1
|
Li Y, Li Y, Liu X, Bi J, Liu J, Li W, Li H, Wang S, Ma J. Zinc Attenuates Bisphenol A-Induced Reproductive Toxicity in Male Mice by Inhibiting Ferroptosis and Apoptosis Through Improving Zinc Homeostasis. Biol Trace Elem Res 2025; 203:4198-4210. [PMID: 39645636 DOI: 10.1007/s12011-024-04473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Bisphenol A (BPA) is a contaminant widely found in food packaging that can reduce sperm quality and impair male fertility. Zinc (Zn) is an important antioxidant involved in many important biological functions. The aim of this study was to explore the protective effect and mechanism of Zn on reproductive toxicity induced by BPA. Male ICR mice were divided into a control group, a BPA group and a BPA + Zn group. The results showed that the body weight, sperm count and sperm motility of the animals in the BPA group were significantly reduced, and testicular structure was damaged. BPA decreased the levels of serum total Zn, testis-free zinc, ADH and ALP, upregulated the expression of ZnT4 protein, and down-regulated the expression levels of ZIP8, ZIP14, ZnT1, MT and MTF1 protein, resulting in the imbalance of testicular Zn homeostasis. BPA down-regulates the antioxidant enzymes SOD and GSH-Px, and increases MDA, leading to oxidative stress. BPA up-regulates TF, TFR and STEAP3 and down-regulates SLC7A11, GPX4, FPN1 and FTH protein levels, resulting in abnormal iron metabolism and ferroptosis. BPA down-regulated anti-apoptotic protein Bcl-2, up-regulated pro-apoptotic markers Bax, caspase-9, caspase-8 and caspase-3, and induced apoptosis. BPA also increased the phosphorylation of JNK and ERK1/2, but did not increase the phosphorylation of P38. Zn significantly increased body weight and sperm quality, improved testicular morphology, down-regulated p-JNK/JNK and p-ERK/ERK levels, improved oxidative stress, and reduced ferroptosis and apoptosis. In conclusion, Zn regulates Zn homeostasis and down-regulates the MAPK signaling pathway, thereby inhibiting ferroptosis and apoptosis, alleviating BPA-induced oxidative stress and ultimately improving male reproductive damage.
Collapse
Affiliation(s)
- Yuejia Li
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yuanjing Li
- Department of College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Xuan Liu
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Jiajie Bi
- Graduate School of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Junsheng Liu
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Wen Li
- Hebei Chest Hospital, Shijiazhuang, 050041, Hebei, China
| | - Huanhuan Li
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, Hebei, China
| | - Shusong Wang
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- Department of College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
- Graduate School of Chengde Medical University, Chengde, 067000, Hebei, China.
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, Hebei, China.
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, Hebei, China.
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
2
|
Liu K, Yajunchen, Wang X, Zhao M, Wu S, An R. Detection of sperm DNA damage in male infertility patients and evaluation of Levocarnitine efficacy using sperm chromatin diffusion (SCD) and AI-DFI methods: a cross-sectional study. Eur J Med Res 2025; 30:210. [PMID: 40148907 PMCID: PMC11951513 DOI: 10.1186/s40001-025-02480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
The objective of this study was to elucidate the relationship between sperm DNA damage and sperm parameters in male infertility patients and to assess the changes in sperm DNA fragmentation index before and after treatment with Levocarnitine in patients with asthenozoospermia and oligozoospermia. The results of 508 patients' semen samples tested between August 2021 and December 2022 in our Department of Urology and Reproductive Medicine were retrospectively analyzed. The 508 patients were divided into 3 groups: normal semen group (n = 181), asthenozoospermia group (n = 170), and oligozoospermia group (n = 157). Their sperm DNA integrity was evaluated using the sperm chromatin diffusion (SCD) method and an artificial Intelligence-based DNA fragmentation index (AI-DFI). The patients were divided into two groups based on the assessment of sperm DNA integrity: a sperm DNA damage group and a sperm DNA integrity group. The two groups were then compared in terms of sperm concentration, motility, viability, and the proportion of normal sperm morphology. Pearson's correlation coefficient analysis was employed to examine the relationship between sperm DNA damage and semen parameters. The results showed that sperm concentration, progressive motility, viability, and normal morphology rate were significantly lower in the DNA damaged group, and correlation analysis showed that the results of sperm DNA damage detection was negatively correlated with these semen parameters. And the DNA fragmentation index (DFI) was highest in the asthenozoospermia group, followed by the oligospermia group and the normal group, with significant differences between the groups (20.30 ± 2.85; 18.62 ± 2.42; 12.83 ± 2.13, P = 0.01). Treatment of patients in the group with sperm DNA damage with Levocarnitine oral solution was found to significantly improve sperm concentration, progressive motility, viability, normal morphology rate, and DFI results after its use (t = 7.265, 5.823, 7.750, 8.737, 8.355; P = 0.03, 0.02, 0.02, 0.03, 0.01). This study concludes that men with asthenozoospermia and oligozoospermia have a high DFI, and Levocarnitine is effective in reducing DNA damage and improving sperm quality, suggesting that Levocarnitine has potential for clinical use.
