1
|
Medikonda R, Abikenari M, Schonfeld E, Lim M. The Metabolic Orchestration of Immune Evasion in Glioblastoma: From Molecular Perspectives to Therapeutic Vulnerabilities. Cancers (Basel) 2025; 17:1881. [PMID: 40507361 PMCID: PMC12153820 DOI: 10.3390/cancers17111881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Revised: 05/28/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary brain cancer with dismal prognoses despite current standards of care. Immunotherapy is being explored for GBM, given its promising results in other solid malignancies; however, the results from early clinical studies in GBM are disappointing. It has been discovered that GBM has numerous mechanisms of immune resistance, including the physical blood-brain barrier, high intratumoral and intertumoral heterogeneity, and numerous cellular and molecular components in the tumor microenvironment (TME) that promote immunosuppression. Furthermore, GBM utilizes numerous metabolic pathways to establish a survival advantage in the TME. Recently, it has begun to become evident that these complex metabolic pathways that promote GBM growth and invasion also contribute to tumor immune resistance. Aerobic glycolysis provides tumor cells with ample ATP while depleting key glucose and increasing acidity in the TME. Increased glutamine, tryptophan, and arginine metabolism deprives T cells of these necessary amino acids for proper anti-tumor function. Sphingolipid metabolism promotes an immunosuppressive phenotype in the TME and affects immune cell trafficking. This review will discuss, in detail, the key metabolic pathways relevant to GBM pathophysiology which also modulate host immunosuppression.
Collapse
Affiliation(s)
| | | | | | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (R.M.); (M.A.); (E.S.)
| |
Collapse
|
2
|
Marotta G, Osti D, Zaccheroni E, Costanza B, Faletti S, Marinaro A, Richichi C, Mesa D, Rodighiero S, Soriani C, Migliaccio E, Ruscitto F, Priami C, Sigismund S, Manetti F, Polli D, Beznusenko GV, Rusu MC, Favero F, Corà D, Silvestris DA, Gallo A, Gambino V, Alfieri F, Gandini S, Schmitt MJ, Gargiulo G, Noberini R, Bonaldi T, Pelicci G. Metabolic traits shape responses to LSD1-directed therapy in glioblastoma tumor-initiating cells. SCIENCE ADVANCES 2025; 11:eadt2724. [PMID: 40408499 DOI: 10.1126/sciadv.adt2724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/17/2025] [Indexed: 05/25/2025]
Abstract
Lysine-specific histone demethylase 1A (LSD1) is an epigenetic regulator involved in various biological processes, including metabolic pathways. We demonstrated the therapeutic potential of its pharmacological inhibition in glioblastoma using DDP_38003 (LSD1i), which selectively targets tumor-initiating cells (TICs) by hampering their adaptability to stress. Through biological, metabolic, and omic approaches, we now show that LSD1i acts as an endoplasmic reticulum (ER) stressor, activating the integrated stress response and altering mitochondrial structure and function. These effects impair TICs' oxidative metabolism and generate reactive oxygen species, further amplifying cellular stress. LSD1i also impairs TICs' glycolytic activity, causing their metabolic decline. TICs with enhanced glycolysis benefit from LSD1-directed therapy. Conversely, metabolically silent TICs mantain ER and mitochondrial homeostasis, adapting to stress conditions, including LSD1i treatment. A dropout short hairpin RNA screening identifies postglycosylphosphatidylinositol attachment to proteins inositol deacylase 1 (PGAP1) as a mediator of resistance to LSD1i. Disruptions in ER and mitochondrial balance holds promise for improving LSD1-targeted therapy efficacy and overcoming treatment resistance.
