1
|
Zhong Y, Jin C, Luo X, Huang J, Wu F, Chen H, Wang J, Tian M, Zhang H. PET molecular imaging-based prevention for brain aging. Eur J Nucl Med Mol Imaging 2025; 52:1611-1613. [PMID: 39789224 DOI: 10.1007/s00259-025-07068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Affiliation(s)
- Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, 310007, Hangzhou, China.
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, 310007, Hangzhou, China
| | - Xiaoyun Luo
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China
| | - Jiani Huang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China
| | - Fei Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China
| | - Hetian Chen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China.
- Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, 310009, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 310009, Hangzhou, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, 310007, Hangzhou, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, 310007, Hangzhou, China.
| |
Collapse
|
2
|
Li YQ, Tan SS, Wu D, Zhang Q, Wang T, Zheng G. The role of intracellular and extracellular copper compartmentalization in Alzheimer's disease pathology and its implications for diagnosis and therapy. Front Neurosci 2025; 19:1553064. [PMID: 40143849 PMCID: PMC11936913 DOI: 10.3389/fnins.2025.1553064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Copper is a trace element indispensable for cellular physiology, integral to cellular redox balance, and a constituent of enzyme active sites, thereby playing a pivotal role in cellular physiological function. Concerning the pathogenesis of Alzheimer's disease (AD), the homeostatic balance of copper is perturbed both intracellularly and extracellularly. The copper-amyloid precursor protein (APP) complex facilitates the efflux of copper from cells, leading to intracellular copper depletion. Concurrently, extracellular copper associates with amyloid-beta (Aβ) plaques, precipitating copper-enriched Aβ deposition and augmenting reactive oxygen species (ROS) in the brain tissue, which finally culminates in oxidative brain damage. The interaction between copper and APP enhances the α-secretase pathway of APP processing while suppressing the β-secretase pathway, resulting in an increased production of soluble APP (sAPP), which contributes to neuroinflammation in the brain tissue. Utilizing the affinity of copper for Aβ plaques, the application of chelating agents to sequester copper within the brain can mitigate neurodegeneration associated with AD pathology. Furthermore, the use of metal imaging techniques to detect copper in the brain offers a potential diagnostic tool for the early identification of AD.
Collapse
Affiliation(s)
- Yu-Qi Li
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- School of Military Preventive Medicine and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, China
| | - Shuang-Shuang Tan
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- School of Military Preventive Medicine and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, China
| | - Di Wu
- Research Institution, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Psychosomatic Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qian Zhang
- Center of Clinical Aerospace Medicine and Department of Aviation Medicine, Fourth Military Medical University, Xi’an, China
| | - Tao Wang
- School of Military Preventive Medicine and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, China
| | - Gang Zheng
- School of Military Preventive Medicine and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
3
|
Huang Y, Nishikawa Y, Mori T, Nogami M, Makino A, Kiyono Y, Toyama T, Okazawa H. Relationship between renal oxidative stress levels and disease severity in patients with chronic kidney disease assessed by [Cu-64]ATSM PET/MRI. Sci Rep 2025; 15:7227. [PMID: 40021767 PMCID: PMC11871321 DOI: 10.1038/s41598-024-85027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/30/2024] [Indexed: 03/03/2025] Open
Abstract
The purpose of the study was to investigate renal oxidative stress (OS) and its relationship with disease severity in patients with chronic kidney disease (CKD) using positron emission tomography coupled with magnetic resonance imaging (PET/MRI), employing 64Cu-diacetyl-bis(N4-methylthiosemicarbazonate) (64Cu-ATSM) as the PET tracer for OS imaging. Thirty patients with CKD (66.4 ± 8.2 y.o.) and seven healthy controls (HC) subjects (58.3 ± 3.8 y.o.) underwent 64Cu-ATSM PET/MRI. Participants were categorized into three groups based on their estimated glomerular filtration rate (eGFR): HC, mild CKD (stages 2-3a), and advanced CKD (stages 3b-5). All subjects underwent 30-min dynamic PET/MRI starting with the injection of 64Cu-ATSM to evaluate renal blood flow (RBF) and OS levels. RBF (mL/min/100 g) images were calculated from the first 3 min PET data, and standardized uptake value (SUV) images were obtained from delayed frames of 15-30 min after injection. The 64Cu-ATSM SUV images were corrected to RBF-adjusted SUV using individual RBF images to estimate the OS levels of individual kidneys using the following equation: adjusted OS index (aOSi) = (SUV/RBF)x100. Significant correlation was observed between eGFR and RBF (r = 0.81, P < 0.001). RBF in patients with advanced CKD is significantly lower than that in HC (P < 0.001) and patients with mild CKD (P = 0.004). 64Cu-ATSM SUV did not differ significantly among the three groups (P = 0.171). 64Cu-ATSM SUVs did not correlate with creatinine in the HC subjects or in the patients with CKD. However, these values did correlate with eGFR (r = 0.33, P = 0.049) in all subjects, whereas the CKD patients showed no significant correlation. Following RBF correction, the aOSi demonstrated significant correlations with creatinine (r = 0.75, P < 0.001), eGFR (r= -0.65, P < 0.001), and CKD stages (r = 0.57, P < 0.001) in all subjects. This preliminary study has revealed that 64Cu-ATSM PET may provide a estimate of renal OS reasonably in CKD patients noninvasively. Increased aOSi values were correlated with the CKD stages and creatinine levels, suggesting that OS increases with the severity of renal dysfunction.
