic acid derivate being the main compounds quantified. These phenolic extracts showed potent in vitro antioxidant capacity, and after the second year of cultivation practices, both phenolic compounds and antioxidant capacity remained stable. Thus, under semiarid conditions, L. latifolia drought-tolerant ecotypes reach a good level of production after the second year of crop establishment.
Collapse
Affiliation(s)
- Gustavo J. Cáceres-Cevallos
- Research Group on Rainfed Agriculture for Rural Development, Department of Rural Development, Oenology and Sustainable Agriculture, Murcia Institute of Agri-Food and Environmental Research (IMIDA), La Alberca de las Torres, 30150 Murcia, Spain; (G.J.C.-C.); (M.Q.)
| | - María Quílez
- Research Group on Rainfed Agriculture for Rural Development, Department of Rural Development, Oenology and Sustainable Agriculture, Murcia Institute of Agri-Food and Environmental Research (IMIDA), La Alberca de las Torres, 30150 Murcia, Spain; (G.J.C.-C.); (M.Q.)
| | - Gonzalo Ortiz de Elguea-Culebras
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAF de Albaladejito, Carretera Toledo-Cuenca km 174, 16194 Cuenca, Spain; (G.O.d.E.-C.); (E.M.-B.); (R.S.-V.)
| | - Enrique Melero-Bravo
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAF de Albaladejito, Carretera Toledo-Cuenca km 174, 16194 Cuenca, Spain; (G.O.d.E.-C.); (E.M.-B.); (R.S.-V.)
| | - Raúl Sánchez-Vioque
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAF de Albaladejito, Carretera Toledo-Cuenca km 174, 16194 Cuenca, Spain; (G.O.d.E.-C.); (E.M.-B.); (R.S.-V.)
| | - María J. Jordán
- Research Group on Rainfed Agriculture for Rural Development, Department of Rural Development, Oenology and Sustainable Agriculture, Murcia Institute of Agri-Food and Environmental Research (IMIDA), La Alberca de las Torres, 30150 Murcia, Spain; (G.J.C.-C.); (M.Q.)
| |
Collapse
|
26
|
Gravina C, Formato M, Piccolella S, Fiorentino M, Stinca A, Pacifico S, Esposito A. Lavandula austroapennina (Lamiaceae): Getting Insights into Bioactive Polyphenols of a Rare Italian Endemic Vascular Plant. Int J Mol Sci 2023; 24:ijms24098038. [PMID: 37175744 PMCID: PMC10178519 DOI: 10.3390/ijms24098038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Lavandula austroapennina N.G. Passal., Tundis and Upon has recently been described as a new species endemic to the southern Apennines (Italy). Locally, this species has a long ethnobotanical tradition of use for curative and decoration purposes and has been the protagonist of a flourishing essential oil production chain. Currently, while this tradition has long since ended, attention to the species is necessary, with a view to enhancing marginal and rural areas, as a recovery of a precious resource to (i) get insights into its (poly)phenolic fraction and (ii) address new and innovative uses of all its organs in various application fields (e.g., cosmeceutical sector). Therefore, after field sampling and dissection of its organs (i.e., corolla, calyx, leaf, stem and root), the latter, previously deterpenated and defatted, were subjected to accelerated ultrasound extraction and the related alcoholic extracts were obtained. Chemical composition, explored by UHPLC-QqTOF-MS/MS, and the following multivariate data analysis showed that the hydroxycinnamoyl derivatives are abundant in the leaf, stem and root, while flavonoids are more present in corolla and calyx. In particular, coumaroyl flavonoids with glyconic portion containing also hexuronyl moieties differentiated corolla organ, while yunnaneic acid D isomers and esculin distinguished root. When antiradical and reducing properties were evaluated (by means of ABTS, DPPH and PFRAP tests), a similar clustering of organs was achieved and the marked antioxidant efficacy of leaf, stem and root extracts was found. Thus, following cytotoxicity screening by MTT test on HaCaT keratinocytes, the protective effects of the organ extracts were assessed by wound closure observed after the scratch test. In addition, the extracts from corolla, leaf and stem were particularly active at low doses inducing rapid wound closure on HaCaT cells at a concentration of 1 μg/mL. The diversity in (poly)phenols of each organ and the promising bioactivity preliminarily assessed suggest further investigation to be carried out to fully recover and valorize this precious endemic vascular plant.
