1
|
Qin L, Lv W. Dietary content and eating behavior in ulcerative colitis: a narrative review and future perspective. Nutr J 2025; 24:12. [PMID: 39849464 PMCID: PMC11755847 DOI: 10.1186/s12937-025-01075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
Ulcerative colitis (UC) has experienced a steady increase in global incidence and prevalence recently. Current research into UC pathogenesis focuses on the complex interplay of genetic and environmental factors with the immune system and gut microbiome, leading to disruption of the intestinal barrier. Normally, the microbiome, intestinal epithelium, and immune system interact to maintain intestinal homeostasis. However, when this equilibrium is disturbed, a harmful cycle of dysbiosis, immune dysregulation, and inflammation emerges, resulting in intestinal barrier dysfunction and UC progression. Among various risk factors, diet significantly influences epithelial barrier integrity and architectural stability through both direct and indirect mechanisms, shaping the entire UC continuum from pre-clinical prevention to active phase treatment and remission maintenance. This review provides insights into the impact of dietary content and eating behaviors on UC, focusing on specific food, food groups, nutrients, and intermittent fasting, while providing a detailed explanation of why the gut microbiota may mediate the sustained effects of diet across all stages of UC. Additionally, it addresses the limitations of current studies, explores underexamined areas in UC dietary research and proposes potential directions for future research and expansion.
Collapse
Affiliation(s)
- Lingxi Qin
- Clinical College, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Wenliang Lv
- Clinical College, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Karmacharya A, Kasai S, Mukai Y, Sato S. Maternal Broccoli Powder Intake Ameliorates Insulin Resistance and Inflammation via AMPK/mTOR Pathway in the Livers of High-Fructose-Fed Male Rat Offspring Exposed to Maternal Protein Restriction. Mol Nutr Food Res 2024; 68:e2400472. [PMID: 39420699 DOI: 10.1002/mnfr.202400472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/31/2024] [Indexed: 10/19/2024]
Abstract
SCOPE Sub-optimal prenatal conditions such as maternal undernutrition during pregnancy and lactation posit high risks of adult metabolic diseases. High fructose intake causes insulin resistance and liver inflammation contributing to metabolic diseases. However, food-based preventive measure for these metabolic diseases in the offspring is under-researched. This study aims to investigate the effect of maternal broccoli powder (BP) intake during lactation on insulin resistance and liver inflammation in high-fructose-diet-fed adult male offspring exposed to maternal protein restriction. METHODS AND RESULTS Pregnant Wistar rats are provided normal protein (NP) or low protein (LP) diets and 0% or 0.74% BP-containing NP diets and 0% or 0.74% BP-containing LP diet during lactation. At weaning, offspring receiving water (W) or 10% fructose solution (Fr) are assigned into six groups: NP/NP/W, NP/NP/Fr, NP/NPBP/Fr, LP/LP/W, LP/LP/Fr, and LP/LPBP/Fr. At week 13, plasma insulin, macrophage infiltration, activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) phosphorylation, and autophagy flux markers are examined. LP/LPBP/Fr shows lower insulin levels and Homeostatic model assessment for insulin resistance (HOMA-IR) values than LP/LP/Fr. Liver macrophage infiltration are decreased in LP/LPBP/Fr. LP/LPBP/Fr exhibits upregulated AMPK phosphorylation, downregulated mTOR phosphorylation, and increased Microtubule-associated protein1A/1B-light chain 3B-II (LC3B-II) levels. CONCLUSION Maternal BP intake during lactation ameliorates insulin resistance and inflammation in the livers of adult offspring on a high-fructose diet from LP mothers.