Collapse
Affiliation(s)
- Ya'nan Huang
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China
| | - Yudai Nishikawa
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Munenobu Nogami
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Akira Makino
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Tadashi Toyama
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan.
| |
Collapse
|
4
|
Fujii H, Toyama H, Kayano D, Ishii K, Kinuya S. The 13th World Federation of Nuclear Medicine and Biology congress (WFNMB 2022): summarize the past half century and discuss the next half century of WFNMB. Ann Nucl Med 2025; 39:87-97. [PMID: 39621202 DOI: 10.1007/s12149-024-01999-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 02/06/2025]
Abstract
The 13th World Federation of Nuclear Medicine and Biology congress (WFNMB 2022) was held in Kyoto and Kanazawa, Japan in September 2022, approximately half a century after the first World Congress of Nuclear Medicine held in Tokyo and Kyoto, Japan. In this paper, we describe the road to hosting another WFNMB congress in Japan, including the historic election for WFNMB 2022, the state of WFNMB 2022 in Kyoto, and the post-congress symposium in Kanazawa. This congress, themed "Summarize the past half century and discuss the next half century of WFNMB," was successful and strongly encouraged doctors and researchers to develop future research and clinical practice in nuclear medicine.
Collapse
Affiliation(s)
- Hirofumi Fujii
- Japan Radioisotope Association, 2-28-45 Honkomagome, Bunkyo-ku, Tokyo, 113-8941, Japan.
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Daiki Kayano
- Department of Nuclear Medicine, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazunari Ishii
- Department of Radiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
5
|
Hilton JBW, Kysenius K, Liddell JR, Mercer SW, Rautengarten C, Hare DJ, Buncic G, Paul B, Murray SS, McLean CA, Kilpatrick TJ, Beckman JS, Ayton S, Bush AI, White AR, Roberts BR, Donnelly PS, Crouch PJ. Integrated elemental analysis supports targeting copper perturbations as a therapeutic strategy in multiple sclerosis. Neurotherapeutics 2024; 21:e00432. [PMID: 39164165 PMCID: PMC11579877 DOI: 10.1016/j.neurot.2024.e00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Multiple sclerosis (MS) is a debilitating affliction of the central nervous system (CNS) that involves demyelination of neuronal axons and neurodegeneration resulting in disability that becomes more pronounced in progressive forms of the disease. The involvement of neurodegeneration in MS underscores the need for effective neuroprotective approaches necessitating identification of new therapeutic targets. Herein, we applied an integrated elemental analysis workflow to human MS-affected spinal cord tissue utilising multiple inductively coupled plasma-mass spectrometry methodologies. These analyses revealed shifts in atomic copper as a notable aspect of disease. Complementary gene expression and biochemical analyses demonstrated that changes in copper levels coincided with altered expression of copper handling genes and downstream functionality of cuproenzymes. Copper-related problems observed in the human MS spinal cord were largely reproduced in the experimental autoimmune encephalomyelitis (EAE) mouse model during the acute phase of disease characterised by axonal demyelination, lesion formation, and motor neuron loss. Treatment of EAE mice with the CNS-permeant copper modulating compound CuII(atsm) resulted in recovery of cuproenzyme function, improved myelination and lesion volume, and neuroprotection. These findings support targeting copper perturbations as a therapeutic strategy for MS with CuII(atsm) showing initial promise.