Collapse
Affiliation(s)
- Kangsheng Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shannxi, China
- Department of Clinical Laboratory, Women'S Hospital of Nanjing Medical University, Nanjing Women and Children'S Healthcare Hospital, Nanjing, 210029, Jiangsu, China
| | - Yajunchen
- Department of Clinical Laboratory, Women'S Hospital of Nanjing Medical University, Nanjing Women and Children'S Healthcare Hospital, Nanjing, 210029, Jiangsu, China
| | - Xiangdong Wang
- Department of Clinical Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Mengjie Zhao
- Department of Neuro-Psychiatric Institute, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Shimin Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ruifang An
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shannxi, China.
| |
Collapse
|
3
|
Antinozzi C, Di Luigi L, Sireno L, Caporossi D, Dimauro I, Sgrò P. Protective Role of Physical Activity and Antioxidant Systems During Spermatogenesis. Biomolecules 2025; 15:478. [PMID: 40305156 PMCID: PMC12024800 DOI: 10.3390/biom15040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
Oxidative stress is a significant factor that contributes to male infertility and sperm dysfunction. In this condition, an increase in ROS production exceeds the body's antioxidant defenses, resulting in a decline in spermatozoa quality and fertilizing capacity. Furthermore, excessive ROS production has been linked to the promotion of genomic damage, lipid peroxidation, inflammation, altered enzyme activity, and ultimately, irreversible alterations, cell death, and a decline in seminal parameters associated with male infertility. It is established that physical activity (PA), acting on inflammatory parameters and improving antioxidant defense, can alleviate the negative effects caused by free radicals, offering numerous health benefits and positively influencing sperm quality. The objective of this review is to highlight the mechanisms of ROS production, the physiological and pathophysiological roles of ROS in relation to the male reproductive system, and recent knowledge on the impact of some protocols of PA on these systems and the molecular mechanisms involved.
Collapse
Affiliation(s)
- Cristina Antinozzi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy (P.S.)
| | - Luigi Di Luigi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy (P.S.)
| | - Laura Sireno
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis 15, 00135 Rome, Italy; (L.S.); (I.D.)
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis 15, 00135 Rome, Italy; (L.S.); (I.D.)
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis 15, 00135 Rome, Italy; (L.S.); (I.D.)
| | - Paolo Sgrò
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy (P.S.)
| |
Collapse
|
4
|
Tabatabaei Vakili S, Zeidi R, Nabhani R. Protective Effect of B1 and B12 Vitamins on Post-Thaw Sperm Quality Parameters and Seminal Plasma Antioxidant Status in Rams. Vet Med Sci 2025; 11:e70241. [PMID: 39912715 PMCID: PMC11800371 DOI: 10.1002/vms3.70241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/26/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Sperm membranes, rich in polyunsaturated fatty acids, are highly susceptible to lipid peroxidation. Oxidative stress significantly impacts sperm function, and B-group vitamins play a crucial role in mitigating this damage. OBJECTIVE This study investigated the effects of vitamins B1 (VitB1) and B12 (VitB12) on sperm quality and seminal antioxidant status following cryopreservation in Arabi rams. METHODS Semen was collected from 10 Arabi rams and pooled. The pooled semen was diluted and cryopreserved with varying concentrations of VitB1 and VitB12 (0, 0.5, 1, 2 and 4 mg/mL). Post-thaw sperm quality parameters, including motility, viability, membrane integrity and morphology, were assessed. In addition, seminal antioxidant enzyme activities and lipid peroxidation were evaluated. RESULTS Supplementation with 1 mg/mL VitB12 and 0.5-1 mg/mL VitB1 significantly enhanced post-thaw sperm motility, viability, membrane integrity and morphology. This was accompanied by a reduction in malondialdehyde (MDA) levels. The highest total antioxidant capacity (TAC) was observed with 1 mg/mL VitB12 and 0.5 mg/mL VitB1 (p < 0.05), positively correlating with sperm motility and viability (p < 0.01). Glutathione peroxidase (GPx) activity was highest in the 1 mg/mL VitB12 and VitB1 groups and negatively correlated with sperm abnormalities (p < 0.01). Catalase (CAT) activity significantly increased in the 1-2 mg/mL VitB12 and 0.5-2 mg/mL VitB1 groups, positively correlating with sperm progressive motility and viability (p < 0.01). CONCLUSIONS These findings demonstrate that incorporating 1 mg/mL VitB12 and 0.5 mg/mL VitB1 into the cryopreservation extender effectively mitigates oxidative stress, enhances antioxidant defences and improves post-thaw semen quality in Arabi rams.
