1
|
Chevalley T, Dübi M, Fumeaux L, Merli MS, Sarre A, Schaer N, Simeoni U, Yzydorczyk C. Sexual Dimorphism in Cardiometabolic Diseases: From Development to Senescence and Therapeutic Approaches. Cells 2025; 14:467. [PMID: 40136716 PMCID: PMC11941476 DOI: 10.3390/cells14060467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
The global incidence and prevalence of cardiometabolic disorders have risen significantly in recent years. Although lifestyle choices in adulthood play a crucial role in the development of these conditions, it is well established that events occurring early in life can have an important effect. Recent research on cardiometabolic diseases has highlighted the influence of sexual dimorphism on risk factors, underlying mechanisms, and response to therapies. In this narrative review, we summarize the current understanding of sexual dimorphism in cardiovascular and metabolic diseases in the general population and within the framework of the Developmental Origins of Health and Disease (DOHaD) concept. We explore key risk factors and mechanisms, including the influence of genetic and epigenetic factors, placental and embryonic development, maternal nutrition, sex hormones, energy metabolism, microbiota, oxidative stress, cell death, inflammation, endothelial dysfunction, circadian rhythm, and lifestyle factors. Finally, we discuss some of the main therapeutic approaches, responses to which may be influenced by sexual dimorphism, such as antihypertensive and cardiovascular treatments, oxidative stress management, nutrition, cell therapies, and hormone replacement therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Catherine Yzydorczyk
- Developmental Origins of Health and Disease (DOHaD) Laboratory, Division of Pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (T.C.); (M.D.); (L.F.); (M.S.M.); (A.S.); (N.S.)
| |
Collapse
|
2
|
Chen C, Liu XC, Deng B. Protective Effects of Berberine on Nonalcoholic Fatty Liver Disease in db/db Mice via AMPK/SIRT1 Pathway Activation. Curr Med Sci 2024; 44:902-911. [PMID: 39039374 DOI: 10.1007/s11596-024-2914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE Berberine (BBR) has emerged as a promising therapeutic agent for nonalcoholic fatty liver disease (NAFLD). This study aims to elucidate the underlying molecular mechanisms. METHODS In this study, db/db mice were chosen as an animal model for NAFLD. A total of 10 healthy C57BL/6J mice and 30 db/db mice were randomly allocated to one of 4 groups: the normal control (NC) group, the diabetic control (DC) group, the Metformin (MET) therapy group, and the BBR therapy group. The total cholesterol (TC), triacylglycerol (TG), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in the serum were measured. The glutathione peroxidase (GSH-Px), glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), interleukin (IL)-1β, tumor necrosis factor (TNF)-α and monocyte chemotactic protein 1 (MCP-1) levels in liver tissue were measured. Hematoxylin and eosin (H&E), acid-Schiff (PAS) and TUNEL stanning was performed for histopathological analysis. Western blotting and immunohistochemistry were conducted to detect the expression levels of key proteins in the AMPK/SIRT1 pathway. RESULTS BBR could improve lipid metabolism, attenuate hepatic steatosis and alleviate liver injury significantly. The excessive oxidative stress, high levels of inflammation and abnormal apoptosis in db/db mice were reversed after BBR intervention. BBR clearly changed the expression of AMP-activated protein kinase (AMPK)/Sirtuin 1 (SIRT1), and their downstream proteins. CONCLUSION BBR could reverse NAFLD-related liver injury, likely by activating the AMPK/SIRT1 signaling pathway to inhibit oxidative stress, inflammation and apoptosis in hepatic tissue.