Collapse
Affiliation(s)
- Giulia Marotta
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Daniela Osti
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Elena Zaccheroni
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Brunella Costanza
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Stefania Faletti
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
- Human Technopole, Viale Rita Levi-Montalcini, 1, Milan 20157, Italy
| | - Adriana Marinaro
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Cristina Richichi
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Deborah Mesa
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Chiara Soriani
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Enrica Migliaccio
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Federica Ruscitto
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Chiara Priami
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Sara Sigismund
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan Italy
| | | | - Dario Polli
- Department of Physics, Politecnico di Milano, Milan, Italy
- CNR Institute for Photonics and Nanotechnology (CNR-IFN), Milan, Italy
| | | | - Mara-Camelia Rusu
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Francesco Favero
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara 28100, Italy
| | - Davide Corà
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara 28100, Italy
| | - Domenico A Silvestris
- Unit of Genetics and Epigenetic of Pediatric Cancer, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù, Viale di San Paolo 15, Rome 00146, Italy
| | - Angela Gallo
- Unit of Genetics and Epigenetic of Pediatric Cancer, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù, Viale di San Paolo 15, Rome 00146, Italy
| | - Valentina Gambino
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Fabio Alfieri
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Matthias J Schmitt
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Gaetano Gargiulo
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan Italy
| | - Giuliana Pelicci
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy
| |
Collapse
|
3
|
Riyas Mohamed FR, Yaqinuddin A. Epigenetic reprogramming and antitumor immune responses in gliomas: a systematic review. Med Oncol 2025; 42:213. [PMID: 40380049 DOI: 10.1007/s12032-025-02760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/28/2025] [Indexed: 05/19/2025]
Abstract
Gliomas, particularly glioblastoma, are among the most aggressive and treatment-resistant brain tumors. Their immunosuppressive tumor microenvironment (TME) and intrinsic molecular heterogeneity hinder effective therapeutic responses. Epigenetic dysregulation in gliomas significantly impacts tumor progression and immune evasion, presenting an opportunity for therapeutic intervention. This systematic review evaluates the role of epigenetic reprogramming in modulating antitumor immune responses in gliomas and explores its potential to enhance treatment outcomes. A comprehensive literature search across major databases, adhering to PRISMA guidelines, identified preclinical and clinical studies examining the effects of epigenetic therapies on glioma-associated immune modulation. Inclusion criteria focused on studies involving DNA methylation inhibitors, histone deacetylase inhibitors, chromatin remodelers, and non-coding RNA-based therapies. Key outcomes included immune activation, tumor progression, survival, and TME modulation. Among 22 included studies, epigenetic therapies demonstrated substantial efficacy in reprogramming the glioma immune landscape. DNA methylation inhibitors such as decitabine enhanced antigen presentation and immune recognition, while histone deacetylase inhibitors improved T-cell-mediated cytotoxicity. Non-coding RNA-targeted interventions disrupted immune suppression and facilitated immune cell infiltration. These strategies showed synergistic potential with immune checkpoint inhibitors, leading to tumor growth inhibition and improved survival in preclinical models. Epigenetic therapies hold promise in overcoming glioma-induced immune resistance by modulating immune escape mechanisms and reprogramming the TME. Their integration with existing treatment modalities, including immunotherapy, represents a transformative avenue for glioma management. Further clinical validation is warranted to optimize their therapeutic potential and safety.
Collapse
|
4
|
Fuse H, Zheng Y, Alzoubi I, Graeber MB. TAMing Gliomas: Unraveling the Roles of Iba1 and CD163 in Glioblastoma. Cancers (Basel) 2025; 17:1457. [PMID: 40361384 PMCID: PMC12070867 DOI: 10.3390/cancers17091457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Gliomas, the most common type of primary brain tumor, are a significant cause of morbidity and mortality worldwide. Glioblastoma, a highly malignant subtype, is particularly common, aggressive, and resistant to treatment. The tumor microenvironment (TME) of gliomas, especially glioblastomas, is characterized by a distinct presence of tumor-associated macrophages (TAMs), which densely infiltrate glioblastomas, a hallmark of these tumors. This macrophage population comprises both tissue-resident microglia as well as macrophages derived from the walls of blood vessels and the blood stream. Ionized calcium-binding adapter molecule 1 (Iba1) and CD163 are established cellular markers that enable the identification and functional characterization of these cells within the TME. This review provides an in-depth examination of the roles of Iba1 and CD163 in malignant gliomas, with a focus on TAM activation, migration, and immunomodulatory functions. Additionally, we will discuss how recent advances in AI-enhanced cell identification and visualization techniques have begun to transform the analysis of TAMs, promising unprecedented precision in their characterization and providing new insights into their roles within the TME. Iba1 and CD163 appear to have both unique and shared roles in glioma pathobiology, and both have the potential to be targeted through different molecular and cellular mechanisms. We discuss the therapeutic potential of Iba1 and CD163 based on available preclinical (experimental) and clinical (human tissue-based) evidence.