Collapse
Affiliation(s)
- Saleh Tabatabaei Vakili
- Department of Animal ScienceFaculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| | - Roghayeh Zeidi
- Department of Animal ScienceFaculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| | - Robab Nabhani
- Department of Animal ScienceFaculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| |
Collapse
|
5
|
Lahimer M, Capelle S, Lefranc E, Bosquet D, Kazdar N, Ledu A, Agina M, Cabry R, BenKhalifa M. Micronutrient-Antioxidant Therapy and Male Fertility Improvement During ART Cycles. Nutrients 2025; 17:324. [PMID: 39861453 PMCID: PMC11768505 DOI: 10.3390/nu17020324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Today, accumulating evidence highlights the impact of oxidative stress (OS) on semen quality. It is considered to be a key factor contributing to the decline in male fertility. OS is detected in 30-80% of men with infertility, highlighting its strong association with impaired reproductive function and with clinical outcomes following the use of assisted reproductive technologies. Spermatozoa are particularly vulnerable to oxidative damage due to their high content of polyunsaturated fatty acids (PUFAs) and limited antioxidant defense abilities. OS arises from an imbalance between the production of reactive oxygen species and the capacity to neutralize or repair their adverse effects. Evidence indicates that OS leads to lipid peroxidation, protein oxidation, mitochondrial dysfunction, and genomic instability. Micronutrient-antioxidant therapies can play a key role in infertility improvement by neutralizing free radicals and preventing cellular damage. Many different micronutrients, including L-carnitine, L-glutathione, coenzyme Q10, selenium, and zinc, as well as vitamins complexes, are proposed to improve sperm parameters and male fertility potential. This study aims to review the impact of antioxidant supplementation on semen parameters, including sperm volume, motility, concentration, morphology, genome integrity (maturity and fragmentation), and in vitro fertilization (IVF) outcomes. Antioxidant intake and a balanced lifestyle reduce oxidative stress and mitochondrial dysfunction, enhancing the spermatogenesis and spermiogenesis processes, improving sperm quality, and protecting DNA integrity.
Collapse
Affiliation(s)
- Marwa Lahimer
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France; (S.C.); (E.L.); (D.B.); (R.C.); (M.B.)
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France
| | - Severine Capelle
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France; (S.C.); (E.L.); (D.B.); (R.C.); (M.B.)
| | - Elodie Lefranc
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France; (S.C.); (E.L.); (D.B.); (R.C.); (M.B.)
| | - Dorian Bosquet
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France; (S.C.); (E.L.); (D.B.); (R.C.); (M.B.)
| | - Nadia Kazdar
- Eylau/Unilabs, IVF Units Cherest et la Muette, 75116 Paris, France; (N.K.); (A.L.)
| | - Anne Ledu
- Eylau/Unilabs, IVF Units Cherest et la Muette, 75116 Paris, France; (N.K.); (A.L.)
| | - Mounir Agina
- Service of Reproductive Biology, University Hospital Farhat Hached, University of Sousse, Sousse 4000, Tunisia;
| | - Rosalie Cabry
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France; (S.C.); (E.L.); (D.B.); (R.C.); (M.B.)
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France
| | - Moncef BenKhalifa
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France; (S.C.); (E.L.); (D.B.); (R.C.); (M.B.)
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France
| |
Collapse
|
6
|
Khodadadi R, Jalali A, Moghadasi S, Farahani M. Environmental exposure to titanium dioxide nanoparticles disrupts DAZL gene expression and male reproductive function in mice: Protective role of lutein. Food Chem Toxicol 2025; 195:115128. [PMID: 39580016 DOI: 10.1016/j.fct.2024.115128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used nanomaterials with potential environmental health concerns, including impacts on male fertility. This study investigated the effects of TiO2 NPs on male reproductive function in mice and the potential protective role of lutein, a dietary antioxidant. Male NMRI mice were exposed to TiO2 NPs (50, 150, and 300 mg/kg) with or without co-administration of lutein (5 or 10 mg/kg) for 35 days. Compared to controls, TiO2 NP exposure significantly decreased DAZL gene expression, testosterone levels, antioxidant capacity, sperm quality (motility, density, morphology, DNA integrity), and testicular tissue parameters (seminiferous tubules volume, germinal epithelium height, spermatogenic cell counts). These effects were associated with increased oxidative stress markers (malondialdehyde levels) and altered testicular architecture (interstitial tissue volume). Notably, co-administration of lutein significantly ameliorated these TiO2 NP-induced adverse effects, suggesting its potential protective role against testicular oxidative stress and dysfunction. Our findings highlight the potential detrimental effects of environmental TiO2 NP exposure on male fertility and the potential benefit of dietary lutein as a protective strategy. Further research is needed to explore the underlying mechanisms and translate these findings to human health.
Collapse
Affiliation(s)
- Reyhaneh Khodadadi
- Department of Biology, Faculty of Science, Arak University, Arak, 384817758, Iran
| | - Amir Jalali
- Department of Biology, Faculty of Science, Arak University, Arak, 384817758, Iran.
| | - Samira Moghadasi
- Department of Biology, Faculty of Science, Shahed University, Tehran, Iran
| | - Mohadese Farahani
- Department of Biology, Faculty of Science, Arak University, Arak, 384817758, Iran
| |
Collapse
|
7
|
Fomichova O, Oliveira PF, Bernardino RL. Exploring the interplay between inflammation and male fertility. FEBS J 2024. [PMID: 39702986 DOI: 10.1111/febs.17366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Male fertility results from a complex interplay of physiological, environmental, and genetic factors. It is conditioned by the properly developed anatomy of the reproductive system, hormonal regulation balance, and the interplay between different cell populations that sustain an appropriate and functional environment in the testes. Unfortunately, the mechanisms sustaining male fertility are not flawless and their perturbation can lead to infertility. Inflammation is one of the factors that contribute to male infertility. In the testes, it can be brought on by varicocele, obesity, gonadal infections, leukocytospermia, physical obstructions or traumas, and consumption of toxic substances. As a result of prolonged or untreated inflammation, the testicular resident cells that sustain spermatogenesis can suffer DNA damage, lipid and protein oxidation, and mitochondrial dysfunction consequently leading to loss of function in affected Sertoli cells (SCs) and Leydig cells (LCs), and the formation of morphologically abnormal dysfunctional sperm cells that lay in the basis of male infertility and subfertility. This is due mainly to the production and secretion of pro-inflammatory mediators, including cytokines, chemokines, and reactive oxygen species (ROS) by local immune cells (macrophages, lymphocytes T, mast cells) and tissue-specific cells [SCs, LCs, peritubular myoid cells (PMCs) and germ cells (GCs)]. Depending on the location, duration, and intensity of inflammation, these mediators can exert their toxic effect on different elements of the testes. In this review, we discuss the most prevalent inflammatory factors that negatively affect male fertility and describe the different ways inflammation can impair male reproductive function.