Collapse
Affiliation(s)
- Cheng Chen
- Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Cui Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Almalki WH, Salman Almujri S. Oxidative stress and senescence in aging kidneys: the protective role of SIRT1. EXCLI JOURNAL 2024; 23:1030-1067. [PMID: 39391060 PMCID: PMC11464868 DOI: 10.17179/excli2024-7519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/07/2024] [Indexed: 10/12/2024]
Abstract
Aging leads to a gradual decline in kidney function, making the kidneys increasingly vulnerable to various diseases. Oxidative stress, together with cellular senescence, has been established as paramount in promoting the aging process of the kidney. Oxidative stress, defined as an imbalance between ROS formation and antioxidant defense mechanisms, has been implicated in the kidney's cellular injury, inflammation, and premature senescence. Concurrently, the accumulation of SCs in the kidney also exacerbates oxidative stress via the secretion of pro-inflammatory and tissue-damaging factors as the senescence-associated secretory phenotype (SASP). Recently, SIRT1, a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, has been pivotal in combating oxidative stress and cellular senescence in the aging kidney. SIRT1 acts as a potential antioxidant molecule through myriad pathways that influence diverse transcription factors and enzymes essential in maintaining redox homeostasis. SIRT1 promotes longevity and renal health by modulating the acetylation of cell cycle and senescence pathways. This review covers the complex relationship between oxidative stress and cellular senescence in the aging kidney, emphasizing the protective role of SIRT1. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
4
|
Macedo C, Monnerat J, Lucchetti B, Teixeira G, Mentzinger J, Rocha H, Medeiros R, Rocha N, de Souza D, Sampaio F, Gregorio B. Impact of maternal stress on metabolism and penile morphology in young offspring rats. Histol Histopathol 2024; 39:1009-1015. [PMID: 38221876 DOI: 10.14670/hh-18-698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Exposure to prolonged stress in pregnancy and/or lactation can lead to the future development of diseases. We aimed to study the effects of maternal stress on the biometry, metabolism, and penile morphology of young Wistar rats. Animals were divided into two experimental groups: Control Group (C) - pups from control mothers, without any intervention (n=5); and Chronic Stress Group (S) - pups from mothers who suffered variable stress in the third week of pregnancy (14th to 21st day; n=5). Food intake and body mass of the pups (n=10, in the C group and n=9 in the S group) were checked; at euthanasia (three months old), fat deposits and penis were removed. At birth and weaning, S animals were lighter than C animals, [-33.72% (p=0.0422) and -17.07% (p=0.0018)], respectively. However, the final body mass and body mass delta showed no differences. Food intake and fat deposits also did not differ. However, the S group was hyperglycemic at 30 and 60 days of life [+20.59% (p=0.0042) and +14.56% (p=0.0079), respectively], despite the glycemia measured at 90 days showing no difference between groups. Penile areas and surface densities of the corpora cavernosa components were similar between groups. The results indicate that maternal stress is an important metabolic programmer, which generates low birth weight and accelerated recovery of body mass after birth (catch-up). However, in an early analysis (90 days of life), exposure to gestational stress did not change the morphology of the offspring's penis in adulthood.
Collapse
Affiliation(s)
- Carolinne Macedo
- Urogenital Research Unit, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Monnerat
- Federal Fluminense University, Exercise Science Laboratory (LACE), Niteroi, Brazil
| | - Bianca Lucchetti
- Federal Fluminense University, Exercise Science Laboratory (LACE), Niteroi, Brazil
| | - Gabriel Teixeira
- Federal Fluminense University, Physiology and Pharmacology Department, Niteroi, Brazil
| | - Juliana Mentzinger
- Federal Fluminense University, Exercise Science Laboratory (LACE), Niteroi, Brazil
| | - Helena Rocha
- Federal Fluminense University, Physiology and Pharmacology Department, Niteroi, Brazil
| | - Renata Medeiros
- Federal Fluminense University, Exercise Science Laboratory (LACE), Niteroi, Brazil
| | - Natália Rocha
- Federal Fluminense University, Physiology and Pharmacology Department, Niteroi, Brazil
| | - Diogo de Souza
- Urogenital Research Unit, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco Sampaio
- Urogenital Research Unit, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Gregorio
- Urogenital Research Unit, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Rattanaprukskul K, Xia XJ, Jiang M, Albuquerque-Souza E, Bandyopadhyay D, Sahingur S. Molecular Signatures of Senescence in Periodontitis: Clinical Insights. J Dent Res 2024; 103:800-808. [PMID: 38877743 PMCID: PMC11308264 DOI: 10.1177/00220345241255325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
