1
|
Lin X, Zhou X, Liu X, Xia L, Cai J, Huang N, Luo Y, Wu W. Icaritin alleviates motor impairment and osteoporosis in Parkinson's disease mice via the ER-PI3K/Akt pathway. Sci Rep 2025; 15:3190. [PMID: 39863664 PMCID: PMC11762315 DOI: 10.1038/s41598-025-87429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
This study investigates the role of flavonoid Icaritin (ICT) in estrogen-deficient ovariectomized (OVX) female mice by activating the Estrogen receptor (ER)/ Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, potentially delaying Parkinson's disease (PD) progression post-castration. Seventy-five 8-week-old C57BL/6J female mice underwent ovariectomy, followed by MPTP (20 mg/kg) injection for 7 days. ICT (20 mg/kg) was administered for 14 days, and motor function was assessed using various behavioral tests. Serum estradiol, FSH, LH levels were measured by ELISA, and the expression of PI3K/Akt signaling and apoptosis proteins was analyzed by Western blot. Bone mineral density was assessed via dual-energy X-ray absorption, and histology of the uterus and femur was performed. Results showed that ICT alleviated MPTP-induced motor deficits, increased serum estradiol, and improved uterine atrophy. At the molecular level, ICT activated the PI3K/Akt pathway, reduced apoptosis, and mitigated PD symptoms and osteoporosis induced by OVX. These findings suggest ICT may offer therapeutic potential in managing OVX-induced motor dysfunction and PD.
Collapse
Affiliation(s)
- Xianmei Lin
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Xinyu Zhou
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 56300, Guizhou, China
| | - Xingman Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Lingqiong Xia
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 56300, Guizhou, China
| | - Jing Cai
- Department of Neurology, First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Nanqu Huang
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 56300, Guizhou, China.
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi, Guizhou, China.
- Department of Geriatrics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| | - Yong Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 56300, Guizhou, China.
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi, Guizhou, China.
- Department of Geriatrics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| | - Weidong Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China.
| |
Collapse
|
2
|
Memudu AE, Olukade BA, Adebayo OS, Raza ML. Coffee and amyotrophic lateral sclerosis (ALS). PROGRESS IN BRAIN RESEARCH 2024; 289:81-105. [PMID: 39168583 DOI: 10.1016/bs.pbr.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by progressive loss of motor neurons. The effective treatments for ALS remain elusive, necessitating exploration into novel preventive strategies. ALS pathogenesis is triggered by oxidative stress which results in neuroinflammation, exicitotoxicity and neuronal cell death. Nutritional mechanism for halting progression of neurodegeneration is through dietary compounds with antioxidants, anti-inflammatory or neuromodulating activity. Coffee is a widely consumed beverage made up of polyphenols, caffeine and other compounds with possible antioxidants and neuro-protective roles. It is important to say that various epidemiological studies have documented association between coffee intake and ALS. This chapter is aimed to present a comprehensive review of existing literature on coffee consumption and ALS, involving epidemiological studies, preclinical research, and its mechanism of actions in animal model of ALS. It highlights key findings regarding the potential neuroprotective properties of coffee constituents such as caffeine, polyphenols, and other bioactive compounds. Furthermore, it discusses possible pathways through which coffee may modulate ALS pathogenesis, including suppressing oxidative stress and neuroinflammation while boosting adenosine function via the adenosine receptor two on the motor neuron cells membrane in the spinal cord to enhance motor function via the corticospinal tract. Overall, this chapter underscores the significance of further research to unravel the specific mechanisms by which coffee exerts its neuroprotective effects in ALS, with the ultimate goal of identifying dietary strategies for ALS prevention and management.