Collapse
Affiliation(s)
- Oleksandra Fomichova
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Portugal
| | - Raquel L Bernardino
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Portugal
| |
Collapse
|
8
|
Weigel Muñoz M, Cohen DJ, Da Ros VG, González SN, Rebagliati Cid A, Sulzyk V, Cuasnicu PS. Physiological and pathological aspects of epididymal sperm maturation. Mol Aspects Med 2024; 100:101321. [PMID: 39340983 DOI: 10.1016/j.mam.2024.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
In mammals, sperm that leave the testes are nonfunctional and require a complex post-testicular maturation process to acquire their ability to recognize and fertilize the egg. The crucial maturation changes that provide sperm their fertilizing capability occur while passing through the epididymis. Due to the widespread use of assisted reproductive technologies to address male infertility, there has been a significant decrease in research focusing on the mechanisms underlying the maturation process over the past decades. Considering that up to 40% of male infertility is idiopathic and could be reflecting sperm maturation defects, the study of post-testicular sperm maturation will clearly contribute to a better understanding of the causes of male infertility and to the development of both new approaches to maturing sperm in vitro and safer male contraceptive methods. Based on this, the present review focuses on the physiopathology of the epididymis as well as on current approaches under investigation to improve research in sperm maturation and as potential therapeutic options for male infertility.
Collapse
Affiliation(s)
- Mariana Weigel Muñoz
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Débora J Cohen
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Vanina G Da Ros
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Soledad N González
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Abril Rebagliati Cid
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Valeria Sulzyk
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Patricia S Cuasnicu
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
9
|
Kadoch E, Benguigui J, Chow-Shi-Yée M, Tadevosyan A, Bissonnette F, Phillips S, Zini A, Kadoch IJ. The paternal clock: Uncovering the consequences of advanced paternal age on sperm DNA fragmentation. Reprod Biol 2024; 24:100931. [PMID: 39180943 DOI: 10.1016/j.repbio.2024.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
The objective of the study was to investigate the relationship between advanced paternal age and sperm DNA fragmentation (SDF) levels, specifically identifying the age at which a significant increase in SDF occurs. This is a retrospective cohort study involving 4250 consecutive semen samples from patients presenting for infertility evaluation. Patients were stratified into seven age groups: < 26 (n = 36; 0.8 %), 26-30 (n = 500; 11.8 %), 31-35 (n = 1269; 29.9 %), 36-40 (n = 1268; 29.8 %), 41-45 (n = 732; 17.2 %), 46-50 (n = 304; 7.2 %), > 50 (n = 141; 3.3 %). The main outcome measures included comparing mean SDF levels throughout different age groups and assessing the prevalence of normal, intermediate, and high SDF among the age groups. A positive correlation was observed between paternal age and SDF (r = 0.17, p < 0.001). SDF remained relatively constant until the age of 35 but increased significantly beyond age 35. Mean SDF levels in the older age groups (36-40, 41-45, 46-50, and >50 years) were significantly higher than in the younger age groups (<26, 26-30, and 31-35 years) (p < 0.001). The prevalence of normal SDF was highest among the younger age groups, whereas the prevalence of high SDF was highest among the older age groups. Interestingly, the prevalence of intermediate SDF was relatively constant throughout the age groups (ranging between 29.8 % to 37.2 %). The increase in SDF after the age of 35 highlights the importance of considering male age in infertility evaluations. Assessing SDF in men over the age of 35 is crucial in couples seeking to conceive.
Collapse
Affiliation(s)
| | - Jonas Benguigui
- Clinique ovo, Montreal, Canada; Department of Obstetrics and Gynecology, University of Montreal, Montreal, Canada
| | | | - Artak Tadevosyan
- Clinique ovo, Montreal, Canada; Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - François Bissonnette
- Clinique ovo, Montreal, Canada; Department of Obstetrics and Gynecology, University of Montreal, Montreal, Canada
| | - Simon Phillips
- Clinique ovo, Montreal, Canada; Department of Obstetrics and Gynecology, University of Montreal, Montreal, Canada
| | - Armand Zini
- Clinique ovo, Montreal, Canada; Division of Urology, Department of Surgery, McGill University, Montreal, Canada
| | - Isaac-Jacques Kadoch
- Clinique ovo, Montreal, Canada; Department of Obstetrics and Gynecology, University of Montreal, Montreal, Canada.