Most of the elderly population is afflicted by periodontal diseases, creating a health burden worldwide. Cellular senescence is one of the hallmarks of aging and associated with several chronic comorbidities. Senescent cells produce a variety of deleterious secretions, collectively termed the senescence-associated secretory phenotype (SASP). This disrupts neighboring cells, leading to further senescence propagation and inciting chronic inflammation, known as "inflammaging." Detrimental repercussions within the tissue microenvironment can trigger senescence at a younger age, accelerate biological aging, and drive the initiation or progression of diseases. Here, we investigated the biological signatures of senescence in healthy and diseased gingival tissues by assessing the levels of key senescence markers (p16, lipofuscin, and β-galactosidase) and inflammatory mediators (interleukin [IL]-1β, IL-6, IL-8, matrix metalloproteinase [MMP]-1, MMP-3, and tumor necrosis factor-α). Our results showed significantly increased senescence features including p16, lipofuscin, and β-galactosidase in both epithelial and connective tissues of periodontitis patients compared with healthy sites in all age groups, indicating that an inflammatory microenvironment can trigger senescence-like alterations in younger diseased gingival tissues as well. Subsequent analyses using double staining with specific cell markers noted the enrichment of β-galactosidase in fibroblasts and macrophages. Concurrently, inflammatory mediators consistent with SASP were increased in the gingival biopsies obtained from periodontitis lesions. Together, our findings provide the first clinical report revealing susceptibility to elevated senescence and inflammatory milieu consistent with senescence secretome in gingival tissues, thus introducing senescence as one of the drivers of pathological events in the oral mucosa and a novel strategy for targeted interventions.
Collapse
Affiliation(s)
- K. Rattanaprukskul
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - X.-J. Xia
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M. Jiang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E. Albuquerque-Souza
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lipid Mediator Unit, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - D. Bandyopadhyay
- Department of Biostatistics, School of Population Health, Virginia Commonwealth, Richmond, VA, USA
| | - S.E. Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Zhang M, Wang J, Li C, Wu S, Liu W, Zhou C, Ma L. Cathelicidin AS-12W Derived from the Alligator sinensis and Its Antimicrobial Activity Against Drug-Resistant Gram-Negative Bacteria In Vitro and In Vivo. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10250-2. [PMID: 38587584 DOI: 10.1007/s12602-024-10250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Antimicrobial peptides (AMPs) have the potential to treat multidrug-resistant bacterial infections. Cathelicidins are a class of cationic antimicrobial peptides that are found in nearly all vertebrates. Herein, we determined the mature peptide region of Alligator sinensis cathelicidin by comparing its cathelicidin peptide sequence with those of other reptiles and designed nine peptide mutants based on the Alligator sinensis cathelicidin mature peptide. According to the antibacterial activity and cytotoxicity screening, the peptide AS-12W demonstrated broad-spectrum antibacterial activity and exhibited low erythrocyte hemolytic activity. In particular, AS-12W exhibited strong antibacterial activity and rapid bactericidal activity against carbapenem-resistant Pseudomonas aeruginosa in vitro. Additionally, AS-12W effectively removed carbapenem-resistant P. aeruginosa from blood and organs in vivo, leading to improved survival rates in septic mice. Furthermore, AS-12W exhibited good stability and tolerance to harsh conditions such as high heat, high salt, strong acid, and strong alkali, and it also displayed high stability toward trypsin and simulated gastric fluid (SGF). Moreover, AS-12W showed significant anti-inflammatory effects in vitro by inhibiting the production of proinflammatory factors induced by lipopolysaccharide (LPS). Due to its antibacterial mechanism against Escherichia coli, we found that this peptide could neutralize the negative charge on the surface of the bacteria and disrupt the integrity of the bacterial cell membrane. In addition, AS-12W has the ability to bind to the genomic DNA of bacteria and stimulate the production of reactive oxygen species (ROS) within bacteria, which is believed to be the reason for the good antibacterial activity of AS-12W. These results demonstrated that AS-12W exhibits remarkable antibacterial activity, particularly against carbapenem-resistant P. aeruginosa. Therefore, it is a potential candidate for antibacterial drug development.
