1
|
Basit F, Bhat JA, Ulhassan Z, Noman M, Zhao B, Zhou W, Kaushik P, Ahmad A, Ahmad P, Guan Y. Correction: Basit et al. Seed Priming with Spermine Mitigates Chromium Stress in Rice by Modifying the Ion Homeostasis, Cellular Ultrastructure and Phytohormones Balance. Antioxidants 2022, 11, 1704. Antioxidants (Basel) 2025; 14:312. [PMID: 40227298 PMCID: PMC11939426 DOI: 10.3390/antiox14030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
In the original publication [...].
Collapse
Affiliation(s)
- Farwa Basit
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Hainan Research Institute, Zhejiang University, Sanya 572025, China
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; (J.A.B.)
| | - Zaid Ulhassan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Noman
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; (J.A.B.)
| | - Weijun Zhou
- Hainan Research Institute, Zhejiang University, Sanya 572025, China
| | | | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama 192301, Jammu and Kashmir 192301, India
| | - Yajing Guan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Hainan Research Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
2
|
Wojtyla Ł, Wleklik K, Borek S, Garnczarska M. Polyamine Seed Priming: A Way to Enhance Stress Tolerance in Plants. Int J Mol Sci 2024; 25:12588. [PMID: 39684300 DOI: 10.3390/ijms252312588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Polyamines (PAs), such as putrescine, spermine, and spermidine, are bioactive molecules that play a vital role in plant responses to stresses. Although they are frequently applied to achieve higher levels of stress tolerance in plants, their function in seed biology is still not fully understood. PAs have been described in only a limited number of studies as seed priming agents, but most of the data report only the physiological and biochemical PA effects, and only a few reports concern the molecular mechanisms. In this review, we summarized PA seed priming effects on germination, seedling establishment, and young plant response to abiotic stresses, and tried to draw a general scheme of PA action during early developmental plant stages.
Collapse
Affiliation(s)
- Łukasz Wojtyla
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Karolina Wleklik
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Sławomir Borek
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Małgorzata Garnczarska
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Zhai M, Ao Z, Qu H, Guo D. Overexpression of the potato VQ31 enhances salt tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1347861. [PMID: 38645398 PMCID: PMC11027747 DOI: 10.3389/fpls.2024.1347861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 04/23/2024]
Abstract
Plant-specific VQ proteins have crucial functions in the regulation of plant growth and development, as well as in plant abiotic stress responses. Their roles have been well established in the model plant Arabidopsis thaliana; however, the functions of the potato VQ proteins have not been adequately investigated. The VQ protein core region contains a short FxxhVQxhTG amino acid motif sequence. In this study, the VQ31 protein from potato was cloned and functionally characterized. The complete open reading frame (ORF) size of StVQ31 is 672 bp, encoding 223 amino acids. Subcellular localization analysis revealed that StVQ31 is located in the nucleus. Transgenic Arabidopsis plants overexpressing StVQ31 exhibited enhanced salt tolerance compared to wild-type (WT) plants, as evidenced by increased root length, germination rate, and chlorophyll content under salinity stress. The increased tolerance of transgenic plants was associated with increased osmotic potential (proline and soluble sugars), decreased MDA accumulation, decreased total protein content, and improved membrane integrity. These results implied that StVQ31 overexpression enhanced the osmotic potential of the plants to maintain normal cell growth. Compared to the WT, the transgenic plants exhibited a notable increase in antioxidant enzyme activities, reducing cell membrane damage. Furthermore, the real-time fluorescence quantitative PCR analysis demonstrated that StVQ31 regulated the expression of genes associated with the response to salt stress, including ERD, LEA4-5, At2g38905, and AtNCED3. These findings suggest that StVQ31 significantly impacts osmotic and antioxidant cellular homeostasis, thereby enhancing salt tolerance.
