1
|
He L, Edi S, Ma J, Kong Z, Dai C, Huang L, Zeng R, Gou K. Prevention and treatment of radiation injury by traditional Chinese medicine: A review. CHINESE HERBAL MEDICINES 2025; 17:220-234. [PMID: 40256708 PMCID: PMC12009072 DOI: 10.1016/j.chmed.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 09/12/2024] [Indexed: 04/22/2025] Open
Abstract
Nuclear radiation exposure events and tumor radiotherapy are highly susceptible to a range of psychological, physiological and other health problems, which can seriously affect patients' quality of life. It has been shown that 87.5 % of tumor patients are exposed to varying degrees of radiation injury during radiotherapy. The treatment of radiation injury (RI) in modern medicine is limited to drug therapy, cell therapy, etc. Among them, the most chemical drugs cause many adverse reactions including fatigue, nausea, vomiting, etc., and there are very few drugs dedicated to the treatment of RI. Traditional Chinese medicine (TCM) is a rich natural medicinal resource, which has a wide range of pharmacological activities, multiple targets of action and minimal toxic side effects. Many studies have demonstrated that TCM and its compound preparations have enormous potential in the treatment of radiation induced comprehensive diseases. However, TCM is limited in clinical application due to its slow onset of action, complex active ingredients, and low bioavailability. Therefore, the article reviews the application, molecular mechanisms, and new dosage forms of TCM in the prevention and treatment of RI. On this basis, we will focus on discussing the development advantages and application prospects of the combination of traditional Chinese and Western medicine to achieve highly efficient treatment of RI. This review aims to provide scientific and effective drug delivery strategies and basic theoretical support for the clinical effective treatment of RI with TCM, and further promote the innovative development of TCM.
Collapse
Affiliation(s)
- Lixue He
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Shixing Edi
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Jun Ma
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Zilin Kong
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Chunguang Dai
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation of National Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Rui Zeng
- School of Pharmacy, Southwest Minzu University, Chengdu 610225, China
- Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610225, China
| | - Kaijun Gou
- Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610225, China
| |
Collapse
|
2
|
Wang Y, Zhao D, Nong X. Artesunate alleviates radiation-induced submandibular gland epithelial cell damage in rats by reducing inflammation and apoptosis. Cell Biol Int 2025; 49:250-261. [PMID: 39607036 DOI: 10.1002/cbin.12261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Salivary hypofunction is a common complication in patients with head and neck cancers following radiotherapy (RT). RT-induced inflammation in salivary gland cells leads to apoptosis and fibrosis. Artesunate (ART) is a bioactive compound with anti-inflammatory and anti-fibrosis properties. This study aimed to investigate the protective effects of ART on X-ray-induced injury of submandibular gland (SMG) epithelial cells in rats. Second-generation SMG epithelial cells were randomly divided into five groups: natural control group (NC), irradiated group (IR), and irradiated groups treated with ART at concentrations of 5, 10, and 20 μM. Cells were harvested 48 h postirradiation for analysis. The results demonstrated that ART attenuated the damage to AQP5, a crucial indicator of salivary gland function, as evidenced by the decreased expression of AQP5 at both mRNA and protein levels. Additionally, ART decreased the expression of inflammatory cytokines: IL-6 and TNF-α. TUNEL staining revealed reduced apoptosis in the ART groups, particularly the IR + 10 μM group. RT-PCR and Western blot analysis of apoptosis cytokines Bax/Bcl-2 and Caspase-3 confirmed these findings. Furthermore, ART inhibited the expression of NF-κB at both mRNA and protein levels. In conclusion, these results suggest that ART may reduce inflammation and apoptosis in SMG epithelial cells following radiation by inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Yuchen Wang
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Danni Zhao
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Nong
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
| |
Collapse
|
3
|
Chen C, Amona FM, Chen J, Chen X, Ke Y, Tang S, Xu J, Chen X, Pang Y. Multifunctional SEBS/AgNWs Nanocomposite Films with Antimicrobial, Antioxidant, and Anti-Inflammatory Properties Promote Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61751-61764. [PMID: 39479988 DOI: 10.1021/acsami.4c15649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Wound healing is a complex biological process that can trigger inflammation and oxidative stress and impair myofibrillogenesis and angiogenesis. Several advanced wound-dressing nanocomposite materials have been designed to address these issues. Here, we designed a new multifunctional styrene-ethylene-butylene-styrene/silver nanowire (SEBS/AgNWs)-based nanocomposite film with antimicrobial, antioxidant, and anti-inflammatory properties to promote wound healing. The porous morphological structure of SEBS/AgNWs enhances their antimicrobial, antioxidant, and anti-inflammatory properties. SEBS/AgNWs significantly inhibited the growth of Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli strains, effectively wiping out ABTS•+, DPPH•, hydrogen peroxide (H2O2), and hydroxyl (•OH) radicals, showing their effective ROS-scavenging properties. It further showed significant antioxidant properties by increasing the levels of enzyme-like catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH), while decreasing malonaldehyde (MDA) levels. Additionally, SEBS/AgNWs reduced the expression of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), while increasing levels of transforming growth factor- β (TGF-β), vascular endothelial growth factor-A (VEGF), and CD31 in wound healing. This suggests that applying a multifunctional nanoplatform based on SEBS/AgNWs could enhance wound healing and improve patient outcomes in wound care management.