Collapse
Affiliation(s)
- Haneya Fuse
- School of Medicine, Sydney Campus, University of Notre Dame, 160 Oxford Street, Sydney, NSW 2010, Australia;
| | - Yuqi Zheng
- Ken Parker Brain Tumor Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia;
| | - Islam Alzoubi
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Sydney, NSW 2008, Australia;
| | - Manuel B. Graeber
- Ken Parker Brain Tumor Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia;
- University of Sydney Association of Professors (USAP), University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Shahani A, Slika H, Elbeltagy A, Lee A, Peters C, Dotson T, Raj D, Tyler B. The epigenetic mechanisms involved in the treatment resistance of glioblastoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:12. [PMID: 40201311 PMCID: PMC11977385 DOI: 10.20517/cdr.2024.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 04/10/2025]
Abstract
Glioblastoma (GBM) is an aggressive malignant brain tumor with almost inevitable recurrence despite multimodal management with surgical resection and radio-chemotherapy. While several genetic, proteomic, cellular, and anatomic factors interplay to drive recurrence and promote treatment resistance, the epigenetic component remains among the most versatile and heterogeneous of these factors. Herein, the epigenetic landscape of GBM refers to a myriad of modifications and processes that can alter gene expression without altering the genetic code of cancer cells. These processes encompass DNA methylation, histone modification, chromatin remodeling, and non-coding RNA molecules, all of which have been found to be implicated in augmenting the tumor's aggressive behavior and driving its resistance to therapeutics. This review aims to delve into the underlying interactions that mediate this role for each of these epigenetic components. Further, it discusses the two-way relationship between epigenetic modifications and tumor heterogeneity and plasticity, which are crucial to effectively treat GBM. Finally, we build on the previous characterization of epigenetic modifications and interactions to explore specific targets that have been investigated for the development of promising therapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
6
|
Zhan L, Zeng F, Zheng J, Chen S, Zhang Z, Ju D. Exploring the regulatory role of CNPY3 as a prognostic biomarker on human glioma cell migration, invasion and immune infiltration. Cancer Biomark 2025; 42:18758592251328162. [PMID: 40171811 DOI: 10.1177/18758592251328162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
BackgroundCanopy FGF signalling regulator 3 (CNPY3) is involved in immune regulation, tumorigenesis and development, nevertheless, its role in glioma remains largely unexplored. Our study aimed to explore the regulatory role of CNPY3 as a prognostic biomarker in human glioma cell migration, invasion and immune infiltration.MethodsBioinformatics analysis of CNPY3 and clinical relevance of glioma in public databases was performed. COX regression analysis was performed to assess the relationship between CNPY3 and glioma prognosis. GO and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to predict the signaling pathways of CNPY3 in gliomas. Tumor immune infiltration was explored using TIMER, CIBERSORT, and Pearson correlation analysis. GSVA analysis and single-cell sequencing data were employed for further validation. The effects of CNPY3 on the migration and invasion of glioma cells were investigated through cell scratch assay and transwell assay.ResultsCNPY3 was positively correlated with IDH mutation status, 1p/19q status, histopathologic grade, and MGMT promoter methylation status, but negatively with the overall survival of glioma patients (P < 0.05). CNPY3 was significantly associated with tumor immune response, inflammatory response, and lipopolysaccharide-mediated signaling pathway. CNPY3 influenced different types of immune cells which affected the immune microenvironment of glioma. CNPY3 promoted the increase of M2 macrophage and was negatively correlated with the positive regulation of macrophages apoptotic process. In vitro data suggested the promotion of CNPY3 in U87MG cells was associated with an increased capacity for cell migration and invasion (P < 0.05). Tumor drug sensitivity analysis showed more sensitivity towards temozolomide, irinotecan, and cisplatin among high CNPY3 expression patients (P < 0.05).ConclusionIncreased CNPY3 expression impacts the immune microenvironment of glioma and enhances the migration and invasion of glioma. CNPY3 is recommended as a prognostic biomarker for glioma patients.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fanyue Zeng
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Zheng
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Sijing Chen
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhiyun Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Donghui Ju
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