| |
Collapse
|
10
|
Pastore A, Badolati N, Manfrevola F, Sagliocchi S, Laurenzi V, Musto G, Porreca V, Murolo M, Chioccarelli T, Ciampaglia R, Vellecco V, Bucci M, Dentice M, Cobellis G, Stornaiuolo M. N-acetyl-L-cysteine reduces testis ROS in obese fathers but fails in protecting offspring from acquisition of epigenetic traits at cyp19a1 and IGF11/H19 ICR loci. Front Cell Dev Biol 2024; 12:1450580. [PMID: 39493346 PMCID: PMC11527676 DOI: 10.3389/fcell.2024.1450580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Paternal nutrition before conception has a marked impact on offspring's risk of developing metabolic disorders during adulthood. Research on human cohorts and animal models has shown that paternal obesity alters sperm epigenetics (DNA methylation, protamine-to-histone replacement, and non-coding RNA content), leading to adverse health outcomes in the offspring. So far, the mechanistic events that translate paternal nutrition into sperm epigenetic changes remain unclear. High-fat diet (HFD)-driven paternal obesity increases gonadic Reactive Oxygen Species (ROS), which modulate enzymes involved in epigenetic modifications of DNA during spermatogenesis. Thus, the gonadic pool of ROS might be responsible for transducing paternal health status to the zygote through germ cells. Methods The involvement of ROS in paternal intergenerational transmission was assessed by modulating the gonadic ROS content in male mice. Testicular oxidative stress induced by HFD was counterbalanced by N-acetylcysteine (NAC), an antioxidant precursor of GSH. The sires were divided into four feeding groups: i) control diet; ii) HFD; iii) control diet in the presence of NAC; and iv) HFD in the presence of NAC. After 8 weeks, males were mated with females that were fed a control diet. Antioxidant treatment was then evaluated in terms of preventing the HFD-induced transmission of dysmetabolic traits from obese fathers to their offspring. The offspring were weaned onto a regular control diet until week 16 and then underwent metabolic evaluation. The methylation status of the genomic region IGFII/H19 and cyp19a1 in the offspring gDNA was also assessed using Sanger sequencing and methylation-dependent qPCR. Results Supplementation with NAC protected sires from HFD-induced weight gain, hyperinsulinemia, and glucose intolerance. NAC reduced oxidative stress in the gonads of obese fathers and improved sperm viability. However, NAC did not prevent the transmission of epigenetic modifications from father to offspring. Male offspring of HFD-fed fathers, regardless of NAC treatment, exhibited hyperinsulinemia, glucose intolerance, and hypoandrogenism. Additionally, they showed altered methylation at the epigenetically controlled loci IGFII/H19 and cy19a1. Conclusion Although NAC supplementation improved the health status and sperm quality of HFD-fed male mice, it did not prevent the epigenetic transmission of metabolic disorders to their offspring. Different NAC dosages and antioxidants other than NAC might represent alternatives to stop the intergenerational transmission of paternal dysmetabolic traits.
Collapse
Affiliation(s)
- Arianna Pastore
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Nadia Badolati
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Valentina Laurenzi
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Giorgia Musto
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Melania Murolo
- Department of Clinical Medicine and Surgery, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberto Ciampaglia
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | | |
Collapse
|
11
|
Motawi A, Crafa A, Hamoda T, Shah R, Agarwal A. The Andrological Landscape in the Twenty-First Century: Making Sense of the Advances in Male Infertility Management for the Busy Clinicians. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1222. [PMID: 39338105 PMCID: PMC11431684 DOI: 10.3390/ijerph21091222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Male infertility represents a significant global problem due to its essential health, social, and economic implications. It is unsurprising that scientific research is very active in this area and that advances in the diagnostic and therapeutic fields are notable. This review presents the main diagnostic advances in male infertility, starting from the changes made in the latest WHO Manual of semen analysis and discussing the more molecular aspects inherent to "omics". Furthermore, the usefulness of artificial intelligence in male infertility diagnostics and the latest advances in varicocele diagnosis will be discussed. In particular, the diagnostic path of male infertility is increasingly moving towards a personalized approach to the search for the specific biomarkers of infertility and the prediction of treatment response. The treatment of male infertility remains empirical in many regards, but despite that, advances have been made to help formulate evidence-based recommendations. Varicocele, the most common correctable cause of male infertility, has been explored for expanded indications for repair. The following expanded indications were discussed: elevated sperm DNA fragmentation, hypogonadism, orchalgia, and the role of varicocele repair in non-obstructive azoospermia. Moving forward with the available data, we discussed the stepwise approach to surgical sperm retrieval techniques and the current measures that have been investigated for optimizing such patients before testicular sperm extraction. Finally, the key points and expert recommendations regarding the best practice for diagnosing and treating men with infertility were summarized to conclude this review.