Collapse
Affiliation(s)
- James B W Hilton
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Kai Kysenius
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia; Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Jeffrey R Liddell
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Stephen W Mercer
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia
| | | | - Dominic J Hare
- Atomic Medicine Initiative, University of Technology Sydney, Australia
| | - Gojko Buncic
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Bence Paul
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Victoria 3010, Australia; Elemental Scientific Lasers, LLC, 685 Old Buffalo Trail, Bozeman, MT 59715, United States
| | - Simon S Murray
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia
| | | | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Joseph S Beckman
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, 97331, United States
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Anthony R White
- Queensland Institute of Medical Research Berghofer, Herston, Queensland 4006, Australia
| | - Blaine R Roberts
- Department of Biochemistry, Emory University, Atlanta, GA 30322, United States
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Peter J Crouch
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
6
|
Hilton JBW, Kysenius K, Liddell JR, Mercer SW, Hare DJ, Buncic G, Paul B, Wang Y, Murray SS, Kilpatrick TJ, White AR, Donnelly PS, Crouch PJ. Evidence for decreased copper associated with demyelination in the corpus callosum of cuprizone-treated mice. Metallomics 2024; 16:mfad072. [PMID: 38178638 PMCID: PMC10797489 DOI: 10.1093/mtomcs/mfad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
Demyelination within the central nervous system (CNS) is a significant feature of debilitating neurological diseases such as multiple sclerosis and administering the copper-selective chelatorcuprizone to mice is widely used to model demyelination in vivo. Conspicuous demyelination within the corpus callosum is generally attributed to cuprizone's ability to restrict copper availability in this vulnerable brain region. However, the small number of studies that have assessed copper in brain tissue from cuprizone-treated mice have produced seemingly conflicting outcomes, leaving the role of CNS copper availability in demyelination unresolved. Herein we describe our assessment of copper concentrations in brain samples from mice treated with cuprizone for 40 d. Importantly, we applied an inductively coupled plasma mass spectrometry methodology that enabled assessment of copper partitioned into soluble and insoluble fractions within distinct brain regions, including the corpus callosum. Our results show that cuprizone-induced demyelination in the corpus callosum was associated with decreased soluble copper in this brain region. Insoluble copper in the corpus callosum was unaffected, as were pools of soluble and insoluble copper in other brain regions. Treatment with the blood-brain barrier permeant copper compound CuII(atsm) increased brain copper levels and this was most pronounced in the soluble fraction of the corpus callosum. This effect was associated with significant mitigation of cuprizone-induced demyelination. These results provide support for the involvement of decreased CNS copper availability in demyelination in the cuprizone model. Relevance to human demyelinating disease is discussed.
Collapse
Affiliation(s)
- James B W Hilton
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Kai Kysenius
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Jeffrey R Liddell
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Stephen W Mercer
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Dominic J Hare
- Atomic Medicine Initiative, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Gojko Buncic
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Bence Paul
- School of Earth Sciences, The University of Melbourne, Victoria 3010, Australia
| | - YouJia Wang
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Simon S Murray
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Trevor J Kilpatrick
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Anthony R White
- Queensland Institute of Medical Research Berghofer, Herston, Queensland 4006, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Peter J Crouch
- Department of Anatomy & Physiology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
7
|
Shinada M, Suzuki H, Hanyu M, Igarashi C, Matsumoto H, Takahashi M, Hihara F, Tachibana T, Sogawa C, Zhang MR, Higashi T, Sato H, Kurihara H, Yoshii Y, Doi Y. Trace Metal Impurities Effects on the Formation of [ 64Cu]Cu-diacetyl-bis( N4-methylthiosemicarbazone) ([ 64Cu]Cu-ATSM). Pharmaceuticals (Basel) 2023; 17:10. [PMID: 38275997 PMCID: PMC10821298 DOI: 10.3390/ph17010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
[64Cu]Cu-diacetyl-bis(N4-methylthiosemicarbazone) ([64Cu]Cu-ATSM) is a radioactive hypoxia-targeting therapeutic agent being investigated in clinical trials for malignant brain tumors. For the quality management of [64Cu]Cu-ATSM, understanding trace metal impurities' effects on the chelate formation of 64Cu and ATSM is important. In this study, we conducted coordination chemistry studies on metal-ATSM complexes. First, the effects of nonradioactive metal ions (Cu2+, Ni2+, Zn2+, and Fe2+) on the formation of [64Cu]Cu-ATSM were evaluated. When the amount of Cu2+ or Ni2+ added was 1.2 mol or 288 mol, equivalent to ATSM, the labeling yield of [64Cu]Cu-ATSM fell below 90%. Little effect was observed even when excess amounts of Zn2+ or Fe2+ were added to the ATSM. Second, these metals were reacted with ATSM, and chelate formation was measured using ultraviolet-visible (UV-Vis) absorption spectra. UV-Vis spectra showed a rapid formation of Cu2+ and the ATSM complex upon mixing. The rate of chelate formation by Ni2+ and ATSM was lower than that by Cu-ATSM. Zn2+ and Fe2+ showed much slower reactions with the ATSM than Ni2+. Trace amounts of Ni2+, Zn2+, and Fe2+ showed little effect on [64Cu]Cu-ATSM' quality, while the concentration of impurity Cu2+ must be controlled. These results can provide process management tools for radiopharmaceuticals.
