1
|
Mehany T, González-Sáiz JM, Pizarro C. Hydroxytyrosol-Infused Extra Virgin Olive Oil: A Key to Minimizing Oxidation, Boosting Antioxidant Potential, and Enhancing Physicochemical Stability During Frying. Antioxidants (Basel) 2025; 14:368. [PMID: 40227391 PMCID: PMC11939150 DOI: 10.3390/antiox14030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
The current research aims to monitor the physicochemical changes in various varieties of extra virgin olive oils (EVOOs) supplemented with exogenous polyphenolic extract from olive fruit, enriched with hydroxytyrosol (HTyr) and its derivatives, compared to numerous refined olive oils, sunflower oil, and high oleic sunflower oil under different deep-frying conditions (170-210 °C for 3 to 6 h, with/without added HTyr. Acidity, K232, K270, ∆K, peroxide value (PV), anisidine value (AnV), TOTOX, refractive index (RI), carotenoids, chlorophyll, and antioxidant capacity using DPPH (2,2-diphenyl-1-picrylhydrazyl) approach were evaluated. The results show that EVOO varieties generally exhibit lower acidity and thermal degradation compared to refined olive oils, particularly when deep-fried at 170 °C for 3 h with exogenous HTyr (the best treatment). Royuela, Koroneiki, Empeltre, Manzanilla, and Arbosana EVOO varieties demonstrated lower K232 values (1.36, 1.67, 1.79, 1.82, and 1.81, respectively). Under optimal deep-frying conditions, all EVOO varieties fell within the standard K232 limit for EVOO (≤2.5), except for Cornicabra. Regarding K270, only Royuela (0.11) and Manzanilla (0.22) were below the standard limit of ≤0.22. These two varieties also exhibited the lowest ΔK values (0.00). The findings further revealed that Royuela, Koroneiki, and Manzanilla had the lowest TOTOX values, with 20.76, 23.38, and 23.85, respectively. Moreover, Koroneiki and Arbosana had the highest carotenoid ratios, with values of 17.5 mg/kg and 13.7 mg/kg, respectively. Koroneiki, Arbosana, and olive oil 1° also displayed the highest chlorophyll concentrations, with values of 50.2, 53.7, and 47.5 mg/kg, respectively. Furthermore, the findings from the best deep-frying treatment indicated that all olive oil categories exhibited high scavenging radical activity toward DPPH, even in refined olive oil categories and low-quality original olive oil due to the addition of HTyr. In conclusion, deep-fried EVOOs enriched with HTyr at 170 °C/3 h are thermally stable, exhibiting low hydrolysis, low oxidation, higher antioxidant potential, and stable chlorophyll and carotenoid levels. The addition of HTyr to deep-frying oils not only enhances the health benefits of EVOO, supporting EFSA health claims but also acts as a promising stabilizer for the olive oil industry, particularly under high-temperature processing conditions over prolonged periods. This highlights its potential for industrial use as a natural alternative to synthetic antioxidants, not only for olive oil but also for other edible oils, with practical applications in the food industry to improve the quality and stability of frying oils.
Collapse
Affiliation(s)
| | | | - Consuelo Pizarro
- Department of Chemistry, University of La Rioja, 26006 Logroño, Spain; (T.M.); (J.M.G.-S.)