Collapse
Affiliation(s)
- Ahmad Motawi
- Department of Andrology, Sexual Medicine and STIs, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
- Global Andrology Forum (GAF), Moreland Hills, OH 44022, USA
| | - Andrea Crafa
- Global Andrology Forum (GAF), Moreland Hills, OH 44022, USA
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Taha Hamoda
- Global Andrology Forum (GAF), Moreland Hills, OH 44022, USA
- Department of Urology, King Abdulaziz University, Jeddah P.O. Box 80215, Saudi Arabia
- Department of Urology, Faculty of Medicine, Minia University, Minia 2431436, Egypt
| | - Rupin Shah
- Global Andrology Forum (GAF), Moreland Hills, OH 44022, USA
- Department of Urology, Lilavati Hospital and Research Center, Mumbai 400050, India
| | - Ashok Agarwal
- Global Andrology Forum (GAF), Moreland Hills, OH 44022, USA
| |
Collapse
|
12
|
Lakhe G, Nair N, Pareek C, Ugemuge S. Bacteriospermia-Related Male Infertility: A Case Report on Diagnostic and Therapeutic Approaches. Cureus 2024; 16:e62973. [PMID: 39050321 PMCID: PMC11265960 DOI: 10.7759/cureus.62973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/22/2024] [Indexed: 07/27/2024] Open
Abstract
Male infertility is significantly affected by bacteriospermia, defined by the presence of bacteria in semen. This case report aims to address the effects of bacteriospermia and its correlation with semen characteristics, sperm DNA fragmentation (SDF), and reproductive outcomes. The 33-year-old male was diagnosed with bacteriospermia caused by two gram-negative bacteria: Escherichia coli and Klebsiella pneumoniae. It was found that sperm parameters such as mobility, number, and morphology were compromised in sperm, indicating poor fertility. In addition, SDF analysis has revealed a high DNA fragmentation index (DFI), emphasizing the detrimental effects of bacteriospermia on the integrity of sperm. Antibiotic therapy and antioxidant supplements have been used as therapeutic measures to reduce the impact of bacterial infections and DNA damage caused by oxidative stress (OS). Follow-up assessments showed significant improvements in the integrity of the sperm DNA and the resolution of microbial colonization, which ultimately led to successful in vitro fertilization (IVF) and embryo transfer (ET), leading to a positive pregnancy outcome.
Collapse
Affiliation(s)
- Gunjan Lakhe
- Clinical Embryology, Datta Meghe Institute of Higher Education and Research (DU), Nagpur, IND
| | - Nancy Nair
- Clinical Embryology, Datta Meghe Institute of Higher Education and Research (DU), Nagpur, IND
| | - Charu Pareek
- Clinical Embryology, Datta Meghe Institute of Higher Education and Research (DU), Nagpur, IND
| | - Sarita Ugemuge
- Microbiology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (DU), Nagpur, IND
| |
Collapse
|
13
|
Kara O. Protective effect of coenzyme Q10 in cyclophosphamide-induced kidney damage in rats. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20230990. [PMID: 38716935 PMCID: PMC11068380 DOI: 10.1590/1806-9282.20230990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/22/2023] [Indexed: 05/12/2024]
Abstract
OBJECTIVE We aimed to investigate the effect of coenzyme q10 on cyclophosphamide-induced kidney damage in rats. METHODS A total of 30 female Wistar-Albino rats were utilized to form three groups. In group 1 (control group) (n=10), no drugs were given. In group 2 (cyclophosphamide group) (n=10), 30 mg/kg intraperitoneal cyclophosphamide was administered for 7 days. In group 3 (cyclophosphamide+coenzyme q10 group) (n=10), 30 mg/kg cyclophosphamide and 10 mg/kg coenzyme q10 were given for 7 days via intraperitoneal route. Right kidneys were removed in all groups. Blood malondialdehyde levels and activities of catalase and superoxide dismutase were measured. Histopathological damage was evaluated by examining the slides prepared from kidney tissue using a light microscope. RESULTS Tissue damage was significantly higher in the cyclophosphamide group than in the cyclophosphamide+coenzyme q10 group (p<0.05). The malondialdehyde levels were significantly higher and the activities of superoxide dismutase and catalase were lower in the cyclophosphamide group than in the cyclophosphamide+coenzyme q10 group (p<0.05). CONCLUSION Coenzyme q10 may be a good option to prevent cyclophosphamide-induced kidney damage.
Collapse
Affiliation(s)
- Ozlem Kara
- Kirsehir Ahi Evran University, School of Medicine, Department of Histology and Embryology – Kırşehir, Turkey
| |
Collapse
|
14
|
Jirwankar Y, Nair A, Marathe S, Dighe V. Phage Display Identified Novel Leydig Cell Homing Peptides for Testicular Targeting. ACS Pharmacol Transl Sci 2024; 7:809-822. [PMID: 38481690 PMCID: PMC10928899 DOI: 10.1021/acsptsci.3c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2025]
Abstract
Conventional drug delivery methods to treat testicular disorders face various challenges, which could be circumvented by using targeted drug delivery. Testicular cell targeting ligands, such as Leydig cell homing peptides, would be an excellent choice to achieve the targeted delivery of drugs to the testis. In this study, Leydig cell homing peptides (LCHPs), LCHP1 and LCHP2, were identified via in vitro, followed by in vivo biopanning of a phage display peptide library and next-generation sequencing. Both of the LCHPs were validated in vitro for their specific Leydig cell and in vivo testis targeting potential. Furthermore, molecular targets of the LCHP1 and LCHP2 were identified using affinity purification mass spectrometry (APMS). The LCHP1 and LCHP2 are able to specifically target Leydig cells of the testis and undergo cell internalization as well as target the testis at the in vivo level, hence providing an opportunity to be utilized as a potential ligand for drug delivery to the testis.