Collapse
Affiliation(s)
- Anishma Karmacharya
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, 030-8505, Japan
| | - Shiho Kasai
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, 030-8505, Japan
| | - Yuuka Mukai
- School of Nutrition and Dietetics, Faculty of Health and Social Work, Kanagawa University of Human Services, Kanagawa, 238-8522, Japan
| | - Shin Sato
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, 030-8505, Japan
| |
Collapse
|
3
|
Zhao J, Zhang X, Li F, Lei X, Ge L, Li H, Zhao N, Ming J. The Effects of Interventions with Glucosinolates and Their Metabolites in Cruciferous Vegetables on Inflammatory Bowel Disease: A Review. Foods 2024; 13:3507. [PMID: 39517291 PMCID: PMC11544840 DOI: 10.3390/foods13213507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract which affects millions of individuals worldwide. Despite advancements in treatment options, there is increasing interest in exploring natural interventions with minimal side effects. Cruciferous vegetables, such as broccoli, cabbage, and radishes, contain bioactive compounds known as glucosinolates (GLSs), which have shown promising effects in alleviating IBD symptoms. This review aims to provide a comprehensive overview of the physiological functions and mechanisms of cruciferous GLSs and their metabolites in the context of IBD. Reviewed studies demonstrated that GLSs attenuated all aspects of IBD, including regulating the intestinal microbiota composition, exerting antioxidant and anti-inflammatory effects, restoring intestinal barrier function, and regulating epigenetic mechanisms. In addition, a few interventions with GLS supplementation in clinical studies were also discussed. However, there are still several challenges and remaining knowledge gaps, including variations in animals' experimental outcomes, the bioavailability of certain compounds, and few clinical trials to validate their effectiveness in human subjects. Addressing these issues will contribute to a better understanding of the therapeutic potential of cruciferous GLSs and their metabolites in the management of IBD.
Collapse
Affiliation(s)
- Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, China; (J.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, China
| | - Xiaoqin Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (J.Z.)
| | - Fuhua Li
- College of Food Science, Southwest University, Chongqing 400715, China; (J.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing 400715, China; (J.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, China
| | - Lihong Ge
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Honghai Li
- College of Food Science, Southwest University, Chongqing 400715, China; (J.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, China
| | - Nan Zhao
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, China; (J.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
段 婷, 耿 志, 杨 晶, 殷 丽, 孙 明, 王 舜, 张 小, 李 静, 胡 建, 陆 国. [Isongifolene Improves Crohn's Disease-Like Colitis in Mice by Reducing Apoptosis of Intestinal Epithelial Cells]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1175-1185. [PMID: 39507978 PMCID: PMC11536240 DOI: 10.12182/20240960204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 11/08/2024]
Abstract
Objective To investigate the effect and molecular mechanism of isolongifolene (ISO) on the apoptosis of intestinal epithelial cells and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced Crohn's disease (CD)-like colitis in mice. Methods In the animal experiments, mice were randomly assigned to the wild type (WT) group, TNBS group and TNBS+ISO group, with 8 mice in each group. Colitis models of mice were established in the TNBS group and the TNBS+ISO group by rectal injection of TNBS. After modeling, the mice in the TNBS+ISO group were given ISO intervention via intragastric gavage (10 mg/kg), and the other two groups were given the same amount of normal saline via intragastric gavage. The mice were sacrificed on the 7th day. The changes in body mass, disease activity scores (DAI), and the colon length of mice were measured, and transepithelial electrical resistance (TEER) of the colon tissues was determined. The score of colon inflammation was calculated according to HE staining. The levels of intestinal mucosal inflammatory factors, including tumor necrosis factor alpha (TNF-α), interferon (IFN)-γ, interleukin (IL)-1β, and IL-6, were measured by RT-PCR and ELISA. The apoptosis of colon tissue cells was determined by TUNEL assay. The expressions of apoptotic proteins (cleaved caspase-3/caspase-3 and Bax), an anti-apoptotic protein (Bcl-2), and tight junction proteins (ZO-1 and claudin-1) were detected by Western blot and immunofluorescence. In the cell experiment, TNF-α was used to induce intestinal epithelial cell Caco-2 apoptosis model, which was treated with ISO. Then, intervention with the AMPK inhibitor Compound C was given. TUNEL assay, Western blot assay, and immunofluorescence assay were performed to measure apoptosis and the expression of apoptosis proteins