| |
Collapse
|
2
|
Lillis JB, Willmott AGB, Chichger H, Roberts JD. The Application of Olive-Derived Polyphenols on Exercise-Induced Inflammation: A Scoping Review. Nutrients 2025; 17:223. [PMID: 39861354 PMCID: PMC11767577 DOI: 10.3390/nu17020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES There is current scientific interest pertaining to the therapeutic effects of olive-derived polyphenols (ODPs), in particular their associated anti-inflammatory properties, following the wealth of research surrounding the physiological impact of the Mediterranean Diet (MD). Despite this association, the majority of the current literature investigates ODPs in conjunction with metabolic diseases. There is limited research focusing on ODPs and acute inflammation following exercise, regardless of the knowledge surrounding the elevated inflammatory response during this time. Therefore, the aim of this scoping review is to understand the impact ODPs may have on exercise-induced inflammation. METHODS This scoping review was undertaken in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScRs). The literature searches were conducted in PubMed and EBSCOhost and considered for review if records reported original data, examined olives, olive-derived nutrients, food sources, or ODPs in conjunction with exercise-induced inflammation (including known causes, associations, and proxy measures). RESULTS Seven studies investigated ODPs and exercise-induced inflammation, providing commentary on reduced oxidative stress, inflammatory biomarkers, and immune biomarkers, enhanced antioxidant defenses and modulations in mitochondrial function, albeit in low numbers. An average of 100.9 mg∙d-1 ODPs were supplemented for an average of 40 days, with hydroxytyrosol (HT) being the primary ODP investigated. Six studies employed individual aerobic exercise as their stimulus, whilst one study investigated the impact of an acute dose of ODP. CONCLUSIONS There is a limited consensus on the direction of isolated HT in human models, whereas animal models suggest a reduced inflammatory response following ≥2 weeks HT supplementation in conjunction with chronic exercise. Future research should initially investigate the inflammatory response of ODP, with particular focus on HT, and aim to identify an optimum dose and time course for supplementation surrounding exercise to support acute recovery and exercise adaptations.
Collapse
Affiliation(s)
- Joseph B. Lillis
- Cambridge Centre for Sport and Exercise Sciences (CCSES), Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; (A.G.B.W.); (J.D.R.)
| | - Ashley G. B. Willmott
- Cambridge Centre for Sport and Exercise Sciences (CCSES), Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; (A.G.B.W.); (J.D.R.)
| | - Havovi Chichger
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| | - Justin D. Roberts
- Cambridge Centre for Sport and Exercise Sciences (CCSES), Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; (A.G.B.W.); (J.D.R.)
| |
Collapse
|
3
|
Feng M, Li Y, Jiang Y, Zhao C. Hydroxytyrosol permeability comparisons and strategies to improve hydroxytyrosol stability in formulations. Int J Pharm 2024; 661:124434. [PMID: 38972523 DOI: 10.1016/j.ijpharm.2024.124434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
There has been a growing interest in hydroxytyrosol (HT) due to its powerful antioxidant and free-radical scavenging properties when added to formulations such as pharmaceuticals and cosmetics. To study the stability and transdermal properties of hydrogels and creams (HT-based formulations), a high-performance liquid chromatography method was developed for determining HT. In the Franz diffusion cell system, both hydrogel and cream show a rapid and similar penetration profile through the Bama miniature pig skin. However, the Strat-M® membrane exhibits slightly lower permeability and is selective to different formulations; that is, the cream has a permeability value of 10.69%, while the hydrogel has a value of 5.27%. The dynamics parameters from the permeation assays indicate that the model using the Strat-M® membrane can be used as a screening tool to evaluate the skin uptake and permeation efficacy of different formulations. Adding 3-O-ethyl-L-ascorbic acid to HT-based formulations can effectively prevent discoloration under prolonged high-temperature storage, while combining multiple antioxidants delays degradation most effectively. This study provides novel ideas for functional formulation optimization to enhance the realism and reproducibility of cosmetic products containing HT and provides scientific evidence for the production, packaging, shelf life, storage, and transportation of products.
Collapse
Affiliation(s)
- Mengmeng Feng
- Beijing Qingyan Boshi Health Management Co. Ltd., China
| | - Yize Li
- Beijing Qingyan Boshi Health Management Co. Ltd., China
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co. Ltd., China.
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co. Ltd., China.
