1
|
Abd Rashid N, Mohamad Najib NH, Abdul Jalil NA, Teoh SL. Essential Oils in Cervical Cancer: Narrative Review on Current Insights and Future Prospects. Antioxidants (Basel) 2023; 12:2109. [PMID: 38136228 PMCID: PMC10740549 DOI: 10.3390/antiox12122109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Cervical cancer is a prevalent and often devastating disease affecting women worldwide. Traditional treatment modalities such as surgery, chemotherapy, and radiation therapy have significantly improved survival rates, but they are often accompanied by side effects and challenges that can impact a patient's quality of life. In recent years, the integration of essential oils into the management of cervical cancer has gained attention. This review provides an in-depth exploration of the role of various essential oils in cervical cancer, offering insights into their potential benefits and the existing body of research. The review also delves into future directions and challenges in this emerging field, emphasizing promising research areas and advanced delivery systems. The encapsulation of essential oils with solid lipid nanoparticles, nanoemulsification of essential oils, or the combination of essential oils with conventional treatments showed promising results by increasing the anticancer properties of essential oils. As the use of essential oils in cervical cancer treatment or management evolves, this review aims to provide a comprehensive perspective, balancing the potential of these natural remedies with the challenges and considerations that need to be addressed.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Malaysia;
| | - Nor Haliza Mohamad Najib
- Unit of Anatomy, Faculty Medicine & Health Defence, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
2
|
Yang L, Ma J, Lei P, Yi J, Ma Y, Huang Z, Wang T, Ping H, Ruan D, Sun D, Pan H. Advances in Antioxidant Applications for Combating 131I Side Effects in Thyroid Cancer Treatment. TOXICS 2023; 11:529. [PMID: 37368629 DOI: 10.3390/toxics11060529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Thyroid cancer is the most common endocrine cancer, and its prevalence has been increasing for decades. Approx. 95% of differentiated thyroid carcinomas are treated using 131iodine (131I), a radionuclide with a half-life of 8 days, to achieve optimal thyroid residual ablation following thyroidectomy. However, while 131I is highly enriched in eliminating thyroid tissue, it can also retain and damage other body parts (salivary glands, liver, etc.) without selectivity, and even trigger salivary gland dysfunction, secondary cancer, and other side effects. A significant amount of data suggests that the primary mechanism for these side effects is the excessive production of reactive oxygen species, causing a severe imbalance of oxidant/antioxidant in the cellular components, resulting in secondary DNA damage and abnormal vascular permeability. Antioxidants are substances that are capable of binding free radicals and reducing or preventing the oxidation of the substrate in a significant way. These compounds can help prevent damage caused by free radicals, which can attack lipids, protein amino acids, polyunsaturated fatty acids, and double bonds of DNA bases. Based on this, the rational utilization of the free radical scavenging function of antioxidants to maximize a reduction in 131I side effects is a promising medical strategy. This review provides an overview of the side effects of 131I, the mechanisms by which 131I causes oxidative stress-mediated damage, and the potential of natural and synthetic antioxidants in ameliorating the side effects of 131I. Finally, the disadvantages of the clinical application of antioxidants and their improving strategies are prospected. Clinicians and nursing staff can use this information to alleviate 131I side effects in the future, both effectively and reasonably.
Collapse
Affiliation(s)
- Li Yang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Zhongke Huang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Tingjue Wang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Haiyan Ping
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Danping Ruan
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Hongying Pan
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|