D’Aprile S, Denaro S, Gervasi A, Vicario N, Parenti R. Targeting metabolic reprogramming in glioblastoma as a new strategy to overcome therapy resistance. Front Cell Dev Biol 2025; 13:1535073. [PMID: 40078366 PMCID: PMC11897528 DOI: 10.3389/fcell.2025.1535073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Glioblastoma (GBM) is one of the deadliest tumors due to its high aggressiveness and resistance to standard therapies, resulting in a dismal prognosis. This lethal tumor carries out metabolic reprogramming in order to modulate specific pathways, providing metabolites that promote GBM cells proliferation and limit the efficacy of standard treatments. Indeed, GBM remodels glucose metabolism and undergoes Warburg effect, fuelling glycolysis even when oxygen is available. Moreover, recent evidence revealed a rewiring in nucleotide, lipid and iron metabolism, resulting not only in an increased tumor growth, but also in radio- and chemo-resistance. Thus, while on the one hand metabolic reprogramming is an advantage for GBM, on the other hand it may represent an exploitable target to hamper GBM progression. Lately, a number of studies focused on drugs targeting metabolism to uncover their effects on tumor proliferation and therapy resistance, demonstrating that some of these are effective, in combination with conventional treatments, sensitizing GBM to radiotherapy and chemotherapy. However, GBM heterogeneity could lead to a plethora of metabolic alterations among subtypes, hence a metabolic treatment might be effective for proneural tumors but not for mesenchymal ones, which are more aggressive and resistant to conventional approaches. This review explores key mechanisms of GBM metabolic reprogramming and their involvement in therapy resistance, highlighting how metabolism acts as a double-edged sword for GBM, taking into account metabolic pathways that seem to offer promising treatment options for GBM.
Collapse
Affiliation(s)
| | | | | | | | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
8
|
Sherif ZA, Ogunwobi OO, Ressom HW. Mechanisms and technologies in cancer epigenetics. Front Oncol 2025; 14:1513654. [PMID: 39839798 PMCID: PMC11746123 DOI: 10.3389/fonc.2024.1513654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
Cancer's epigenetic landscape, a labyrinthine tapestry of molecular modifications, has long captivated researchers with its profound influence on gene expression and cellular fate. This review discusses the intricate mechanisms underlying cancer epigenetics, unraveling the complex interplay between DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. We navigate through the tumultuous seas of epigenetic dysregulation, exploring how these processes conspire to silence tumor suppressors and unleash oncogenic potential. The narrative pivots to cutting-edge technologies, revolutionizing our ability to decode the epigenome. From the granular insights of single-cell epigenomics to the holistic view offered by multi-omics approaches, we examine how these tools are reshaping our understanding of tumor heterogeneity and evolution. The review also highlights emerging techniques, such as spatial epigenomics and long-read sequencing, which promise to unveil the hidden dimensions of epigenetic regulation. Finally, we probed the transformative potential of CRISPR-based epigenome editing and computational analysis to transmute raw data into biological insights. This study seeks to synthesize a comprehensive yet nuanced understanding of the contemporary landscape and future directions of cancer epigenetic research.
Collapse
Affiliation(s)
- Zaki A. Sherif
- Department of Biochemistry & Molecular Biology, Howard University College of Medicine, Washington, DC, United States
| | - Olorunseun O. Ogunwobi
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Habtom W. Ressom
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
9
|
Dakal TC, Kakde GS, Maurya PK. Genomic, epigenomic and transcriptomic landscape of glioblastoma. Metab Brain Dis 2024; 39:1591-1611. [PMID: 39180605 DOI: 10.1007/s11011-024-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
The mostly aggressive and extremely malignant type of central nervous system is Glioblastoma (GBM), which is characterized by an extremely short average survival time of lesser than 16 months. The primary cause of this phenomenon can be attributed to the extensively altered genome of GBM, which is characterized by the dysregulation of numerous critical signaling pathways and epigenetics regulations associated with proliferation, cellular growth, survival, and apoptosis. In light of this, different genetic alterations in critical signaling pathways and various epigenetics regulation mechanisms are associated with GBM and identified as distinguishing markers. Such GBM prognostic alterations are identified in PI3K/AKT, p53, RTK, RAS, RB, STAT3 and ZIP4 signaling pathways, metabolic pathway (IDH1/2), as well as alterations in epigenetic regulation genes (MGMT, CDKN2A-p16INK4aCDKN2B-p15INK4b). The exploration of innovative diagnostic and therapeutic approaches that specifically target these pathways is utmost importance to enhance the future medication for GBM. This study provides a comprehensive overview of dysregulated epigenetic mechanisms and signaling pathways due to mutations, methylation, and copy number alterations of in critical genes in GBM with prevalence and emphasizing their significance.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia, University, Udaipur, Rajasthan, 313001, India.