| |
Collapse
|
4
|
Tang J, Wang J, Gong P, Zhang H, Zhang M, Qi C, Chen G, Wang C, Chen W. Biosynthesis and Biotechnological Synthesis of Hydroxytyrosol. Foods 2024; 13:1694. [PMID: 38890922 PMCID: PMC11171820 DOI: 10.3390/foods13111694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024] Open
Abstract
Hydroxytyrosol (HT), a plant-derived phenolic compound, is recognized for its potent antioxidant capabilities alongside a spectrum of pharmacological benefits, including anti-inflammatory, anti-cancer, anti-bacterial, and anti-viral properties. These attributes have propelled HT into the spotlight as a premier nutraceutical and food additive, heralding a new era in health and wellness applications. Traditional methods for HT production, encompassing physico-chemical techniques and plant extraction, are increasingly being supplanted by biotechnological approaches. These modern methodologies offer several advantages, notably environmental sustainability, safety, and cost-effectiveness, which align with current demands for green and efficient production processes. This review delves into the biosynthetic pathways of HT, highlighting the enzymatic steps involved and the pivotal role of genetic and metabolic engineering in enhancing HT yield. It also surveys the latest progress in the biotechnological synthesis of HT, examining innovative strategies that leverage both genetically modified and non-modified organisms. Furthermore, this review explores the burgeoning potential of HT as a nutraceutical, underscoring its diverse applications and the implications for human health. Through a detailed examination of both the biosynthesis and biotechnological advances in HT production, this review contributes valuable insights to the field, charting a course towards the sustainable and scalable production of this multifaceted compound.
Collapse
Affiliation(s)
- Jiali Tang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.T.); (J.W.); (P.G.); (H.Z.); (M.Z.); (C.W.)
| | - Jiaying Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.T.); (J.W.); (P.G.); (H.Z.); (M.Z.); (C.W.)
| | - Pengfei Gong
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.T.); (J.W.); (P.G.); (H.Z.); (M.Z.); (C.W.)
| | - Haijing Zhang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.T.); (J.W.); (P.G.); (H.Z.); (M.Z.); (C.W.)
| | - Mengyao Zhang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.T.); (J.W.); (P.G.); (H.Z.); (M.Z.); (C.W.)
| | - Chenchen Qi
- ACK Co., Ltd., Urumqi 830022, China; (C.Q.); (G.C.)
| | - Guohui Chen
- ACK Co., Ltd., Urumqi 830022, China; (C.Q.); (G.C.)
| | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.T.); (J.W.); (P.G.); (H.Z.); (M.Z.); (C.W.)
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.T.); (J.W.); (P.G.); (H.Z.); (M.Z.); (C.W.)
| |
Collapse
|
5
|
Kourti M, Skaperda Z, Tekos F, Stathopoulos P, Koutra C, Skaltsounis AL, Kouretas D. The Bioactivity of a Hydroxytyrosol-Enriched Extract Originated after Direct Hydrolysis of Olive Leaves from Greek Cultivars. Molecules 2024; 29:299. [PMID: 38257212 PMCID: PMC10818913 DOI: 10.3390/molecules29020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Nowadays, olive leaf polyphenols have been at the center of scientific interest due to their beneficial effects on human health. The most abundant polyphenol in olive leaves is oleuropein. The biological properties of oleuropein are mainly due to the hydroxytyrosol moiety, a drastic catechol group, whose biological activity has been mentioned many times in the literature. Hence, in recent years, many nutritional supplements, food products, and cosmetics enriched in hydroxytyrosol have been developed and marketed, with unexpectedly positive results. However, the concentration levels of hydroxytyrosol in olive leaves are low, as it depends on several agricultural factors. In this study, a rapid and easy methodology for the production of hydroxytyrosol-enriched extracts from olive leaves was described. The proposed method is based on the direct acidic hydrolysis of olive leaves, where the extraction procedure and the hydrolysis of oleuropein are carried out in one step. Furthermore, we tested the in vitro bioactivity of this extract using cell-free and cell-based methods, evaluating its antioxidant and DNA-protective properties. Our results showed that the hydroxytyrosol-enriched extract produced after direct hydrolysis of olive leaves exerted significant in vitro antioxidant and geno-protective activity, and potentially these extracts could have various applications in the pharmaceutical, food, and cosmetic industries.
