1
|
Yang J, Lin J, Chen X, Li C, Wang Y, Xie J. Tailored strategies based on polysaccharide structural and functional properties for nutrients delivery in inflammatory bowel disease. Carbohydr Polym 2025; 351:123129. [PMID: 39779033 DOI: 10.1016/j.carbpol.2024.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025]
Abstract
Many food nutrients suffer from a series of limitations such as poor water solubility, low stability and inadequate bioavailability. These challenges can be effectively improved by food-based delivery systems (FDSs). FDSs are a series of functional carriers developed based on food-borne macromolecules. Natural polysaccharides are widely used in FDSs due to their good bioactivity, functional properties, and biocompatibility. The complex structural and physicochemical properties of polysaccharides have led to the extremely diverse development of FDSs based on polysaccharides. This review summarizes the application of natural polysaccharides from different sources in the development of different types of FDSs and their functional properties. It also emphasizes the feasibility and theoretical strategies to tailor satisfactory properties (shape, size, surface charge and targeting properties) of polysaccharides-based oral delivery systems (PODS) based on the diverse structural characteristics (e.g., solubility, ion type, molecular weight) and bioactivities of polysaccharides. PODS are designed to meet the diverse requirements in term of stability, toxicity, adhesion, cellular uptake, retention time and release behavior. This review also discusses the advantages of PODS in addressing nutrient deficiencies in gastrointestinal environment, with a focus on their role in nutritional interventions for inflammatory bowel disease. This review contributed to the development for novel PODS with specific demand.
Collapse
Affiliation(s)
- Jun Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Jieqiong Lin
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
2
|
Barroso NG, Martins AJ, Júnior FDO, Okuro PK, Pereira RC, Vicente AA, Pastrana LM, Cunha RL, Cerqueira MA. β-carotene and resveratrol loaded glycerol monostearate-based oleogels: Physicochemical characterization at low gelation concentrations. Food Res Int 2024; 197:115181. [PMID: 39593392 DOI: 10.1016/j.foodres.2024.115181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 11/28/2024]
Abstract
Oleogels are semi-solid systems that can function both as replacers of trans and saturated fats and/or as carriers of lipophilic bioactive compounds. However, bioactive compounds can affect the structure of the oleogel matrix and this effect depends on the properties of such compounds. Therefore, the aim of this study was to develop oleogels loaded with β-carotene (BC) or resveratrol (R), with low concentrations of glycerol monostearate (GMS, 2-5 wt%) and sunflower oil as organic solvent. The gels were characterized by polarized light microscopy, rheological measurements, differential scanning calorimetry, oil binding capacity and Fourier transform infrared spectroscopy. At higher GMS concentrations, stronger oleogels and higher temperatures associated with transitions (sol-gel/gel-sol and crystallization/melting) were observed. The incorporation of bioactive compounds modified the gelation behavior. BC weakened the oleogel structure during the transient molecular organization of GMS, whereas R increased the dynamic moduli. BC also caused slight oil release at lower concentrations, while R improved retention. The high hydrophobicity of BC may be disturbing the solubility balance of the system, while R has phenolic hydroxyl groups that may strengthen hydrogen bonds. However, there were no considerable changes in mechanical properties after storage. We hypothesize that the molecular organization of GMS over time may be masking the modifications that bioactive compounds cause in mechanical properties. In fact, changes in the structure were revealed, as the addition of BC or R changed the morphology of the three-dimensional network crystals. Thus, the results can contribute to the rational choice of system components using low concentrations of oleogelator, as the composition of the bioactive compound exerts influence on the modulation of lipid matrices.