Collapse
Affiliation(s)
- Claudia Gravina
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Marialuisa Formato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Marika Fiorentino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Adriano Stinca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Assunta Esposito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
27
|
Molina-Tijeras JA, Ruiz-Malagón AJ, Hidalgo-García L, Diez-Echave P, Rodríguez-Sojo MJ, Cádiz-Gurrea MDLL, Segura-Carretero A, del Palacio JP, González-Tejero MR, Rodríguez-Cabezas ME, Gálvez J, Rodríguez-Nogales A, Vezza T, Algieri F. The Antioxidant Properties of Lavandula multifida Extract Contribute to Its Beneficial Effects in High-Fat Diet-Induced Obesity in Mice. Antioxidants (Basel) 2023; 12:antiox12040832. [PMID: 37107207 PMCID: PMC10135096 DOI: 10.3390/antiox12040832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Obesity is a worldwide public health problem whose prevalence rate has increased steadily over the last few years. Therefore, it is urgent to improve the management of obesity and its comorbidities, and plant-based treatments are receiving increasing attention worldwide. In this regard, the present study aimed to investigate a well-characterized extract of Lavandula multifida (LME) in an experimental model of obesity in mice and explore the underlying mechanisms. Interestingly, the daily administration of LME reduced weight gain as well as improved insulin sensitivity and glucose tolerance. Additionally, LME ameliorated the inflammatory state in both liver and adipose tissue by decreasing the expression of various proinflammatory mediators (Il-6, Tnf-α, Il-1β, Jnk-1, Pparα, Pparγ, and Ampk) and prevented increased gut permeability by regulating the expression of mucins (Muc-1, Muc-2, and Muc-3) and proteins implicated in epithelial barrier integrity maintenance (Ocln, Tjp1, and Tff-3). In addition, LME showed the ability to reduce oxidative stress by inhibiting nitrite production on macrophages and lipid peroxidation. These results suggest that LME may represent a promising complementary approach for the management of obesity and its comorbidities.
Collapse
Affiliation(s)
- Jose Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Antonio Jesús Ruiz-Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Laura Hidalgo-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Correspondence: (L.H.-G.); (A.R.-N.); Tel.: +34-958241519 (A.R.-N.)
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | | | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - José Pérez del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, 18016 Granada, Spain
| | | | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Correspondence: (L.H.-G.); (A.R.-N.); Tel.: +34-958241519 (A.R.-N.)
| | - Teresa Vezza
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Servicio de Digestivo, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Francesca Algieri
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| |
Collapse
|
28
|
Pokajewicz K, Czarniecka-Wiera M, Krajewska A, Maciejczyk E, Wieczorek PP. Lavandula x intermedia-A Bastard Lavender or a Plant of Many Values? Part II. Biological Activities and Applications of Lavandin. Molecules 2023; 28:2986. [PMID: 37049749 PMCID: PMC10095729 DOI: 10.3390/molecules28072986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
This review article is the second in a series aimed at providing an in-depth overview of Lavandula x intermedia (lavandin). In part I, the biology and chemistry of lavandin were addressed. In part II, the focus is on the functional properties of lavandin and its applications in industry and daily life. While reviewing the biological properties, only original research articles employing lavandin were considered. Lavandin essential oil has been found to have antioxidant and biocidal activity (antimicrobial, nematicidal, antiprotozoal, insecticidal, and allelopathic), as well as other potential therapeutic effects such as anxiolytic, neuroprotective, improving sleep quality, antithrombotic, anti-inflammatory, and analgesic. Other lavandin preparations have been investigated to a much lesser extent. The research is either limited or inconsistent across all studies, and further evidence is needed to support these properties. Unlike its parent species-Lavandula angustifolia (LA)-lavandin essential oil is not officially recognized as a medicinal raw material in European Pharmacopeia. However, whenever compared to LA in shared studies, it has shown similar effects (or even more pronounced in the case of biocidal activities). This suggests that lavandin has similar potential for use in medicine.