| | - Ganesh S Kakde
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| |
Collapse
|
10
|
Majumder A, Bano S, Nayak KB. The Pivotal Role of One-Carbon Metabolism in Neoplastic Progression During the Aging Process. Biomolecules 2024; 14:1387. [PMID: 39595564 PMCID: PMC11591851 DOI: 10.3390/biom14111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
One-carbon (1C) metabolism is a complex network of metabolic reactions closely related to producing 1C units (as methyl groups) and utilizing them for different anabolic processes, including nucleotide synthesis, methylation, protein synthesis, and reductive metabolism. These pathways support the high proliferative rate of cancer cells. While drugs that target 1C metabolism (like methotrexate) have been used for cancer treatment, they often have significant side effects. Therefore, developing new drugs with minimal side effects is necessary for effective cancer treatment. Methionine, glycine, and serine are the main three precursors of 1C metabolism. One-carbon metabolism is vital not only for proliferative cells but also for non-proliferative cells in regulating energy homeostasis and the aging process. Understanding the potential role of 1C metabolism in aging is crucial for advancing our knowledge of neoplastic progression. This review provides a comprehensive understanding of the molecular complexities of 1C metabolism in the context of cancer and aging, paving the way for researchers to explore new avenues for developing advanced therapeutic interventions for cancer.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Shabana Bano
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Kasturi Bala Nayak
- Quantitative Biosciences Institute, Department of Medicine, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Xiong J, Zhou X, Su L, Jiang L, Ming Z, Pang C, Fuller C, Xu K, Chi H, Zheng X. The two-sided battlefield of tumour-associated macrophages in glioblastoma: unravelling their therapeutic potential. Discov Oncol 2024; 15:590. [PMID: 39453528 PMCID: PMC11511804 DOI: 10.1007/s12672-024-01464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Gliomas are the most common primary malignant tumours of the central nervous system (CNS), which are highly aggressive, with increasing morbidity and mortality rates year after year, posing a serious threat to the quality and expected survival time of patients. The treatment of gliomas is a major challenge in the field of neuro-oncology, especially high-grade gliomas such as glioblastomas (GBMs). Despite considerable progress in recent years in the study of the molecular and cellular mechanisms of GBMs, their prognosis remains bleak. Tumour-associated macrophages (TAMs) account for up to 50% of GBMs, and they are a highly heterogeneous cell population whose role cannot be ignored. Here, we focus on reviewing the contribution of classically activated M1-phenotype TAMs and alternatively activated M2-phenotype TAMs to GBMs, and exploring the research progress in reprogramming M1 TAMs into M2 TAMs.
Collapse
Affiliation(s)
- Jingwen Xiong
- Department of Sports Rehabilitation, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xuancheng Zhou
- Clinical Medical College, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Lanqian Su
- Clinical Medical College, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Lai Jiang
- Clinical Medical College, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ziwei Ming
- Department of Sports Rehabilitation, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Can Pang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Claire Fuller
- Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21224, USA
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.