Collapse
Affiliation(s)
- Chen Chen
- College of Hydraulic Engineering Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221000, China
- College of Water Resources and Hydropower Engineering, Yangzhou University, Yangzhou 225009, China
| | - Fructueux Modeste Amona
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Junhao Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiaohan Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yongding Ke
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Shuangcheng Tang
- College of Water Resources and Hydropower Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jinming Xu
- College of Water Resources and Hydropower Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
4
|
Wang N, Zuo Z, Meng T, Liu Y, Zheng X, Ma Y. Salidroside alleviates simulated microgravity-induced bone loss by activating the Nrf2/HO-1 pathway. J Orthop Surg Res 2024; 19:531. [PMID: 39218922 PMCID: PMC11367893 DOI: 10.1186/s13018-024-05030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Bone loss caused by microgravity exposure presents a serious threat to the health of astronauts, but existing treatment strategies have specific restrictions. This research aimed to investigate whether salidroside (SAL) can mitigate microgravity-induced bone loss and its underlying mechanism. METHODS In this research, we used hindlimb unloading (HLU) and the Rotary Cell Culture System (RCCS) to imitate microgravity in vivo and in vitro. RESULTS The results showed that salidroside primarily enhances bone density, microstructure, and biomechanical properties by stimulating bone formation and suppressing bone resorption, thereby preserving bone mass in HLU rats. In MC3T3-E1 cells cultured under simulated microgravity in rotary wall vessel bioreactors, the expression of osteogenic genes significantly increased after salidroside administration, indicating that salidroside can promote osteoblast differentiation under microgravity conditions. Furthermore, the Nrf2 inhibitor ML385 diminished the therapeutic impact of salidroside on microgravity-induced bone loss. Overall, this research provides the first evidence that salidroside can mitigate bone loss induced by microgravity exposure through stimulating the Nrf2/HO-1 pathway. CONCLUSION These findings indicate that salidroside has great potential for treating space-related bone loss in astronauts and suggest that Nrf2/HO-1 is a viable target for counteracting microgravity-induced bone damage.
Collapse
Affiliation(s)
- Nan Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhuan Zuo
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Meng
- Department of Orthopedic Surgery, Xi'an City First Hospital, Xi'an, China
| | - Yuliang Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiwei Zheng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongsheng Ma
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
5
|
Yuan T, Wang T, Zhang J, Ye F, Gu Z, Li Y, Xu J. Functional Polyphenol-Based Nanoparticles Boosted the Neuroprotective Effect of Riluzole for Acute Spinal Cord Injury. Biomacromolecules 2024; 25:2607-2620. [PMID: 38530873 DOI: 10.1021/acs.biomac.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Riluzole is commonly used as a neuroprotective agent for treating traumatic spinal cord injury (SCI), which works by blocking the influx of sodium and calcium ions and reducing glutamate activity. However, its clinical application is limited because of its poor solubility, short half-life, potential organ toxicity, and insufficient bioabilities toward upregulated inflammation and oxidative stress levels. To address this issue, epigallocatechin gallate (EGCG), a natural polyphenol, was employed to fabricate nanoparticles (NPs) with riluzole to enhance the neuroprotective effects. The resulting NPs demonstrated good biocompatibility, excellent antioxidative properties, and promising regulation effects from the M1 to M2 macrophages. Furthermore, an in vivo SCI model was successfully established, and NPs could be obviously aggregated at the SCI site. More interestingly, excellent neuroprotective properties of NPs through regulating the levels of oxidative stress, inflammation, and ion channels could be fully demonstrated in vivo by RNA sequencing and sophisticated biochemistry evaluations. Together, the work provided new opportunities toward the design and fabrication of robust and multifunctional NPs for oxidative stress and inflammation-related diseases via biological integration of natural polyphenols and small-molecule drugs.