Collapse
Affiliation(s)
- Mitsuhiro Shinada
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Hisashi Suzuki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Masayuki Hanyu
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Chika Igarashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Hiroki Matsumoto
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Masashi Takahashi
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Fukiko Hihara
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Tomoko Tachibana
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Chizuru Sogawa
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Ming-Rong Zhang
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Tatsuya Higashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Hidemitsu Sato
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Hiroaki Kurihara
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Yukie Yoshii
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Yoshihiro Doi
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
| |
Collapse
|
8
|
Billings JL, Hilton JBW, Liddell JR, Hare DJ, Crouch PJ. Fundamental Neurochemistry Review: Copper availability as a potential therapeutic target in progressive supranuclear palsy: Insight from other neurodegenerative diseases. J Neurochem 2023; 167:337-346. [PMID: 37800457 DOI: 10.1111/jnc.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
Since the first description of Parkinson's disease (PD) over two centuries ago, the recognition of rare types of atypical parkinsonism has introduced a spectrum of related PD-like diseases. Among these is progressive supranuclear palsy (PSP), a neurodegenerative condition that clinically differentiates through the presence of additional symptoms uncommon in PD. As with PD, the initial symptoms of PSP generally present in the sixth decade of life when the underpinning neurodegeneration is already significantly advanced. The causal trigger of neuronal cell loss in PSP is unknown and treatment options are consequently limited. However, converging lines of evidence from the distinct neurodegenerative conditions of PD and amyotrophic lateral sclerosis (ALS) are beginning to provide insights into potential commonalities in PSP pathology and opportunity for novel therapeutic intervention. These include accumulation of the high abundance cuproenzyme superoxide dismutase 1 (SOD1) in an aberrant copper-deficient state, associated evidence for altered availability of the essential micronutrient copper, and evidence for neuroprotection using compounds that can deliver available copper to the central nervous system. Herein, we discuss the existing evidence for SOD1 pathology and copper imbalance in PSP and speculate that treatments able to provide neuroprotection through manipulation of copper availability could be applicable to the treatment of PSP.
Collapse
Affiliation(s)
- Jessica L Billings
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - James B W Hilton
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Jeffrey R Liddell
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dominic J Hare
- School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Ultimo, New South Wales, Australia
| | - Peter J Crouch
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Nishikawa Y, Takahashi N, Nishikawa S, Shimamoto Y, Nishimori K, Kobayashi M, Kimura H, Tsujikawa T, Kasuno K, Mori T, Kiyono Y, Okazawa H, Iwano M. Feasibility of Renal Blood Flow Measurement Using 64Cu-ATSM PET/MRI: A Quantitative PET and MRI Study. Diagnostics (Basel) 2023; 13:diagnostics13101685. [PMID: 37238171 DOI: 10.3390/diagnostics13101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to evaluate the renal blood flow (RBF) in patients with chronic kidney disease (CKD) using 64Cu(II)-diacetyl-bis(4-methylthiosemicarbazonate) (64Cu-ATSM) for positron emission tomography (PET)/magnetic resonance imaging (MRI). We included five healthy controls (HCs) and ten patients with CKD. The estimated glomerular filtration rate (eGFR) was calculated from the serum creatinine (cr) and cystatin C (cys) levels. The estimated RBF (eRBF) was calculated using the eGFR, hematocrit, and filtration fraction. A single dose of 64Cu-ATSM (300-400 MBq) was administered for RBF evaluation, and a 40 min dynamic PET scan was performed with simultaneous arterial spin labeling (ASL) imaging. PET-RBF images were obtained from the dynamic PET images at 3 min after injection using the image-derived input function method. The mean eRBF values calculated from various eGFR values differed significantly between the patients and HCs; both groups also differed significantly in terms of the RBF values (mL/min/100 g) measured using PET (151 ± 20 vs. 124 ± 22, p < 0.05) and ASL-MRI (172 ± 38 vs. 125 ± 30, p < 0.001). The ASL-MRI-RBF was positively correlated with the eRBFcr-cys (r = 0.858, p < 0.001). The PET-RBF was positively correlated with the eRBFcr-cys (r = 0.893, p < 0.001). The ASL-RBF was positively correlated with the PET-RBF (r = 0.849, p < 0.001). 64Cu-ATSM PET/MRI demonstrated the reliability of PET-RBF and ASL-RBF by comparing them with eRBF. This is the first study to demonstrate that 64Cu-ATSM-PET is useful for assessing the RBF and is well correlated with ASL-MRI.