Collapse
Affiliation(s)
- Noádia G Barroso
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Artur J Martins
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Fernando D O Júnior
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Paula K Okuro
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Rui C Pereira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - António A Vicente
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Rosiane L Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| |
Collapse
|
3
|
Li X, Xiao X, Zhang Y, Long R, Kankala RK, Wang S, Liu Y. Microneedles based on hyaluronic acid-polyvinyl alcohol with antibacterial, anti-inflammatory, and antioxidant effects promote diabetic wound healing. Int J Biol Macromol 2024; 282:137185. [PMID: 39489235 DOI: 10.1016/j.ijbiomac.2024.137185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/19/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Diabetic wound healing has become one of the major clinical burdens due to uncontrolled bacterial growth and an increase in the risk of various microbial infections. Despite excellent antioxidant properties, the poor aqueous solubility of resveratrol (RES) hampers its applicability. In this study, we proposed a novel multifunctional microneedle patch loaded with RES-encapsulated polymeric micelles. Resveratrol micelles (RES MC) were loaded in the microneedle tip, while the base part was coated with the antibiotic gentamicin (GEN) to promote wound healing. The microneedle tip composed of sodium hyaluronate (HA) could effectively deliver the anti-inflammatory and antioxidant RES MC. Furthermore, the base of the microneedle patch composed of polyvinyl alcohol (PVA) offered excellent flexibility, releasing GEN and providing resistance to bacterial contamination, thereby further promoting wound repair. In vitro antibacterial experiments indicated that the bactericidal rate reached 99 %. Further, the wound healing rate was recorded as 86.05 % on the 11th day of diabetes wound treatment. Together, the multifunctional microneedle patch with excellent biocompatibility exhibited anti-inflammatory, antioxidant, and antibacterial effects on the wound healing process, potentiating its efficacy in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Xuemei Li
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xi Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Yiheng Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | | | - Shibin Wang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China.
| |
Collapse
|
4
|
Wang CC, Yang BQ, Feng R, Tao H, Xu BC, Zhang B. Nanoparticles prepared with biotin-esterified debranched starch as an oral carrier to improve the stability and antioxidant activity of resveratrol. Int J Biol Macromol 2024; 278:134543. [PMID: 39111511 DOI: 10.1016/j.ijbiomac.2024.134543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
In this study, biotin esterified debranched starch (Bio-DBS) nanoparticles with different molecular weights were prepared to improve the stability and antioxidant activity of resveratrol. The molecular weights of branched starch (DBS3, DBS9 and DBSp) determined by high-performance size-exclusion chromatography (HPSEC) were 3306, 3696, and 4688, respectively. Biotin was covalently coupled to DBS through the esterification reaction as a new material to prepare nanoparticles. The morphology, particle size, and loading capacity of Bio-DBS nanoparticles were all related to the molecular weights of DBS. The 1H NMR results indicated that there was a hydrogen bonding interaction between Bio-DBS and resveratrol, which contributed to the photochemical and antioxidant activity of resveratrol in the nanoparticles. The highest encapsulation efficiency (78.9 %) and loading capacity (15.78 %) of resveratrol were observed in Bio-DBS3 nanoparticles. Additionally, the cell viability was over 80 % when the concentration of Bio-DBS3 reached to 200 μg/mL. The Bio-DBS nanoparticles significantly improved the thermal stability, photostability, and antioxidant properties of resveratrol. Therefore, the Bio-DBS nanoparticles prepared in this study can be used as a promising carrier to improve the stability and antioxidant activity of resveratrol and may have potential applications in oral delivery.