Collapse
Affiliation(s)
| | | | | | - Dongwei Guo
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Alwutayd KM, Alghanem SMS, Alwutayd R, Alghamdi SA, Alabdallah NM, Al-Qthanin RN, Sarfraz W, Khalid N, Naeem N, Ali B, Saleem MH, Javed S, Gómez-Oliván LM, Abeed AHA. Mitigating chromium toxicity in rice (Oryza sativa L.) via ABA and 6-BAP: Unveiling synergistic benefits on morphophysiological traits and ASA-GSH cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168208. [PMID: 37914115 DOI: 10.1016/j.scitotenv.2023.168208] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
In recent years, the use of plant hormones, such as abscisic acid (ABA) and 6-benzylaminopurine (6-BAP), has gained significant attention for their role in mitigating abiotic stresses across various plant species. These hormones have been shown to play a vital role in enhancing the ascorbate-glutathione cycle and eliciting a wide range of plant growth and biomass, photosynthetic efficiency, oxidative stress and response of antioxidants and other physiological responses. While previous research has been conducted on the individual impact of ABA and 6-BAP in metal stress resistance among various crop species, their combined effects in the context of heavy metal-stressed conditions remain underexplored. The current investigation is to assess the beneficial effects of single and combined ABA (5 and 10 μM L-1) and 6-BAP (5 and 10 μM L-1) applications in rice (Oryza sativa L.) cultivated in chromium (Cr)-contaminated soil (100 μM). Our results showed that the Cr toxicity in the soil showed a significant declined in the growth, gas exchange attributes, sugars, AsA-GSH cycle, cellular fractionation, proline metabolism in O. sativa. However, Cr toxicity significantly increased oxidative stress biomarkers, organic acids, enzymatic and non-enzymatic antioxidants including their gene expression in O. sativa seedlings. Although, the application of ABA and 6-BAP showed a significant increase in the plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds and their gene expression and also decreased the oxidative stress, And Cr uptake. In addition, individual or combined application of ABA and 6-BAP enhanced the cellular fractionation and decreases the proline metabolism and AsA-GSH cycle in rice plants. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
- Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | | | - Rahaf Alwutayd
- Department of Information of Technology, College of Computer and Information Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Sameera A Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia; Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Rahmah N Al-Qthanin
- Department of Biology, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia; Prince Sultan Bin Abdelaziz for Environmental Research and Natural Resources Sustainability Center, King Khalid University, Abha 61421, Saudi Arabia.
| | - Wajiha Sarfraz
- Department of Botany, Government College Women University, Sialkot, Pakistan.
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan.
| | - Nayab Naeem
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar.
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan.
| | - Leobardo Manuel Gómez-Oliván
- Universidad Autónoma del Estado de México, Paseo Colón, intersección Paseo Tollocan Col. Universidad, CP 50120 Toluca, Estado de México, México.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| |
Collapse
|
5
|
Basit F, Abbas S, Zhu M, Tanwir K, El-Keblawy A, Sheteiwy MS, Raza A, Hu J, Hu W, Guan Y. Ascorbic acid and selenium nanoparticles synergistically interplay in chromium stress mitigation in rice seedlings by regulating oxidative stress indicators and antioxidant defense mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120044-120062. [PMID: 37936030 DOI: 10.1007/s11356-023-30625-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
Ascorbic acid (AsA) and selenium nanoparticles (SeNPs) were versatile plant growth regulators, playing multiple roles in promoting plant growth under heavy metal stresses. This study aimed to evaluate the beneficial role of individual and combined effects of AsA and SeNPs on morpho-physio-biochemical traits of rice with or without chromium (Cr) amendment. The results indicated that Cr negatively affected plant biomass, gas exchange parameters, total soluble sugar, proline, relative water contents, and antioxidant-related gene expression via increasing reactive oxygen species (MDA, H2O2, O2•-) formation, resulting in plant growth reduction. The application of AsA and SeNPs, individually or in combination, decreased the uptake and translocation of Cr in rice seedlings, increased seedlings with tolerance to Cr toxicity, and significantly improved the rice seedling growth. Most notably, AsA + SeNP treatment strengthened the antioxidative defense system through ROS quenching and Cr detoxification. The results collectively suggested that the application of AsA and SeNPs alone or in combination had the potential to alleviate Cr toxicity in rice and possibly other crop species.
Collapse
Affiliation(s)
- Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Saghir Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Mengjin Zhu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kashif Tanwir
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Mohamed Salah Sheteiwy
- Department of Applied Biology, Faculty of Science, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jin Hu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Weimin Hu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China.
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Ellouzi H, Zorrig W, Amraoui S, Oueslati S, Abdelly C, Rabhi M, Siddique KHM, Hessini K. Seed Priming with Salicylic Acid Alleviates Salt Stress Toxicity in Barley by Suppressing ROS Accumulation and Improving Antioxidant Defense Systems, Compared to Halo- and Gibberellin Priming. Antioxidants (Basel) 2023; 12:1779. [PMID: 37760082 PMCID: PMC10525609 DOI: 10.3390/antiox12091779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Plants are highly sensitive to various environmental stresses, which can hinder their growth and reduce yields. In this study, we investigated the potential of seed priming with salicylic acid (SA), gibberellic acid (GA3), and sodium chloride (NaCl) to mitigate the adverse effects of salinity stress in Hordeum vulgare at the germination and early seedling stages. Exposing H. vulgare seeds to salt stress reduced the final germination percentage and seedling shoot and root growth. Interestingly, all seed treatments significantly improved salt-induced responses, with GA3 being more effective in terms of germination performance, plant growth, and photosynthesis. SA priming exhibited promising effects on antioxidant defense mechanisms, proline, sugar, and ascorbic acid production. Notably, SA priming also suppressed reactive oxygen species accumulation and prevented lipid peroxidation. These findings highlight the ability of SA to manage crosstalk within the seed, coordinating many regulatory processes to support plant adaptation to salinity stress.