Collapse
Affiliation(s)
- Maria Kourti
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (M.K.); (Z.S.); (F.T.)
| | - Zoi Skaperda
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (M.K.); (Z.S.); (F.T.)
| | - Fotios Tekos
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (M.K.); (Z.S.); (F.T.)
| | - Panagiotis Stathopoulos
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (P.S.); (C.K.); (A.L.S.)
| | - Christina Koutra
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (P.S.); (C.K.); (A.L.S.)
| | - Alexios Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (P.S.); (C.K.); (A.L.S.)
| | - Demetrios Kouretas
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (M.K.); (Z.S.); (F.T.)
| |
Collapse
|
6
|
Wang H, Wang L, Chen J, Hu M, Fang F, Zhou J. Promoting FADH 2 Regeneration of Hydroxylation for High-Level Production of Hydroxytyrosol from Glycerol in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16681-16690. [PMID: 37877749 DOI: 10.1021/acs.jafc.3c05477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Hydroxytyrosol is a natural polyphenolic compound widely used in the food and drug industries. The current commercial production of hydroxytyrosol relies mainly on plant extracts, which involve long extraction cycles and various raw materials. Microbial fermentation has potential value as an environmentally friendly and low-cost method. Here, a de novo biosynthetic pathway of hydroxytyrosol has been designed and constructed in an Escherichia coli strain with released tyrosine feedback inhibition. By introduction of hpaBC from E. coli and ARO10 and ADH6 from Saccharomyces cerevisiae, the de novo biosynthesis of hydroxytyrosol was achieved. An important finding in cofactor engineering is that the introduction of L-amino acid deaminase (LAAD) promotes not only cofactor regeneration but also metabolic flow redistribution. To further enhance the hydroxylation process, different 4-hydroxyphenylacetate 3-monooxygenase (hpaB) mutants and HpaBC proteins from different sources were screened. Finally, after optimization of the carbon source, pH, and seed medium, the optimum engineered strain produced 9.87 g/L hydroxytyrosol in a 5 L bioreactor. This represents the highest titer reported to date for de novo biosynthesis of hydroxytyrosol in microorganisms.
Collapse
Affiliation(s)
- Huijing Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lian Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jianbin Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Minglong Hu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Fang Fang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Fernández-Prior Á, Cardoso JC, Bermúdez-Oria A, Reyes ÁT, Fernández-Bolaños J, Rodríguez-Gutiérrez G. Application of a Cold-Pressing Treatment to Improve Virgin Olive Oil Production and the Antioxidant Phenolic Profile of Its by-Products. Antioxidants (Basel) 2023; 12:1162. [PMID: 37371892 DOI: 10.3390/antiox12061162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The olive oil sector is continuously evolving in order to improve the quality of olive oil and its by-products. In fact, the trend is to use increasingly greener olives to improve quality by decreasing the extraction yield, thus obtaining a higher content of antioxidant phenolics. The application of a cold-pressing system to the olive before the extraction of oil was tested with three varieties: picual at three different stages of maturity and arbequina and hojiblanca at early stages of maturity. The Abencor system was used for the extraction of virgin olive oil and its by-products. For the quantification of phenols and total sugars for all phases, organic solvent extractions and colorimetric measurements and high-performance liquid chromatography (HPLC) with a UV detector were used. The results show that the new treatment significantly improved the amount of oil extracted by between 1 and 2% and even increased its concentration of total phenols by up to 33%. Regarding the by-products, the concentrations of the main phenols, such as hydroxytyrosol, increased by almost 50%, as did the glycoside. The treatment also facilitated the separation of phases in by-products and improved the phenolic profile, although not in terms of total phenols, but individual phenols with higher antioxidant activity were obtained.
Collapse
Affiliation(s)
- África Fernández-Prior
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Juan Cubero Cardoso
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Alejandra Bermúdez-Oria
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Ángeles Trujillo Reyes
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Juan Fernández-Bolaños
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Guillermo Rodríguez-Gutiérrez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| |
Collapse
|
8
|
Arangia A, Marino Y, Impellizzeri D, D’Amico R, Cuzzocrea S, Di Paola R. Hydroxytyrosol and Its Potential Uses on Intestinal and Gastrointestinal Disease. Int J Mol Sci 2023; 24:ijms24043111. [PMID: 36834520 PMCID: PMC9964144 DOI: 10.3390/ijms24043111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, the phytoconstituents of foods in the Mediterranean diet (MD) have been the subject of several studies for their beneficial effects on human health. The traditional MD is described as a diet heavy in vegetable oils, fruits, nuts, and fish. The most studied element of MD is undoubtedly olive oil due precisely to its beneficial properties that make it an object of interest. Several studies have attributed these protective effects to hydroxytyrosol (HT), the main polyphenol contained in olive oil and leaves. HT has been shown to be able to modulate the oxidative and inflammatory process in numerous chronic disorders, including intestinal and gastrointestinal pathologies. To date, there is no paper that summarizes the role of HT in these disorders. This review provides an overview of the anti-inflammatory and antioxidant proprieties of HT against intestinal and gastrointestinal diseases.