in the Caco-2 cells. Gene Ontology (GO) enrichment analysis was performed to predict the biological function of ISO. Then, the mechanism involved was verified by examination of the mice and Caco-2 cells. Western blot was performed to determine the expression levels of p-AMPK/AMPK and p-PGC1α in the colon tissues from the mice of different groups and Caco-2 cells. The apoptosis of the cells was determined by TUNEL assay. Results According to the results of the animal experiment, ISO could alleviate experimental colitis and intestinal barrier dysfunction, leading to improvements in body mass loss, colon length shortening, DAI score, inflammatory rating, and TEER values (all P<0.05) in mice. Furthermore, ISO decreased the expression of pro-inflammatory factors TNF-α, IFN-γ, IL-1β, and IL-6 and increased the expression of the tight junction proteins ZO-1 and claudin-1 (all P<0.05). In the cell experiment, in a TNF-α-induced intestinal epithelial cell model, ISO was also found to protect intestinal barrier against damage. ISO reduced the proportion of apoptotic intestinal epithelial cells, reduced the expression of cleaved-caspase-3/caspase-3 and Bax, and upregulated the level of Bcl-2 (all P<0.05). GO enrichment predictive analysis showed that the role of ISO in improving CD-like enteritis might be associated with the negative regulation of apoptosis. Verification of the mechanism showed that the expression of p-AMPK and p-PGC1α in the mice colon tissue was significantly upregulated after ISO intervention (P<0.05). In contrast, the AMPK inhibitor Compound C increased the apoptosis rate of ISO-treated Caco-2 cells and decreased the relative expression levels of ZO-1 and claudin-1 (P<0.05). Conclusion ISO reduces intestinal epithelial cell apoptosis at least in part by activating AMPK/PGC1α signaling pathway, thereby alleviating TNBS-induced intestinal barrier dysfunction and CD-like colitis in mice.
Collapse
Affiliation(s)
- 婷 段
- 蚌埠医科大学第一附属医院 急诊内科 (蚌埠 233000)Department of Emergency, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 志军 耿
- 蚌埠医科大学第一附属医院 急诊内科 (蚌埠 233000)Department of Emergency, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学第一附属医院 中心实验室 (蚌埠 233000)Central Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 晶晶 杨
- 蚌埠医科大学第一附属医院 急诊内科 (蚌埠 233000)Department of Emergency, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 丽霞 殷
- 蚌埠医科大学第一附属医院 急诊内科 (蚌埠 233000)Department of Emergency, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 明熙 孙
- 蚌埠医科大学第一附属医院 急诊内科 (蚌埠 233000)Department of Emergency, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 舜印 王
- 蚌埠医科大学第一附属医院 急诊内科 (蚌埠 233000)Department of Emergency, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 小凤 张
- 蚌埠医科大学第一附属医院 急诊内科 (蚌埠 233000)Department of Emergency, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学第一附属医院 中心实验室 (蚌埠 233000)Central Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 静 李
- 蚌埠医科大学第一附属医院 急诊内科 (蚌埠 233000)Department of Emergency, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学第一附属医院 中心实验室 (蚌埠 233000)Central Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 建国 胡
- 蚌埠医科大学第一附属医院 急诊内科 (蚌埠 233000)Department of Emergency, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学第一附属医院 中心实验室 (蚌埠 233000)Central Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 国玉 陆
- 蚌埠医科大学第一附属医院 急诊内科 (蚌埠 233000)Department of Emergency, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
5
|
Erdem I, Aktas S, Ogut S. Neohesperidin Dihydrochalcone Ameliorates Experimental Colitis via Anti-Inflammatory, Antioxidative, and Antiapoptosis Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15715-15724. [PMID: 38961631 DOI: 10.1021/acs.jafc.4c02731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Neohesperidin dihydrochalcone (NHDC) is a citrus-originated, seminatural sweetener. There is no investigation concerning the effect of NHDC on ulcerative colitis. The purpose of this study was to determine the therapeutic and protective effects of NHDC in Wistar Albino rats. NHDC was given for 7 days after or before colitis induction. The results showed that NHDC significantly reduced the interleukin-6 (IL-6), interleukin-10 (IL-10), transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) levels. Catalase levels did not show a significant difference between the groups. NHDC provided a remarkable decrease in the expression levels of cyclooxygenase-2 (COX-2), myeloperoxidase (MPO), malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and nuclear factor kappa B (NF-κB). Total antioxidant status (TAS) levels were significantly elevated in NHDC treatment groups, while total oxidant status (TOS) and oxidative stress index (OSI) levels were significantly decreased. NHDC provided remarkable improvement in histological symptoms such as epithelial erosion, edema, mucosal necrosis, inflammatory cell infiltration, and hemorrhage. Also, caspase-3 expression levels were statistically decreased in NHDC treatment groups. The results indicated that NHDC might be a protection or alternative treatment for ulcerative colitis.