Collapse
Affiliation(s)
- Yugandhara Jirwankar
- National
Centre for Preclinical Reproductive and Genetic Toxicology, ICMR-National Institute for Research in Reproductive
and Child Health, Mumbai 400012, India
| | - Akanksha Nair
- National
Centre for Preclinical Reproductive and Genetic Toxicology, ICMR-National Institute for Research in Reproductive
and Child Health, Mumbai 400012, India
| | - Soumitra Marathe
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Vikas Dighe
- National
Centre for Preclinical Reproductive and Genetic Toxicology, ICMR-National Institute for Research in Reproductive
and Child Health, Mumbai 400012, India
| |
Collapse
|
15
|
Du C, Yu Y, Fan X. Analysis of research trends (2014-2023) on oxidative stress and male fertility based on bibliometrics and knowledge graphs. Front Endocrinol (Lausanne) 2024; 15:1326402. [PMID: 38323105 PMCID: PMC10846311 DOI: 10.3389/fendo.2024.1326402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Background Oxidative stress (OS) is considered one of the major factors affecting male fertility, and research in this field has seen constant growth year by year. Currently, around 700 relevant papers are published each year, with a trend of further growth. Therefore, this study systematically summarizes the literature published in the last decade from a bibliometric perspective, revealing the dynamic development of the field, identifying research hotspots, analyzing future trends, and providing reference for further research. Methods Relevant literature on oxidative stress and male fertility was retrieved from the Web of Science Core Collection (WoSCC) database, covering the timespan from 2014 to 2023 and including two types, articles and reviews. CiteSpace and VOSviewer were used for bibliometric analysis, including cluster analysis, co-occurrence analysis, co-citation analysis, and burst analysis of countries/regions, institutions, journals, authors, references, and keywords. Results This paper studied a total of 5,301 papers involving 107 countries/regions, with China having the highest number of publications (898 papers) and the United States having the highest centrality (0.62). Burst analysis of journal citations revealed the emergence of many new journals (e.g., Antioxidants-Basel, Front Endocrinol) after 2021, indicating continuous expansion and development in this field. Cluster analysis of co-cited references and co-occurring keywords divided the research into areas such as oxidative stress and male infertility, oxidative stress level detection, and antioxidants. The keywords associated with research hotspots shifted from oxidative stress detection, sperm DNA damage, apoptosis, and redox potential to DNA methylation, embryonic development, infection, polyunsaturated fatty acids, and antioxidants. Conclusion Bibliometric methods provide an intuitive reflection of the development process in the field of oxidative stress and male fertility, as well as the analysis of research hotspots in different periods. Research on oxidative stress and embryonic development, as well as antioxidant health management, may become hotspots in future research.
Collapse
Affiliation(s)
- Chao Du
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Yuexin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Xinyue Fan
- Student Affairs Department of Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
16
|
Injac R. Spermatogenesis recovery treatment in less than four months from zero to almost 16 million sperms per milliliter after several cycles of steroids in 44-year-old healthy man. Clin Case Rep 2023; 11:e8159. [PMID: 37942185 PMCID: PMC10627925 DOI: 10.1002/ccr3.8159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
The most common external factors that men can have influence on, and improve its own spermatogenesis, are related to lifestyle, habits, stress level, sport activities, nutrition quality, and medications. Steroids became one of the key issues in young men during reproductive stage of life. More and more teenagers who are not even developed yet naturally start using supplements very early to build up body and strengths of muscles in the shortest possible time. In this report is presented the case of 44-year-old (November 2022), healthy, and sporty man, who is 1-2 times per year on steroid cycles since he turned 40th. He had intention to become a father; however after 6 months of the last steroid cycle, sperm count was zero. This case will show what was needed and successfully done within less than 4 months after last steroids administration and the moment when sperm count reached almost 16 million sperms per milliliter. However, it has to be clear that this is unique case and additional tests would be needed on bigger population to confirm fast post steroid sperm count recovery in healthy subjects, using approach from this manuscript.
Collapse
Affiliation(s)
- Rade Injac
- Faculty of Pharmacy, The Chair of Pharmaceutical BiologyUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
17
|
Nielsen JLM, Majzoub A, Esteves S, Humaidan P. Unraveling the Impact of Sperm DNA Fragmentation on Reproductive Outcomes. Semin Reprod Med 2023; 41:241-257. [PMID: 38092034 DOI: 10.1055/s-0043-1777324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In recent years, there has been a growing interest in identifying subcellular causes of male infertility, and sperm DNA fragmentation (SDF) research has been at the forefront of this focus. DNA damage can occur during spermatogenesis due to faulty chromatin compaction or excessive abortive apoptosis. It can also happen as sperm transit through the genital tract, often induced by oxidative stress. There are several methods for SDF testing, with the sperm chromatin structure assay, terminal deoxynucleotidyl transferase d-UTI nick end labeling (TUNEL) assay, comet assay, and sperm chromatin dispersion test being the most commonly used. Numerous studies strongly support the negative impact of SDF on male fertility potential. DNA damage has been linked to various morphological and functional sperm abnormalities, ultimately affecting natural conception and assisted reproductive technology outcomes. This evidence-based review aims to explore how SDF influences male reproduction and provide insights into available therapeutic options to minimize its detrimental impact.