Collapse
Affiliation(s)
- Adejoke Elizabeth Memudu
- Anatomy Department, Neuroscience Unit, Faculty of Basic Medical Sciences Edo State University Uzairue, Edo State, Nigeria.
| | - Baliqis Adejoke Olukade
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer Institute, University of South Florida, Tampa, FL, United States
| | | | - Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Bicknell B, Liebert A, Herkes G. Parkinson's Disease and Photobiomodulation: Potential for Treatment. J Pers Med 2024; 14:112. [PMID: 38276234 PMCID: PMC10819946 DOI: 10.3390/jpm14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease and is increasing in incidence. The combination of motor and non-motor symptoms makes this a devastating disease for people with Parkinson's disease and their care givers. Parkinson's disease is characterised by mitochondrial dysfunction and neuronal death in the substantia nigra, a reduction in dopamine, accumulation of α-synuclein aggregates and neuroinflammation. The microbiome-gut-brain axis is also important in Parkinson's disease, involved in the spread of inflammation and aggregated α-synuclein. The mainstay of Parkinson's disease treatment is dopamine replacement therapy, which can reduce some of the motor signs. There is a need for additional treatment options to supplement available medications. Photobiomodulation (PBM) is a form of light therapy that has been shown to have multiple clinical benefits due to its enhancement of the mitochondrial electron transport chain and the subsequent increase in mitochondrial membrane potential and ATP production. PBM also modulates cellular signalling and has been shown to reduce inflammation. Clinically, PBM has been used for decades to improve wound healing, treat pain, reduce swelling and heal deep tissues. Pre-clinical experiments have indicated that PBM has the potential to improve the clinical signs of Parkinson's disease and to provide neuroprotection. This effect is seen whether the PBM is directed to the head of the animal or to other parts of the body (remotely). A small number of clinical trials has given weight to the possibility that using PBM can improve both motor and non-motor clinical signs and symptoms of Parkinson's disease and may potentially slow its progression.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead 2145, Australia;
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead 2145, Australia;
- Sydney Adventist Hospital, Wahroonga 2076, Australia
- Faculty of medicine and Health, Sydney University, Camperdown 2050, Australia
| | - Geoffrey Herkes
- Neurologist, Sydney Adventist Hospital, Wahroonga 2076, Australia;
- College of Health and Medicine, Australian National University, Canberra 2600, Australia
| |
Collapse
|
4
|
Huang Y, Chen Q, Wang Z, Wang Y, Lian A, Zhou Q, Zhao G, Xia K, Tang B, Li B, Li J. Risk factors associated with age at onset of Parkinson's disease in the UK Biobank. NPJ Parkinsons Dis 2024; 10:3. [PMID: 38167894 PMCID: PMC10762149 DOI: 10.1038/s41531-023-00623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Substantial evidence shown that the age at onset (AAO) of Parkinson's disease (PD) is a major determinant of clinical heterogeneity. However, the mechanisms underlying heterogeneity in the AAO remain unclear. To investigate the risk factors with the AAO of PD, a total of 3156 patients with PD from the UK Biobank were included in this study. We evaluated the effects of polygenic risk scores (PRS), nongenetic risk factors, and their interaction on the AAO using Mann-Whitney U tests and regression analyses. We further identified the genes interacting with nongenetic risk factors for the AAO using genome-wide environment interaction studies. We newly found physical activity (P < 0.0001) was positively associated with AAO and excessive daytime sleepiness (P < 0.0001) was negatively associated with AAO, and reproduced the positive associations of smoking and non-steroidal anti-inflammatory drug intake and the negative association of family history with AAO. In the dose-dependent analyses, smoking duration (P = 1.95 × 10-6), coffee consumption (P = 0.0150), and tea consumption (P = 0.0008) were positively associated with AAO. Individuals with higher PRS had younger AAO (P = 3.91 × 10-5). In addition, we observed a significant interaction between the PRS and smoking for AAO (P = 0.0316). Specifically, several genes, including ANGPT1 (P = 7.17 × 10-7) and PLEKHA6 (P = 4.87 × 10-6), may influence the positive relationship between smoking and AAO. Our data suggests that genetic and nongenetic risk factors are associated with the AAO of PD and that there is an interaction between the two.
Collapse
Affiliation(s)
- Yuanfeng Huang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
| | - Qian Chen
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zheng Wang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yijing Wang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
| | - Aojie Lian
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan, China
| | - Qiao Zhou
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
| | - Guihu Zhao
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Kun Xia
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China
| | - Beisha Tang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China
| | - Bin Li
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Jinchen Li
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|