Collapse
Affiliation(s)
- Chen-Chen Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Bao-Qiu Yang
- Xinjiang Production & Construction Group Key Laboratory of Agricultural Products Processing in Xinjiang South, College of Food Science and Engineering, Tarim University, Alar 843300, Xinjiang Province, PR China
| | - Ran Feng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| | - Bao-Cai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|
5
|
Wu JP, Xiaoning Z, Xiaoqing L, Jie Z, Qian-Cheng Z. Resveratrol Supplements Reduce the Risk of Aging-Related Cardiac Disease after Cardiorespiratory Fitness. RESVERATROL - RECENT ADVANCES, APPLICATION, AND THERAPEUTIC POTENTIAL 2024. [DOI: 10.5772/intechopen.109612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Aging changes in the very elderly cardiac disease are associated with physiological and pathological changes, however, all observed changes in aging are associated with a deterioration of cardiorespiratory fitness function. For example, hypertension and cardiorespiratory disease make difficult distinctions between normal aging changes and the effects of underlying resveratrol supplements processes. Cardiorespiratory fitness-independent changes in resveratrol intake are still unclear. This review aimed to discuss whether the aging-associated cardiorespiratory fitness changes in the heart can be reversed by resveratrol supplements, and the mechanisms of cardiorespiratory fitness. Aging led to apoptosis and fibrosis-related protein expression increased, however, cardiorespiratory fitness had revered more functions. Resveratrol supplements in combination with cardiorespiratory fitness had a good enhanced mitochondrial function in aging including IL-6, STAT3, MEK5, and MEK1/ERK1 increased. Resveratrol supplements also induced survival signals and downregulation of apoptosis signaling in aging. Therefore, we suggest resveratrol has enhanced cardiorespiratory fitness to combine their function in repressed aging.
Collapse
|
6
|
Zhang Z, Chang R, Yue Q, Liu B, Li Z, Yuan Y, Liang S, Li Y. Nanoparticle delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:51-88. [PMID: 39218508 DOI: 10.1016/bs.afnr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Foodborne functional substances have received much attention for their functional benefits in health and disease. However, these substances are easily affected by the adverse environment during production, transportation, or storage. They will also be damaged by the gastric environment and limited by the mucosal barrier after entering the human body, thus affecting the bioavailability of functional substances in the body. The construction of nanoparticle delivery systems is helpful to protect the biological activity of functional substances and improve their solubility, stability, and absorption of substances. Responsive delivery systems help control the release of functional substances in specific environments and targeted sites to achieve nutritional intervention, disease prevention, and treatment. In this chapter, the main types of foodborne functional substances and their commonly used delivery systems were reviewed, and the application of delivery systems in precision nutrition was described from the aspects of environmental stimuli-responsive delivery systems, site-specific delivery systems, and disease-targeted delivery systems.
Collapse
Affiliation(s)
- Ziyi Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Ruxin Chang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Qing Yue
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, P.R. China
| | - Zekun Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Yu Yuan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Shuang Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, P.R. China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
7
|
Yin Z, Sun X, Chai X, Zhou X, Wang Y, Liu M, Feng X. The Effects of Dietary Pterostilbene on the Immune Response, Antioxidant Function, and Jejunal Structure of Broilers. Animals (Basel) 2024; 14:1851. [PMID: 38997964 PMCID: PMC11240711 DOI: 10.3390/ani14131851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
This experiment was carried out to investigate the effect of pterostilbene (PTE) supplementation in feed on Arbor Acres broilers in terms of serum biochemical parameters, immune and inflammatory responses, antioxidant status, and intestinal morphological structure. For a duration of 42 days, a total of 480 1-day-old Arbor Acres broilers were randomly divided into four groups. Each group was assigned to receive either the basal diet or the basal diet supplemented with 200, 400, or 600 mg/kg of PTE. Each treatment consisted of eight replicates, with 15 chicks per replicate. In comparison with the control group, three PTE treatments significantly increased the lymphocyte transformation rate in the spleen of broilers. The automated biochemical analysis, enzyme-linked immunosorbent assay, and RT-qPCR analysis kits found that 400 mg/kg of PTE significantly increased the serum levels of complement C3, IL-4, and iNOS; reduced the serum levels of IL-6, TNF-α, and mRNA levels of the genes IL-6, IL-8, TNF-α, NLRP3, and IFN-γ; significantly improved the activities of antioxidant enzymes including CAT, GSH-Px, and T-SOD in the jejunum; and significantly reduced the MDA contents in the serum and jejunum of broilers. Nikon microscope observations and ImagePro Plus 6.0 measure results found that 400 mg/kg of PTE supplementation significantly reduced the relative length and weight of the jejunum and improved the jejunal villi structure, resulting in increased intestinal villi, deepened crypt, and an enhanced ratio of villi height to crypt depth (VH/CD). RT-qPCR and Western blot found that dietary PTE also resulted in increased mRNA levels of the genes Claudin-2, Occludin, ZO-1, and Sirt1, and decreased NF-κB protein levels in the jejunum. The results of this study demonstrated that dietary PTE improved the immune function and intestinal health of broilers by reducing inflammation and increasing the antioxidant capacity of the animals.