Collapse
Affiliation(s)
- Yudai Nishikawa
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Naoki Takahashi
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Sho Nishikawa
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Yuki Shimamoto
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kazuhisa Nishimori
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Mamiko Kobayashi
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Hideki Kimura
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kenji Kasuno
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| | - Masayuki Iwano
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
10
|
Hollen C, Neilson LE, Barajas RF, Greenhouse I, Spain RI. Oxidative stress in multiple sclerosis-Emerging imaging techniques. Front Neurol 2023; 13:1025659. [PMID: 36712455 PMCID: PMC9878592 DOI: 10.3389/fneur.2022.1025659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
While conventional magnetic resonance imaging (MRI) is central to the evaluation of patients with multiple sclerosis, its role in detecting the pathophysiology underlying neurodegeneration is more limited. One of the common outcome measures for progressive multiple sclerosis trials, atrophy on brain MRI, is non-specific and reflects end-stage changes after considerable neurodegeneration has occurred. Identifying biomarkers that identify processes underlying neurodegeneration before it is irreversible and that reflect relevant neurodegenerative pathophysiology is an area of significant need. Accumulating evidence suggests that oxidative stress plays a major role in the pathogenesis of multiple neurodegenerative diseases, including multiple sclerosis. Imaging markers related to inflammation, myelination, and neuronal integrity have been areas of advancement in recent years but oxidative stress has remained an area of unrealized potential. In this article we will begin by reviewing the role of oxidative stress in the pathogenesis of multiple sclerosis. Chronic inflammation appears to be directly related to the increased production of reactive oxygen species and the effects of subsequent oxidative stress appear to be amplified by aging and accumulating disease. We will then discuss techniques in development used in the assessment of MS as well as other models of neurodegenerative disease in which oxidative stress is implicated. Multiple blood and CSF markers of oxidative stress have been evaluated in subjects with MS, but non-invasive imaging offers major upside in that it provides real-time assessment within the brain.
Collapse
Affiliation(s)
- Christopher Hollen
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Lee E. Neilson
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Ramon F. Barajas
- Department of Radiology, Neuroradiology Section, Oregon Health & Sciences University, Portland, OR, United States
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Rebecca I. Spain
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| |
Collapse
|
11
|
Hsu YC, Chuang HC, Tsai KL, Tu TY, Shyong YJ, Kuo CH, Liu YF, Shih SS, Lin CL. Administration of N-Acetylcysteine to Regress the Fibrogenic and Proinflammatory Effects of Oxidative Stress in Hypertrophic Ligamentum Flavum Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1380353. [PMID: 36338342 PMCID: PMC9629932 DOI: 10.1155/2022/1380353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 03/22/2025]
Abstract
Ligamentum flavum hypertrophy (LFH) is a major cause of lumbar spinal stenosis (LSS). In hypertrophic ligamentum flavum (LF) cells, oxidative stress activates intracellular signaling and induces the expression of inflammatory and fibrotic markers. This study explored whether healthy and hypertrophic LF cells respond differently to oxidative stress, via examining the levels of phosphorylated p38 (p-p38), inducible nitric oxide synthase (iNOS), and α-smooth muscle actin (α-SMA). Furthermore, the efficacy of N-acetylcysteine (NAC), an antioxidant, in reversing the fibrogenic and proinflammatory effects of oxidative stress in hypertrophic LF cells was investigated by assessing the expression levels of p-p38, p-p65, iNOS, TGF-β, α-SMA, vimentin, and collagen I under H2O2 treatment with or without NAC. Under oxidative stress, p-p38 increased significantly in both hypertrophic and healthy LF cells, and iNOS was elevated in only the hypertrophic LF cells. This revealed that oxidative stress negatively affected both hypertrophic and healthy LF cells, with the hypertrophic LF cells exhibiting more active inflammation than did the healthy cells. After H2O2 treatment, p-p38, p-p65, iNOS, TGF-β, vimentin, and collagen I increased significantly, and NAC administration reversed the effects of oxidative stress. These results can form the basis of a novel therapeutic treatment for LFH using antioxidants.
Collapse
Affiliation(s)
- Yu-Chia Hsu
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Chun Chuang
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Jye Shyong
- Department of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Cheng-Hsiang Kuo
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Fu Liu
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Shien Shih
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Li Lin
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|