Collapse
Affiliation(s)
- Meina Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jian Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chao Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Shaoju Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Wei Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Changlin Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
7
|
Cui Y, Zhang W, Yang P, Zhu S, Luo S, Li M. Menaquinone-4 prevents medication-related osteonecrosis of the jaw through the SIRT1 signaling-mediated inhibition of cellular metabolic stresses-induced osteoblast apoptosis. Free Radic Biol Med 2023; 206:33-49. [PMID: 37364692 DOI: 10.1016/j.freeradbiomed.2023.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Long-term usage of bisphosphonates, especially zoledronic acid (ZA), induces osteogenesis disorders and medication-related osteonecrosis of the jaw (MRONJ) in patients, thereby contributing to the destruction of bone remodeling and the continuous progression of osteonecrosis. Menaquinone-4 (MK-4), a specific vitamin K2 isoform converted by the mevalonate (MVA) pathway in vivo, exerts the promotion of bone formation, whereas ZA administration suppresses this pathway and results in endogenous MK-4 deficiency. However, no study has evaluated whether exogenous MK-4 supplementation can prevent ZA-induced MRONJ. Here we showed that MK-4 pretreatment partially ameliorated mucosal nonunion and bone sequestration among ZA-treated MRONJ mouse models. Moreover, MK-4 promoted bone regeneration and inhibited osteoblast apoptosis in vivo. Consistently, MK-4 downregulated ZA-induced osteoblast apoptosis in MC3T3-E1 cells and suppressed the levels of cellular metabolic stresses, including oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, and DNA damage, which were accompanied by elevated sirtuin 1 (SIRT1) expression. Notably, EX527, an inhibitor of the SIRT1 signaling pathway, abolished the inhibitory effects of MK-4 on ZA-induced cell metabolic stresses and osteoblast damage. Combined with experimental evidences from MRONJ mouse models and MC3T3-E1 cells, our findings suggested that MK-4 prevents ZA-induced MRONJ by inhibiting osteoblast apoptosis through suppression of cellular metabolic stresses in a SIRT1-dependent manner. The results provide a novel translational direction for the clinical application of MK-4 for preventing MRONJ.
Collapse
Affiliation(s)
- Yajun Cui
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China
| | - Weidong Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China
| | - Panpan Yang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China
| | - Siqi Zhu
- Center of Osteoporosis and Bone Mineral Research, Shandong University, China; The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shenglei Luo
- Department of Oral and Maxillofacial Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, 247 Beiyuan Street, Jinan, Shandong, China.
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China.
| |
Collapse
|
8
|
Anastasopoulos NA, Charchanti AV, Barbouti A, Mastoridou EM, Goussia AC, Karampa AD, Christodoulou D, Glantzounis GK. The Role of Oxidative Stress and Cellular Senescence in the Pathogenesis of Metabolic Associated Fatty Liver Disease and Related Hepatocellular Carcinoma. Antioxidants (Basel) 2023; 12:1269. [PMID: 37371999 DOI: 10.3390/antiox12061269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents a worryingly increasing cause of malignancy-related mortality, while Metabolic Associated Fatty Liver Disease (MAFLD) is going to become its most common cause in the next decade. Understanding the complex underlying pathophysiology of MAFLD-related HCC can provide opportunities for successful targeted therapies. Of particular interest in this sequela of hepatopathology is cellular senescence, a complex process characterised by cellular cycle arrest initiated by a variety of endogenous and exogenous cell stressors. A key biological process in establishing and maintaining senescence is oxidative stress, which is present in multiple cellular compartments of steatotic hepatocytes. Oxidative stress-induced cellular senescence can change hepatocyte function and metabolism, and alter, in a paracrine manner, the hepatic microenvironment, enabling disease progression from simple steatosis to inflammation and fibrosis, as well as HCC. The duration of senescence and the cell types it affects can tilt the scale from a tumour-protective self-restricting phenotype to the creator of an oncogenic hepatic milieu. A deeper understanding of the mechanism of the disease can guide the selection of the most appropriate senotherapeutic agent, as well as the optimal timing and cell type targeting for effectively combating HCC.