Collapse
Affiliation(s)
| | | | - Agnieszka Krajewska
- Department of Biotechnology and Food Science, Lodz University of Technology, 90-530 Lodz, Poland
| | - Ewa Maciejczyk
- Department of Biotechnology and Food Science, Lodz University of Technology, 90-530 Lodz, Poland
| | | |
Collapse
|
29
|
Pokajewicz K, Czarniecka-Wiera M, Krajewska A, Maciejczyk E, Wieczorek PP. Lavandula × intermedia-A Bastard Lavender or a Plant of Many Values? Part I. Biology and Chemical Composition of Lavandin. Molecules 2023; 28:2943. [PMID: 37049706 PMCID: PMC10096058 DOI: 10.3390/molecules28072943] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
This review article is the first in a series that provides an overview of the biology, chemistry, biological effects, and applications of Lavandula × intermedia (lavandin, LI). Despite its prevalence in cultivation and on the essential oil market, lavandin has received limited attention from the scientific community. Remarkably more attention is paid to Lavandula angustifolia (LA), which is commonly regarded as the superior lavender and has been extensively researched. Our goal is to provide a comprehensive review of LI, as none currently exists, and assess whether its inferior status is merited. In the first part, we outline the biological and chemical characteristics of the plant and compare it to the parent species. The chemical composition of lavandin oil is similar to that of LA but contains more terpenes, giving camphor notes that are less valued in perfumery. Nevertheless, lavandin has some advantages, including a higher essential oil yield, resulting in reduced production cost, and therefore, it is a preferred lavender crop for cultivation.
Collapse
Affiliation(s)
| | | | - Agnieszka Krajewska
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Science, Lodz University of Technology, 90-530 Łódź, Poland
| | - Ewa Maciejczyk
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Science, Lodz University of Technology, 90-530 Łódź, Poland
| | | |
Collapse
|
30
|
Ahmad S, Alrouji M, Alhajlah S, Alomeir O, Pandey RP, Ashraf MS, Ahmad S, Khan S. Secondary Metabolite Profiling, Antioxidant, Antidiabetic and Neuroprotective Activity of Cestrum nocturnum (Night Scented-Jasmine): Use of In Vitro and In Silico Approach in Determining the Potential Bioactive Compound. PLANTS (BASEL, SWITZERLAND) 2023; 12:1206. [PMID: 36986895 PMCID: PMC10051713 DOI: 10.3390/plants12061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
This study aims to describe the therapeutic potential of C. nocturnum leaf extracts against diabetes and neurological disorders via the targeting of α-amylase and acetylcholinesterase (AChE) activities, followed by computational molecular docking studies to establish a strong rationale behind the α-amylase and AChE inhibitory potential of C. nocturnum leaves-derived secondary metabolites. In our study, the antioxidant activity of the sequentially extracted C. nocturnum leaves extract was also investigated, in which the methanolic fraction exhibited the strongest antioxidant potential against DPPH (IC50 39.12 ± 0.53 µg/mL) and ABTS (IC50 20.94 ± 0.82 µg/mL) radicals. This extract strongly inhibited the α-amylase (IC50188.77 ± 1.67 µg/mL) and AChE (IC50 239.44 ± 0.93 µg/mL) in a non-competitive and competitive manner, respectively. Furthermore, in silico analysis of compounds identified in the methanolic extract of the leaves of C. nocturnum using GC-MS revealed high-affinity binding of these compounds with the catalytic sites of α-amylase and AChE, with binding energy ranging from -3.10 to -6.23 kcal/mol and from -3.32 to -8.76 kcal/mol, respectively. Conclusively, the antioxidant, antidiabetic, and anti-Alzheimer activity of this extract might be driven by the synergistic effect of these bioactive phytoconstituents.
Collapse
Affiliation(s)
- Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 2440, Saudi Arabia
| | - Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Sharif Alhajlah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Othman Alomeir
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | | | - Mohammad Saquib Ashraf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Riyadh ELM University, Riyadh 12734, Saudi Arabia
| | - Shafeeque Ahmad
- Department of Biochemistry, Noida International Institute of Medical Sciences, Noida International University, Gautam Budh Nagar 203 201, India
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Hail, Hail 2440, Saudi Arabia
| |
Collapse
|