Collapse
Affiliation(s)
- Taoyang Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Ye
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Yang L, Ma J, Lei P, Yi J, Ma Y, Huang Z, Wang T, Ping H, Ruan D, Sun D, Pan H. Advances in Antioxidant Applications for Combating 131I Side Effects in Thyroid Cancer Treatment. TOXICS 2023; 11:529. [PMID: 37368629 DOI: 10.3390/toxics11060529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Thyroid cancer is the most common endocrine cancer, and its prevalence has been increasing for decades. Approx. 95% of differentiated thyroid carcinomas are treated using 131iodine (131I), a radionuclide with a half-life of 8 days, to achieve optimal thyroid residual ablation following thyroidectomy. However, while 131I is highly enriched in eliminating thyroid tissue, it can also retain and damage other body parts (salivary glands, liver, etc.) without selectivity, and even trigger salivary gland dysfunction, secondary cancer, and other side effects. A significant amount of data suggests that the primary mechanism for these side effects is the excessive production of reactive oxygen species, causing a severe imbalance of oxidant/antioxidant in the cellular components, resulting in secondary DNA damage and abnormal vascular permeability. Antioxidants are substances that are capable of binding free radicals and reducing or preventing the oxidation of the substrate in a significant way. These compounds can help prevent damage caused by free radicals, which can attack lipids, protein amino acids, polyunsaturated fatty acids, and double bonds of DNA bases. Based on this, the rational utilization of the free radical scavenging function of antioxidants to maximize a reduction in 131I side effects is a promising medical strategy. This review provides an overview of the side effects of 131I, the mechanisms by which 131I causes oxidative stress-mediated damage, and the potential of natural and synthetic antioxidants in ameliorating the side effects of 131I. Finally, the disadvantages of the clinical application of antioxidants and their improving strategies are prospected. Clinicians and nursing staff can use this information to alleviate 131I side effects in the future, both effectively and reasonably.
Collapse
Affiliation(s)
- Li Yang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Zhongke Huang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Tingjue Wang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Haiyan Ping
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Danping Ruan
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Hongying Pan
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
7
|
Bao X, Liu X, Wu Q, Ye F, Shi Z, Xu D, Zhang J, Dou Z, Huang G, Zhang H, Sun C. Mitochondrial-Targeted Antioxidant MitoQ-Mediated Autophagy: A Novel Strategy for Precise Radiation Protection. Antioxidants (Basel) 2023; 12:antiox12020453. [PMID: 36830013 PMCID: PMC9952602 DOI: 10.3390/antiox12020453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Radiotherapy (RT) is one of the most effective cancer treatments. However, successful radiation protection for normal tissue is a clinical challenge. Our previous study observed that MitoQ, a mitochondria-targeted antioxidant, was adsorbed to the inner mitochondrial membrane and remained the cationic moiety in the intermembrane space. The positive charges in MitoQ restrained the activity of respiratory chain complexes and decreased proton production. Therefore, a pseudo-mitochondrial membrane potential (PMMP) was developed via maintenance of exogenous positive charges. This study identified that PMMP constructed by MitoQ could effectively inhibit mitochondrial respiration within normal cells, disrupt energy metabolism, and activate adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling to induce autophagy. As such, it could not lead to starvation-induced autophagy among tumor cells due to the different energy phenotypes between normal and tumor cells (normal cells depend on mitochondrial respiration for energy supply, while tumor cells rely on aerobic glycolysis). Therefore, we successfully protected the normal cells from radiation-induced damage without affecting the tumor-killing efficacy of radiation by utilizing selective autophagy. MitoQ-constructed PMMP provides a new therapeutic strategy for specific radiation protection.
Collapse
Affiliation(s)
- Xingting Bao
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiongxiong Liu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qingfeng Wu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fei Ye
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zheng Shi
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dan Xu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhihui Dou
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Guomin Huang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hong Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
- Correspondence: (H.Z.); (C.S.); Tel.: +86-(931)-519-6126 (H.Z.); +86-(931)-519-6027 (C.S.)
| | - Chao Sun
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
- Correspondence: (H.Z.); (C.S.); Tel.: +86-(931)-519-6126 (H.Z.); +86-(931)-519-6027 (C.S.)
| |
Collapse
|