Collapse
Affiliation(s)
- Zesheng Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Z.Y.); (X.S.); (X.C.); (X.Z.); (M.L.)
| | - Xue Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Z.Y.); (X.S.); (X.C.); (X.Z.); (M.L.)
| | - Xuehong Chai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Z.Y.); (X.S.); (X.C.); (X.Z.); (M.L.)
| | - Xin Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Z.Y.); (X.S.); (X.C.); (X.Z.); (M.L.)
| | - Yingjie Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, China;
| | - Mengru Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Z.Y.); (X.S.); (X.C.); (X.Z.); (M.L.)
| | - Xingjun Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Z.Y.); (X.S.); (X.C.); (X.Z.); (M.L.)
| |
Collapse
|
8
|
Dai C, Li W, Zhang C, Shen X, Wan Z, Deng X, Liu F. Microencapsule delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:199-255. [PMID: 39218503 DOI: 10.1016/bs.afnr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microencapsulation, a typical core-shell structure technology, encapsulates functional active ingredients for protection, controlled release, and targeted delivery. In precise nutrition, the focus is on utilizing microcapsule delivery systems for personalized dietary supplements and disease intervention. This chapter outlines the morphological structure of microcapsules, common wall materials, and preparation techniques. It discusses the characteristics of different hydrophilic and lipophilic functional factors and their function as dietary supplements. The role of microencapsulation on the controlled release, odor masking, and enhanced bioavailability of functional factors is explored. Additionally, the application of microcapsule delivery systems in nutritional interventions for diseases like inflammatory bowel disease, alcoholic/fatty liver disease, diabetes, and cancer is introduced in detail. Lastly, the chapter proposes the future developments of anticipation in responsive wall materials for precise nutrition interventions, including both challenges and opportunities.
Collapse
Affiliation(s)
- Chenlin Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Wenhan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Chairui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xuelian Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Ziyan Wan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaofan Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China.
| |
Collapse
|
9
|
Xu J, Zhang Y, Yao X, Wang S, Lv K, Luo G, Wang J, Li G. Intestinal Targeted Nanogel with Broad-Spectrum Autonomous ROS Scavenging Performance for Enhancing the Bioactivity of trans-Resveratrol. Int J Nanomedicine 2024; 19:5995-6014. [PMID: 38895150 PMCID: PMC11185258 DOI: 10.2147/ijn.s464849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction To improve the bioavailability of trans-resveratrol (trans-Res), it is commonly co-delivered with antioxidant bioactives using a complex synthetic intestinal targeted carrier, however, which makes practical application challenging. Methods A nanogel (Ngel), as broad-spectrum autonomous ROS scavenger, was prepared using selenized thiolated sodium alginate (TSA-Se) and crosslinked with calcium lactate (CL) for loading trans-Res to obtain Ngel@Res, which maintained spherical morphology in the upper digestive tract but broke down in the lower digestive tract, resulting in trans-Res release. Results Under protection of Ngel, trans-Res showed enhanced stability and broad-spectrum ROS scavenging activity. The synergistic mucoadhesion of Ngel prolonged the retention time of trans-Res in the intestine. Ngel and Ngel@Res increased the lifespan of Caenorhabditis elegans to 26.00 ± 2.17 and 26.00 ± 4.27 days by enhancing the activity of antioxidases, upregulating the expression of daf-16, sod-5 and skn-1, while downregulating the expression of daf-2 and age-1. Conclusion This readily available, intestinal targeted selenized alginate-based nanogel effectively improves the bioactivity of trans-Res.