Collapse
Affiliation(s)
- Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (R.D.); Tel.: +39-090-676-5208 (D.I. & R.D.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (R.D.); Tel.: +39-090-676-5208 (D.I. & R.D.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
9
|
Papageorgiou CS, Lymberopoulos S, Bakas P, Zagklis DP, Sygouni V, Paraskeva CA. Hydroxytyrosol Enrichment of Olive Leaf Extracts via Membrane Separation Processes. MEMBRANES 2022; 12:1027. [PMID: 36363582 PMCID: PMC9698498 DOI: 10.3390/membranes12111027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Antioxidants isolated from plant materials, such as phenolics, have attracted a lot of attention because of their potential uses. This contributes to the idea of the biorefinery, which is a way to produce useful products from biomass waste. Olea europaea byproducts have been extensively investigated for their large contents in phenolics. Oleuropein is a phenolic compound abundant in olive leaves, with its molecule containing hydroxytyrosol, elenolic acid, and glucose. In this work, olive leaf extracts were treated using different combinations of ultrafiltration and nanofiltration membranes to assess their capacity of facilitating the production of hydroxytyrosol-enriched solutions, either by separating the initially extracted oleuropein or by separating the hydroxytyrosol produced after a hydrolysis step. The best performance was observed when an ultrafiltration membrane (UP010, 10,000 Da) was followed by a nanofiltration membrane (TS40, 200-300 Da) for the treatment of the hydrolyzed extract, increasing the purity of the final product from 25% w/w of the total extracted compounds being hydroxytyrosol when membrane processes were not used to 68% w/w.
Collapse
Affiliation(s)
- Costas S. Papageorgiou
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, GR26504 Patras, Greece
| | - Stathis Lymberopoulos
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
| | - Panagiotis Bakas
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
| | - Dimitris P. Zagklis
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, GR26504 Patras, Greece
| | - Varvara Sygouni
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, GR26504 Patras, Greece
| | - Christakis A. Paraskeva
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, GR26504 Patras, Greece
| |
Collapse
|
10
|
Manthos G, Zagklis D, Papapanou M, Zafiri C, Kornaros M. High-rate in-vessel continuous composting of olive mill byproducts. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 151:105-112. [PMID: 35939949 DOI: 10.1016/j.wasman.2022.07.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The increasing production of agro-industrial organic residues in modern society is extremely concerning. One of the most polluting procedures in the agricultural industry is the production of olive oil. This process creates a large amount of waste with high organic load and phytotoxic components. In this study, composting of two-phase olive pomace (OP), olive leaves (OL) and dewatered anaerobic sludge (DAS) from an olive mill wastewater anaerobic digestion process was conducted in a pilot-scale in-vessel high-rate continuous composter. Five different feed scenarios were studied with different OP/OL ratio in the feed material, while the effect of the addition of pine tree bark pieces (PB) and DAS was examined. The OP:OL 95:5 % w/w ratio exhibited the best results in terms of product quality, while OL proved capable of acting as a bulking agent for the better aeration of the material. The final product in the optimum feed ratio was free of Salmonella spp., was stable in terms of static respiratory index (lower than 0.5 g O2 kg-1 VS h-1) but contained elevated E. coli levels (3.5 × 104 CFU g-1 with a limit of 1 × 103 CFU g-1), which was the only EU proposed compost quality criteria not met. The addition of a more easily degradable material in the feed mixture is expected to lead to elevated composting temperature and amend the presence of pathogens.
Collapse
Affiliation(s)
- Georgios Manthos
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str, 26504 Patras, Greece
| | - Dimitris Zagklis
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str, 26504 Patras, Greece
| | - Melina Papapanou
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str, 26504 Patras, Greece
| | | | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str, 26504 Patras, Greece.
| |
Collapse
|