Collapse
Affiliation(s)
- Hasna Ellouzi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria (CBBC), BP901, Hammam-Lif 2050, Tunisia; (H.E.); (W.Z.); (S.A.); (S.O.); (C.A.)
| | - Walid Zorrig
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria (CBBC), BP901, Hammam-Lif 2050, Tunisia; (H.E.); (W.Z.); (S.A.); (S.O.); (C.A.)
| | - Souhir Amraoui
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria (CBBC), BP901, Hammam-Lif 2050, Tunisia; (H.E.); (W.Z.); (S.A.); (S.O.); (C.A.)
| | - Samia Oueslati
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria (CBBC), BP901, Hammam-Lif 2050, Tunisia; (H.E.); (W.Z.); (S.A.); (S.O.); (C.A.)
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria (CBBC), BP901, Hammam-Lif 2050, Tunisia; (H.E.); (W.Z.); (S.A.); (S.O.); (C.A.)
| | - Mokded Rabhi
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia;
| | - Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
7
|
Ulhassan Z, Yang S, He D, Khan AR, Salam A, Azhar W, Muhammad S, Ali S, Hamid Y, Khan I, Sheteiwy MS, Zhou W. Seed priming with nano-silica effectively ameliorates chromium toxicity in Brassica napus. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131906. [PMID: 37364434 DOI: 10.1016/j.jhazmat.2023.131906] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Plant yield is severely hampered by chromium (Cr) toxicity, affirming the urgent need to develop strategies to suppress its phyto-accumulation. Silicon dioxide nanoparticles (SiO2 NPs) have emerged as a provider of sustainable crop production and resistance to abiotic stress. But, the mechanisms by which seed-primed SiO2 NPs palliate Cr-accumulation and its toxic impacts in Brassica napus L. tissues remains poorly understood. To address this gap, present study examined the protective efficacy of seed priming with SiO2 NPs (400 mg/L) in relieving the Cr (200 µM) phytotoxicity mainly in B. napus seedlings. Results delineated that SiO2 NPs significantly declined the accumulation of Cr (38.7/35.9%), MDA (25.9/29.1%), H2O2 (27.04/36.9%) and O2• (30.02/34.7%) contents in leaves/roots, enhanced the nutrients acquisition, leading to improved photosynthetic performance and better plant growth. SiO2 NPs boosted the plant immunity by upregulating the transcripts of antioxidant (SOD, CAT, APX, GR) or defense-related genes (PAL, CAD, PPO, PAO and MT-1), GSH (assists Cr-vacuolar sequestration), and modifying the subcellular distribution (enhances Cr-proportion in cell wall), thereby confer tolerance to ultrastructural damages under Cr stress. Our first evidence to establish the Cr-detoxification by seed-primed SiO2 NPs in B. napus, indicated the potential of SiO2 NPs as stress-reducing agent for crops grown in Cr-contaminated areas.
Collapse
Affiliation(s)
- Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Su Yang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Di He
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Ali Raza Khan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Abdul Salam
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Wardah Azhar
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Sajid Muhammad
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Skhawat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Imran Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Mohamed Salah Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Raja V, Qadir SU, Kumar N, Alsahli AA, Rinklebe J, Ahmad P. Melatonin and strigolactone mitigate chromium toxicity through modulation of ascorbate-glutathione pathway and gene expression in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107872. [PMID: 37478726 DOI: 10.1016/j.plaphy.2023.107872] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Chromium (Cr) is considered one of the most hazardous metal contaminant reducing crop production and putting human health at risk. Phytohormones are known to regulate chromium stress, however, the function of melatonin and strigolactones in Chromium stress tolerance in tomato is rarely investigated. Here we investigated the potential role of melatonin (ML) and strigolactone (SL) on mitigating Chromium toxicity in tomato. With exposure to 300 μM Cr stress a remarkable decline in growth (63.01%), biomass yield (50.25)%, Pigment content (24.32%), photosynthesis, gas exchange and Physico-biochemical attributes of tomato was observed. Cr treatment also resulted in oxidative stress closely associated with higher H2O2 generation (215.66%), Lipid peroxidation (50.29%), electrolyte leakage (440.01%) and accumulation of osmolytes like proline and glycine betine. Moreover, Cr toxicity up-regulated the transcriptional expression profiles of antioxidant, stress related and metal transporter genes and down-regulated the genes related to photosynthesis. The application of ML and SL alleviated the Cr induced phytotoxic effects on photosynthetic pigments, gas exchange parameters and restored growth of tomato plants. ML and SL supplementation induced plant defense system via enhanced regulation of antioxidant enzymes, ascorbate and glutathione pool and transcriptional regulation of several genes. The coordinated regulation of antioxidant and glyoxalase systems expressively suppressed the oxidative stress. Hence, ML and SL application might be considered as an effective approach for minimizing Cr uptake and its detrimental effects in tomato plants grown in contaminated soils. The study may also provide new insights into the role of transcriptional regulation in the protection against heavy metal toxicity.