Collapse
Affiliation(s)
- Nikolaos-Andreas Anastasopoulos
- HPB Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Department of General Surgery, Croydon University Hospital, Croydon Health Services NHS Trust, London CR7 7YE, UK
| | - Antonia V Charchanti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Eleftheria M Mastoridou
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anna C Goussia
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anastasia D Karampa
- HPB Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Christodoulou
- Department of Gastroenterology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios K Glantzounis
- HPB Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
9
|
Guillot E, Lemay A, Allouche M, Vitorino Silva S, Coppola H, Sabatier F, Dignat-George F, Sarre A, Peyter AC, Simoncini S, Yzydorczyk C. Resveratrol Reverses Endothelial Colony-Forming Cell Dysfunction in Adulthood in a Rat Model of Intrauterine Growth Restriction. Int J Mol Sci 2023; 24:ijms24119747. [PMID: 37298697 DOI: 10.3390/ijms24119747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Individuals born after intrauterine growth restriction (IUGR) are at risk of developing cardiovascular diseases (CVDs). Endothelial dysfunction plays a role in the pathogenesis of CVDs; and endothelial colony-forming cells (ECFCs) have been identified as key factors in endothelial repair. In a rat model of IUGR induced by a maternal low-protein diet, we observed an altered functionality of ECFCs in 6-month-old males, which was associated with arterial hypertension related to oxidative stress and stress-induced premature senescence (SIPS). Resveratrol (R), a polyphenol compound, was found to improve cardiovascular function. In this study, we investigated whether resveratrol could reverse ECFC dysfunctions in the IUGR group. ECFCs were isolated from IUGR and control (CTRL) males and were treated with R (1 μM) or dimethylsulfoxide (DMSO) for 48 h. In the IUGR-ECFCs, R increased proliferation (5'-bromo-2'-deoxyuridine (BrdU) incorporation, p < 0.001) and improved capillary-like outgrowth sprout formation (in Matrigel), nitric oxide (NO) production (fluorescent dye, p < 0.01), and endothelial nitric oxide synthase (eNOS) expression (immunofluorescence, p < 0.001). In addition, R decreased oxidative stress with reduced superoxide anion production (fluorescent dye, p < 0.001); increased Cu/Zn superoxide dismutase expression (Western blot, p < 0.05); and reversed SIPS with decreased beta-galactosidase activity (p < 0.001), and decreased p16ink4a (p < 0.05) and increased Sirtuin-1 (p < 0.05) expressions (Western blot). No effects of R were observed in the CTRL-ECFCs. These results suggest that R reverses long-term ECFC dysfunctions related to IUGR.
Collapse
Affiliation(s)
- Estelle Guillot
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Anna Lemay
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Manon Allouche
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Sara Vitorino Silva
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Hanna Coppola
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Florence Sabatier
- Center from Cardiovascular and Nutrition Research (C2VN), Institut National de la Santé Et de la Recherche Médicale (INSERM), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
- Institut National de Recherche pour L'Agriculture, L'Alimentation et L'Environnement (INRAe), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
| | - Françoise Dignat-George
- Center from Cardiovascular and Nutrition Research (C2VN), Institut National de la Santé Et de la Recherche Médicale (INSERM), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
- Institut National de Recherche pour L'Agriculture, L'Alimentation et L'Environnement (INRAe), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
| | - Alexandre Sarre
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Anne-Christine Peyter
- Neonatal Research Laboratory, Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Stéphanie Simoncini
- Center from Cardiovascular and Nutrition Research (C2VN), Institut National de la Santé Et de la Recherche Médicale (INSERM), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
- Institut National de Recherche pour L'Agriculture, L'Alimentation et L'Environnement (INRAe), Aix Marseille Université, UMR-S 1263, UFR de Pharmacie, Campus Santé, 13385 Marseille, France
| | - Catherine Yzydorczyk
- DOHaD Laboratory, Division of pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|