Collapse
Affiliation(s)
- Ilayda Erdem
- Department of Nutrition and Dietetics, Aydin Adnan Menderes University, Aydin 09010, Turkey
| | - Serdar Aktas
- Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin 09010, Turkey
| | - Serdal Ogut
- Department of Nutrition and Dietetics, Aydin Adnan Menderes University, Aydin 09010, Turkey
| |
Collapse
|
6
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
7
|
Alaba TE, Holman JM, Ishaq SL, Li Y. Current Knowledge on the Preparation and Benefits of Cruciferous Vegetables as Relates to In Vitro, In Vivo, and Clinical Models of Inflammatory Bowel Disease. Curr Dev Nutr 2024; 8:102160. [PMID: 38779039 PMCID: PMC11108850 DOI: 10.1016/j.cdnut.2024.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/01/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Inflammatory bowel disease is a chronic condition with a significant economic and social burden. The disease is complex and challenging to treat because it involves several pathologies, such as inflammation, oxidative stress, dysbiosis, and intestinal damage. The search for an effective treatment has identified cruciferous vegetables and their phytochemicals as potential management options for inflammatory bowel disease because they contain prebiotics, probiotics, and anti-inflammatory and antioxidant metabolites essential for a healthy gut. This critical narrative style review provides a robust insight into the pharmacological effects and benefits of crucifers and their documented bioactive compounds in in vitro and in vivo models, as well as clinical inflammatory bowel disease. The review highlights the significant impact of crucifer preparation and the presence of glucosinolates, isothiocyanates, flavonoids, and polyphenolic compounds, which are essential for the anti-inflammatory and antioxidative benefits of cruciferous vegetables, as well as their ability to promote the healthy microbial community and maintain the intestinal barrier. This review may serve as a viable nutritional guide for future research on methods and features essential to developing experiments, preventions, and treatments for inflammatory bowel disease. There is limited clinical information and future research may utilize current innovative tools, such as metabolomics, for adequate knowledge and effective translation into clinical therapy.
Collapse
Affiliation(s)
- Tolu E Alaba
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Johanna M Holman
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, ME, United States
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, NY, United States
| |
Collapse
|
8
|
Gülada BÖ, Cam ME, Yüksel M, Akakın D, Taşkın T, Emre G, Şener G, Karakoyun B. Gilaburu (Viburnum opulus L.) fruit extract has potential therapeutic and prophylactic role in a rat model of acetic acid-induced oxidant colonic damage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117624. [PMID: 38128893 DOI: 10.1016/j.jep.2023.117624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) which has a global impact on the health care system with its recurrent and incompletely curable characteristics, affects the patients' quality of life. Gilaburu (GB; Viburnum opulus L.) is a fruit with rich polyphenol ingredient which is used ethnobotanically in Türkiye for medicinal purposes (for example, to pass kidney stones, to treat stomach, heart, and liver diseases, hemorrhages, hypertension, ulcers, common cold, tuberculosis, rheumatic and menstrual pain, and diabetes). On the other hand, the effects of GB in the experimental UC model have not been studied. AIM OF THE STUDY This study aimed to explore the potential antioxidant and anti-inflammatory effects of GB fruit extract in improving acetic acid (AA)-induced UC. MATERIALS AND METHODS Starting immediately after (AA + GB group) or 1 week before (GB + AA + GB group) the colitis induced by intrarectal AA (5%; v/v) administration, the rats orally received GB (100 mg/kg) once per day for 3 days. The control and AA groups were administered orally saline (1 ml), while the AA + SS group were administered sulfasalazine (SS; 100 mg/kg; orally) as a positive control once per day for 3 days. Distal colonic tissue specimens were obtained for the histological and biochemical [myeloperoxidase (MPO), malondialdehyde (MDA), glutathione (GSH), chemiluminescence (CL), caspase-3, 8-hydroxy-2'-deoxyguanosine (8-OHdG), matrix metalloproteinase (MMP)-9, transforming growth factor (TGF)-β1, smad-3 and cytokine (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, interferon (IFN)-γ), measurements] evaluations on the 3rd day. RESULTS Elevated macroscopic and microscopic damage scores, high tissue wet weight values, increased tissue-associated MPO, MDA, CL, caspase-3, 8-OHdG, cytokines (TNF-α, IL-1β, IL-6, IL-8), MMP-9, TGF-β1, smad-3 levels, and decreased GSH values of the AA group were all reversed by GB treatments (AA + GB and GB + AA + GB groups) (p < 0.05-0.001). However, sulfasalazine treatment (AA + SS group) did not change the IL-8, 8-OHdG, MMP-9, and TGF-β1 measurements significantly. CONCLUSIONS Gilaburu shows both anti-inflammatory and antioxidant effects against AA-induced colonic damage by suppressing neutrophil infiltration, regulating inflammatory mediators, inhibiting reactive species production, lipid peroxidation, and apoptosis, conserving endogenous antioxidant glutathione, and ameliorating oxidative DNA damage. Since the current ulcerative colitis drugs display limited benefits and adverse side effects, potential therapeutic and/or prophylactic role of gilaburu can be evaluated in ulcerative colitis.
Collapse
Affiliation(s)
- Begümhan Ömeroğlu Gülada
- Department of Nutrition and Dietetics, Institute of Health Sciences, Marmara University, Istanbul, 34854, Türkiye
| | - Muhammet Emin Cam
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Istanbul, 34406, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul, 34722, Türkiye; Biomedical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal; MecNano Technologies, Cube Incubation, Teknopark Istanbul, Istanbul, 34906, Türkiye; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, 34854, Türkiye
| | - Meral Yüksel
- Department of Medical Laboratory, Vocational School of Health-Related Professions, Marmara University, Istanbul, 34865, Türkiye
| | - Dilek Akakın
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, 34854, Türkiye
| | - Turgut Taşkın
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Türkiye
| | - Gizem Emre
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Türkiye
| | - Göksel Şener
- Department of Pharmacology, Faculty of Pharmacy, Fenerbahçe University, Istanbul, 34758, Türkiye
| | - Berna Karakoyun
- Department of Physiology, Hamidiye School of Medicine, University of Health Sciences, Istanbul, 34668, Türkiye.
| |
Collapse
|
9
|
Yuan Y, Wang F, Liu X, Shuai B, Fan H. The Role of AMPK Signaling in Ulcerative Colitis. Drug Des Devel Ther 2023; 17:3855-3875. [PMID: 38170149 PMCID: PMC10759424 DOI: 10.2147/dddt.s442154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease characterized by inflammation and ulcer formation of the intestinal mucosa. Due to its high recurrence rate, prolonged course, limited curative options, and significant impact on patients' quality of life, along with a notable potential for malignant transformation, UC is designated as a refractory global health challenge by the World Health Organization (WHO). The elucidation of the pathogenesis and therapeutic strategies for UC requires further in-depth investigation. AMP-activated protein kinase (AMPK) serves as a central regulator of cellular energy metabolic homeostasis. Emerging evidence indicates that interventions involving traditional Chinese medicine (TCM) components, as well as other pharmacological measures, exert beneficial effects on the intestinal mucosal inflammation and epithelial barrier dysfunction in UC by modulating AMPK signaling, thereby influencing biological processes such as cellular autophagy, apoptosis, inflammatory responses, macrophage polarization, and NLRP3 inflammasome-mediated pyroptosis. The role of AMPK in UC is of significant importance. This manuscript provides a comprehensive overview of the mechanisms through which AMPK is involved in UC, as well as a compilation of pharmacological agents capable of activating the AMPK signaling pathway within the context of UC. The primary objective is to facilitate a deeper comprehension of the pivotal role of AMPK in UC among researchers and clinical practitioners, thereby advancing the identification of novel therapeutic targets for interventions in UC.
Collapse
Affiliation(s)
- Yuyi Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Fang Wang
- Department of Rehabilitation Medicine, Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Jingshan, Hubei, 431800, People’s Republic of China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Bo Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| |
Collapse
|