| | - Hao Chi
- Clinical Medical College, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Xiaomei Zheng
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
12
|
Sbai O, Torrisi F, Fabrizio FP, Rabbeni G, Perrone L. Effect of the Mediterranean Diet (MeDi) on the Progression of Retinal Disease: A Narrative Review. Nutrients 2024; 16:3169. [PMID: 39339769 PMCID: PMC11434766 DOI: 10.3390/nu16183169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Worldwide, the number of individuals suffering from visual impairment, as well as those affected by blindness, is about 600 million and it will further increase in the coming decades. These diseases also seriously affect the quality of life in working-age individuals. Beyond the characterization of metabolic, genetic, and environmental factors related to ocular pathologies, it is important to verify how lifestyle may participate in the induction of the molecular pathways underlying these diseases. On the other hand, scientific studies are also contributing to investigations as to whether lifestyle could intervene in modulating pathophysiological cellular responses, including the production of metabolites and neurohormonal factors, through the intake of natural compounds capable of interfering with molecular mechanisms that lead to ocular diseases. Nutraceuticals are promising in ameliorating pathophysiological complications of ocular disease such as inflammation and neurodegeneration. Moreover, it is important to characterize the nutritional patterns and/or natural compounds that may be beneficial against certain ocular diseases. The adherence to the Mediterranean diet (MeDi) is proposed as a promising intervention for the prevention and amelioration of several eye diseases. Several characteristic compounds and micronutrients of MeDi, including vitamins, carotenoids, flavonoids, and omega-3 fatty acids, are proposed as adjuvants against several ocular diseases. In this review, we focus on studies that analyze the effects of MeDi in ameliorating diabetic retinopathy, macular degeneration, and glaucoma. The analysis of knowledge in this field is requested in order to provide direction on recommendations for nutritional interventions aimed to prevent and ameliorate ocular diseases.
Collapse
Affiliation(s)
- Oualid Sbai
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Institut Pasteur de Tunis, Tunis 1068, Tunisia
| | - Filippo Torrisi
- Faculty of Medicine and Surgery, University KORE of Enna, 94100 Enna, Italy
| | | | - Graziella Rabbeni
- Faculty of Medicine and Surgery, University KORE of Enna, 94100 Enna, Italy
| | - Lorena Perrone
- Faculty of Medicine and Surgery, University KORE of Enna, 94100 Enna, Italy
| |
Collapse
|
13
|
Wen J, Liu D, Zhu H, Shu K. Microenvironmental regulation of tumor-associated neutrophils in malignant glioma: from mechanism to therapy. J Neuroinflammation 2024; 21:226. [PMID: 39285276 PMCID: PMC11406851 DOI: 10.1186/s12974-024-03222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Glioma is the most common primary intracranial tumor in adults, with high incidence, recurrence, and mortality rates. Tumor-associated neutrophils (TANs) are essential components of the tumor microenvironment (TME) in glioma and play a crucial role in glioma cell proliferation, invasion and proneural-mesenchymal transition. Besides the interactions between TANs and tumor cells, the multi-dimensional crosstalk between TANs and other components within TME have been reported to participate in glioma progression. More importantly, several therapies targeting TANs have been developed and relevant preclinical and clinical studies have been conducted in cancer therapy. In this review, we introduce the origin of TANs and the functions of TANs in malignant behaviors of glioma, highlighting the microenvironmental regulation of TANs. Moreover, we focus on summarizing the TANs-targeted methods in cancer therapy, aiming to provide insights into the mechanisms and therapeutic opportunities of TANs in the malignant glioma microenvironment.
Collapse
Affiliation(s)
- Jiayi Wen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Dan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
14
|
D'Aprile S, Denaro S, Lavoro A, Candido S, Giallongo S, Torrisi F, Salvatorelli L, Lazzarino G, Amorini AM, Lazzarino G, Magro G, Tibullo D, Libra M, Giallongo C, Vicario N, Parenti R. Glioblastoma mesenchymal subtype enhances antioxidant defence to reduce susceptibility to ferroptosis. Sci Rep 2024; 14:20770. [PMID: 39237744 PMCID: PMC11377710 DOI: 10.1038/s41598-024-72024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024] Open
Abstract
Glioblastoma (GBM) represents an aggressive brain tumor, characterized by intra- and inter-tumoral heterogeneity and therapy resistance, leading to unfavourable prognosis. An increasing number of studies pays attention on the regulation of ferroptosis, an iron-dependent cell death, as a strategy to reverse drug resistance in cancer. However, the debate on whether this strategy may have important implications for the treatment of GBM is still ongoing. In the present study, we used ferric ammonium citrate and erastin to evaluate ferroptosis induction effects on two human GBM cell lines, U-251 MG, with proneural characteristics, and T98-G, with a mesenchymal profile. The response to ferroptosis induction was markedly different between cell lines, indeed T98-G cells showed an enhanced antioxidant defence, with increased glutathione levels, as compared to U-251 MG cells. Moreover, using bioinformatic approaches and analysing publicly available datasets from patients' biopsies, we found that GBM with a mesenchymal phenotype showed an up-regulation of several genes involved in antioxidant mechanisms as compared to proneural subtype. Thus, our results suggest that GBM subtypes differently respond to ferroptosis induction, emphasizing the significance of further molecular studies on GBM to better discriminate between various tumor subtypes and progressively move towards personalized therapy.