Collapse
Affiliation(s)
- Vaseem Raja
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Sami Ullah Qadir
- Department of Environmental Sciences Govt. Degree College for Women, Udhampur, 182101, India
| | - Naveen Kumar
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Abdulaziz Abdullah Alsahli
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
9
|
Talaat NB, Hanafy AMA. Spermine-Salicylic Acid Interplay Restrains Salt Toxicity in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020352. [PMID: 36679065 PMCID: PMC9861978 DOI: 10.3390/plants12020352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 05/30/2023]
Abstract
Spermine (SPM) and salicylic acid (SA) are plant growth regulators, eliciting specific responses against salt toxicity. In this study, the potential role of 30 mgL-1 SPM and/or 100 mgL-1 SA in preventing salt damage was investigated. Wheat plants were grown under non-saline or saline conditions (6.0 and 12.0 dS m-1) with and without SA and/or SPM foliar applications. Exogenously applied SA and/or SPM alleviated the inhibition of plant growth and productivity under saline conditions by increasing Calvin cycle enzyme activity. Foliage applications also improved ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase activities, which effectively scavenged hydrogen peroxide and superoxide radicals in stressed plants. Furthermore, foliar treatments increased antioxidants such as ascorbate and glutathione, which effectively detoxified reactive oxygen species (ROS). Exogenous applications also increased N, P, and K+ acquisition, roots' ATP content, and H+-pump activity, accompanied by significantly lower Na+ accumulation in stressed plants. Under saline environments, exogenous SA and/or SPM applications raised endogenous SA and SPM levels. Co-application of SA and SPM gave the best response. The newly discovered data suggest that the increased activities of Calvin cycle enzymes, root H+-pump, and antioxidant defense machinery in treated plants are a mechanism for salt tolerance. Therefore, combining the use of SA and SPM can be a superior method for reducing salt toxicity in sustainable agricultural systems.
Collapse
|
10
|
Tiwari M, Singh R, Jha R, Singh P. Heritable priming by Trichoderma: A sustainable approach for wheat protection against Bipolaris sorokiniana. FRONTIERS IN PLANT SCIENCE 2022; 13:1050765. [PMID: 36600913 PMCID: PMC9807111 DOI: 10.3389/fpls.2022.1050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Crop plants encounter a variety of biotic challenges in the field and faces significant reduction in crop yield. In the current scenario of an ever increasing global population, there is an urgent need to protect plant health by using sustainable approach to maximize the crop productivity and to mitigate the food demands. Nowadays, we mostly rely on chemical crop protection techniques, which are causing a number of environmental and health difficulties. Defence priming is a chemical-free, eco-friendly, and sustainable strategy of crop protection, which is also called "green vaccination. In the present study, for the first time, we used Trichoderma as a priming agent to protect wheat crop from spot blotch disease. We have established Trichoderma-mediated defence priming in wheat against Bipolaris sorokiniana for sustainable crop improvement. We have characterised the morphological, disease phenotype, biochemical and yield parameters of Trichoderma-primed and non-primed wheat under disease pressure. Trichoderma-primed plants were found to be more protected against B. sorokiniana as compared to non-primed plants. Biochemical studies indicated that there is no direct defence response after priming stimulus but the defence response was activated only after triggering stimulus in terms of enhanced defence metabolites in primed plants as compared to non-primed plants. In the present study, since defence was activated only when required, that is under disease pressure, there was no unnecessary allocation of resources towards defence. Hence, no yield penalty was shown in primed plants as compared to control. We further evaluated the inheritance of primed state to the next generation and found that progeny of primed parents also performed better than progeny of non-primed parents under disease pressure in terms of protection from B. sorokiniana as well as yield performance. This strategy has the potential to protect crop without any yield penalty and causing environmental degradation. Our research findings indicate that Trichoderma-mediated defence priming could be an alternative approach for improving wheat productivity under biotic stress. To be our best knowledge, this is the first documented report for the Trichoderma-mediated defence priming and induced inheritance in wheat plant. This study will open new arenas in sustainable crop protection strategies for the exploitation of defence priming in crop plants.
Collapse
Affiliation(s)
- Menka Tiwari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rajat Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rintu Jha
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prashant Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|