Collapse
Affiliation(s)
- Jingwen Xu
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Yue Zhang
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Xiaolin Yao
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
| | - Sijuan Wang
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Kaiqiang Lv
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Guangwen Luo
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Jiaqi Wang
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Guoliang Li
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
| |
Collapse
|
10
|
Wang Z, Song XQ, Xu W, Lei S, Zhang H, Yang L. Stand Up to Stand Out: Natural Dietary Polyphenols Curcumin, Resveratrol, and Gossypol as Potential Therapeutic Candidates against Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Nutrients 2023; 15:3885. [PMID: 37764669 PMCID: PMC10535599 DOI: 10.3390/nu15183885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic has stimulated collaborative drug discovery efforts in academia and the industry with the aim of developing therapies and vaccines that target SARS-CoV-2. Several novel therapies have been approved and deployed in the last three years. However, their clinical application has revealed limitations due to the rapid emergence of viral variants. Therefore, the development of next-generation SARS-CoV-2 therapeutic agents with a high potency and safety profile remains a high priority for global health. Increasing awareness of the "back to nature" approach for improving human health has prompted renewed interest in natural products, especially dietary polyphenols, as an additional therapeutic strategy to treat SARS-CoV-2 patients, owing to its good safety profile, exceptional nutritional value, health-promoting benefits (including potential antiviral properties), affordability, and availability. Herein, we describe the biological properties and pleiotropic molecular mechanisms of dietary polyphenols curcumin, resveratrol, and gossypol as inhibitors against SARS-CoV-2 and its variants as observed in in vitro and in vivo studies. Based on the advantages and disadvantages of dietary polyphenols and to obtain maximal benefits, several strategies such as nanotechnology (e.g., curcumin-incorporated nanofibrous membranes with antibacterial-antiviral ability), lead optimization (e.g., a methylated analog of curcumin), combination therapies (e.g., a specific combination of plant extracts and micronutrients), and broad-spectrum activities (e.g., gossypol broadly inhibits coronaviruses) have also been emphasized as positive factors in the facilitation of anti-SARS-CoV-2 drug development to support effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xian-qing Song
- General Surgery Department, Baoan Central Hospital, Affiliated Baoan Central Hospital of Guangdong Medical University, Shenzhen 518000, China
| | - Wenjing Xu
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Shizeng Lei
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Hao Zhang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
11
|
Resveratrol: Its Path from Isolation to Therapeutic Action in Eye Diseases. Antioxidants (Basel) 2022; 11:antiox11122447. [PMID: 36552655 PMCID: PMC9774148 DOI: 10.3390/antiox11122447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Due to the confirmed therapeutic potential of resveratrol (Rv) for eye diseases, namely its powerful anti-angiogenic and antioxidant effects, this molecule must be studied more deeply. Nowadays, the pharmaceutic and pharmacokinetic available studies offer a troubling picture because of its low stability and bioavailability. To overcome this problem, researchers started to design and create different delivery systems that could improve the delivery amount of Rv. Therefore, this review aims to shed light on the proper and efficient techniques to isolate, purify and quantify the Rv molecule, and how this therapeutic molecule can be a part of a delivery system. The Rv great impact on aspects regarding its stability, bioavailability and absorption are also debated here, based on the existent literature on in vitro and in vivo human and animal studies. Moreover, after its absorption the Rv influence at the molecular level in ocular pathologies is described. In addition, the present review summarizes the available literature about Rv, hoping that Rv will gain more attention to investigate its unexplored side.
Collapse
|
12
|
Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, Porwal O, Alam A, Parveen SR, Singh H, Chellappan DK, Gupta G, Kumbhar P, Disouza J, Patravale V, Adams J, Dua K, Singh SK. Harnessing the dual role of polysaccharides in treating gastrointestinal diseases: As therapeutics and polymers for drug delivery. Chem Biol Interact 2022; 368:110238. [DOI: 10.1016/j.cbi.2022.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022]
|