Collapse
Affiliation(s)
- Simona D'Aprile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Simona Denaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Filippo Torrisi
- Department of Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies, F. Ingrassia, University of Catania, 95123, Catania, Italy
| | - Giacomo Lazzarino
- Departmental Faculty of Medicine, UniCamillus-Saint Camillus International University of Health Sciences, Via Di Sant'Alessandro 8, 00131, Rome, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies, F. Ingrassia, University of Catania, 95123, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies, F. Ingrassia, University of Catania, 95123, Catania, Italy.
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| |
Collapse
|
15
|
Loginova N, Aniskin D, Timashev P, Ulasov I, Kharwar RK. GBM Immunotherapy: Macrophage Impacts. Immunol Invest 2024; 53:730-751. [PMID: 38634572 DOI: 10.1080/08820139.2024.2337022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND Glioblastoma (GBM) is an extremely aggressive form of brain tumor with low survival rates. Current treatments such as chemotherapy, radiation, and surgery are problematic due to tumor growth, invasion, and tumor microenvironment. GBM cells are resistant to these standard treatments, and the heterogeneity of the tumor makes it difficult to find a universal approach. Progression of GBM and acquisition of resistance to therapy are due to the complex interplay between tumor cells and the TME. A significant portion of the TME consists of an inflammatory infiltrate, with microglia and macrophages being the predominant cells. METHODS Analysis of the literature data over a course of 5 years suggest that the tumor-associated macrophages (TAMs) are capable of releasing cytokines and growth factors that promote tumor proliferation, survival, and metastasis while inhibiting immune cell function at the same time. RESULTS Thus, immunosuppressive state, provided with this intensively studied kind of TME cells, is supposed to promote GBM development through TAMs modulation of tumor treatment-resistance and aggressiveness. Therefore, TAMs are an attractive therapeutic target in the treatment of glioblastoma. CONCLUSION This review provides a comprehensive overview of the latest research on the nature of TAMs and the development of therapeutic strategies targeting TAMs, focusing on the variety of macrophage properties, being modulated, as well as molecular targets.
Collapse
Affiliation(s)
- Nina Loginova
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Denis Aniskin
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Peter Timashev
- World-Class Research Centre "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Rajesh Kumar Kharwar
- Endocrine Research Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
16
|
Broggi G, Angelico G, Farina J, Tinnirello G, Barresi V, Zanelli M, Palicelli A, Certo F, Barbagallo G, Magro G, Caltabiano R. Tumor-associated microenvironment, PD-L1 expression and their relationship with immunotherapy in glioblastoma, IDH-wild type: A comprehensive review with emphasis on the implications for neuropathologists. Pathol Res Pract 2024; 254:155144. [PMID: 38277747 DOI: 10.1016/j.prp.2024.155144] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Although novel knowledge has been acquired on the molecular landscape of glioblastoma (GBM), a relatively few steps forward have been made regarding its therapy. With the increasing use of novel immunotherapeutic drugs capable of stimulating the antitumor inflammatory response, in the last decades numerous studies aimed to characterize the tumor-associated microenvironment (TME) and its relationship with the immunogenicity of GBM. In this regard, although the tumor-associated microglia and macrophages (TAMs) and PD-L1/PD-1 axis have been emerged as one of the most relevant components of the GBM TME and one of the potential molecular pathways targetable with immunotherapy, respectively. It has been supposed that TAMs may acquire different phenotypes, switching from M1 to M2 phenotypes, with tumor-suppressive and tumor-stimulating role depending on the different surrounding conditions. PD-L1 is a type 1 transmembrane protein ligand expressed by T-cells, B-cells and antigen-presenting cells, with a main inhibitory checkpoint role on tumor immune regulation. While PD-L1 immunohistochemical expression has been extensively investigated in many cancers, its usefulness in the evaluation of GBM response rates to immunotherapy and its standardized evaluation by immunohistochemistry are still debated. The present review paper focuses on the current "state of the art" about the relationship between TME, PD-L1/PD-1 pathway and immunotherapy in GBM, also providing neuropathologists with an updated guide about the clinical trials conducted with PD-L1 and PD-1 inhibitors.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy.
| | - Giuseppe Angelico
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Jessica Farina
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Giordana Tinnirello
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona 37134, Italy
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42123, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42123, Italy
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Catania 95121, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania 95123, Italy
| | - Giuseppe Barbagallo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Catania 95121, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania 95123, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| |
Collapse
|
17
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Emerging trends in post-translational modification: Shedding light on Glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2023; 1878:188999. [PMID: 37858622 DOI: 10.1016/j.bbcan.2023.188999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Recent multi-omics studies, including proteomics, transcriptomics, genomics, and metabolomics have revealed the critical role of post-translational modifications (PTMs) in the progression and pathogenesis of Glioblastoma multiforme (GBM). Further, PTMs alter the oncogenic signaling events and offer a novel avenue in GBM therapeutics research through PTM enzymes as potential biomarkers for drug targeting. In addition, PTMs are critical regulators of chromatin architecture, gene expression, and tumor microenvironment (TME), that play a crucial function in tumorigenesis. Moreover, the implementation of artificial intelligence and machine learning algorithms enhances GBM therapeutics research through the identification of novel PTM enzymes and residues. Herein, we briefly explain the mechanism of protein modifications in GBM etiology, and in altering the biologics of GBM cells through chromatin remodeling, modulation of the TME, and signaling pathways. In addition, we highlighted the importance of PTM enzymes as therapeutic biomarkers and the role of artificial intelligence and machine learning in protein PTM prediction.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India.
| |
Collapse
|
18
|
Mowforth OD, Brannigan J, El Khoury M, Sarathi CIP, Bestwick H, Bhatti F, Mair R. Personalised therapeutic approaches to glioblastoma: A systematic review. Front Med (Lausanne) 2023; 10:1166104. [PMID: 37122327 PMCID: PMC10140534 DOI: 10.3389/fmed.2023.1166104] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Glioblastoma is the most common and malignant primary brain tumour with median survival of 14.6 months. Personalised medicine aims to improve survival by targeting individualised patient characteristics. However, a major limitation has been application of targeted therapies in a non-personalised manner without biomarker enrichment. This has risked therapies being discounted without fair and rigorous evaluation. The objective was therefore to synthesise the current evidence on survival efficacy of personalised therapies in glioblastoma. Methods Studies reporting a survival outcome in human adults with supratentorial glioblastoma were eligible. PRISMA guidelines were followed. MEDLINE, Embase, Scopus, Web of Science and the Cochrane Library were searched to 5th May 2022. Clinicaltrials.gov was searched to 25th May 2022. Reference lists were hand-searched. Duplicate title/abstract screening, data extraction and risk of bias assessments were conducted. A quantitative synthesis is presented. Results A total of 102 trials were included: 16 were randomised and 41 studied newly diagnosed patients. Of 5,527 included patients, 59.4% were male and mean age was 53.7 years. More than 20 types of personalised therapy were included: targeted molecular therapies were the most studied (33.3%, 34/102), followed by autologous dendritic cell vaccines (32.4%, 33/102) and autologous tumour vaccines (10.8%, 11/102). There was no consistent evidence for survival efficacy of any personalised therapy. Conclusion Personalised glioblastoma therapies remain of unproven survival benefit. Evidence is inconsistent with high risk of bias. Nonetheless, encouraging results in some trials provide reason for optimism. Future focus should address target-enriched trials, combination therapies, longitudinal biomarker monitoring and standardised reporting.
Collapse
Affiliation(s)
- Oliver D. Mowforth
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom
| | - Jamie Brannigan
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, United Kingdom
| | - Marc El Khoury
- School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | | | - Harry Bestwick
- School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Faheem Bhatti
- School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Richard Mair
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom
- *Correspondence: Richard Mair,
| |
Collapse
|