Collapse
Affiliation(s)
- Jeanett L M Nielsen
- The Fertility Clinic, Skive Regional Hospital, Skive, Denmark
- Department of Obstetrics and Gynecology, Viborg Regional Hospital, Viborg, Denmark
| | - Ahmad Majzoub
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Clinical Urology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sandro Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas, Brazil
- Division of Urology, Department of Surgery, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Peter Humaidan
- The Fertility Clinic, Skive Regional Hospital, Skive, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Lahimer M, Gherissi O, Ben Salem N, Ben Mustapha H, Bach V, Khorsi-Cauet H, Khairi H, Ben Ali H, BenKhalifa M, Ajina M. Effect of Micronutrients and L-Carnitine as Antioxidant on Sperm Parameters, Genome Integrity, and ICSI Outcomes: Randomized, Double-Blind, and Placebo-Controlled Clinical Trial. Antioxidants (Basel) 2023; 12:1937. [PMID: 38001791 PMCID: PMC10669279 DOI: 10.3390/antiox12111937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The evaluation of sperm DNA integrity is recommended in the sixth edition of the 2021 World Health Organization guidelines. Oxidative stress has been identified as a crucial factor leading to genome decay, lipid peroxidation, and nucleoprotein oxidation. This double-blind, placebo-controlled clinical trial aimed to assess the effect of oral antioxidant treatment (Fertilis), which contains L-carnitine and some micronutrients, in the improvement of conventional sperm parameters, sperm DNA integrity and in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) outcomes. A total of 263 participants were enrolled and randomly divided into two groups: 131 participants received the antioxidant treatment, while 132 participants received a placebo. The male partners in both groups underwent the antioxidant treatment or the placebo for a duration of three months. For each participant, we performed a hormonal test, an infectious test, a spermogram, a TUNEL assay for sperm DNA fragmentation, a toluidine blue staining for sperm DNA decondensation, and an IVF/ICSI procedure. Sperm characteristics analysis (volume, count, motility, and vitality), sperm DNA fragmentation, and sperm DNA decondensation were assessed and compared to the results preceding the antioxidant treatment. The study outcome revealed a significant decrease in the DNA fragmentation index and a significant increase in sperm motility after 3 months of treatment (p = 0.01 and p = 0.02, respectively). Additionally, a significant improvement in clinical pregnancy rate (p = 0.01) and life birth rate (p = 0.031) was observed. No significant changes were observed in conventional sperm parameters (volume, count, and vitality) or sperm DNA decondensation (SDI). Antioxidant therapy has a beneficial impact on achieving pregnancy, whether through spontaneous conception or assisted reproductive procedures (ART).
Collapse
Affiliation(s)
- Marwa Lahimer
- Service of Reproductive Biology, University Hospital Farhat Hached, Sousse, University of Sousse, Sousse 4000, Tunisia; (O.G.); (N.B.S.); (H.B.M.)
- Exercise Physiology and Physiopathology: From Integrated to Molecular “Biology, Medicine and Health” (Code: LR19ES09), Sousse 4002, Tunisia
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (V.B.); (H.K.-C.); (M.B.)
| | - Oumaima Gherissi
- Service of Reproductive Biology, University Hospital Farhat Hached, Sousse, University of Sousse, Sousse 4000, Tunisia; (O.G.); (N.B.S.); (H.B.M.)
| | - Nesrine Ben Salem
- Service of Reproductive Biology, University Hospital Farhat Hached, Sousse, University of Sousse, Sousse 4000, Tunisia; (O.G.); (N.B.S.); (H.B.M.)
| | - Henda Ben Mustapha
- Service of Reproductive Biology, University Hospital Farhat Hached, Sousse, University of Sousse, Sousse 4000, Tunisia; (O.G.); (N.B.S.); (H.B.M.)
| | - Véronique Bach
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (V.B.); (H.K.-C.); (M.B.)
| | - Hafida Khorsi-Cauet
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (V.B.); (H.K.-C.); (M.B.)
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80025 Amiens, France
| | - Hedi Khairi
- Faculty of Medicine Ibn Eljazzar of Sousse, Department of Obstetrics & Gynecology Sousse University, Sousse 4000, Tunisia;
| | - Habib Ben Ali
- Laboratory Histology Embryologiy, Faculty of Medicine Sousse, University of Sousse, Sousse 4000, Tunisia;
| | - Moncef BenKhalifa
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (V.B.); (H.K.-C.); (M.B.)
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80025 Amiens, France
| | - Mounir Ajina
- Service of Reproductive Biology, University Hospital Farhat Hached, Sousse, University of Sousse, Sousse 4000, Tunisia; (O.G.); (N.B.S.); (H.B.M.)
- Exercise Physiology and Physiopathology: From Integrated to Molecular “Biology, Medicine and Health” (Code: LR19ES09), Sousse 4002, Tunisia
| |
Collapse
|
19
|
Kaltsas A. Oxidative Stress and Male Infertility: The Protective Role of Antioxidants. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1769. [PMID: 37893487 PMCID: PMC10608597 DOI: 10.3390/medicina59101769] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Oxidative stress is a significant factor in male infertility, compromising sperm function and overall reproductive health. As male infertility garners increasing attention, effective therapeutic interventions become paramount. This review investigates the therapeutic role of antioxidants in addressing male infertility. A detailed examination was conducted on antioxidants such as vitamin C, E, B12, D, coenzyme Q10, zinc, folic acid, selenium, l-carnitine, l-arginine, inositols, and alpha-lipoic acid. This analysis examines the methodologies, outcomes, and constraints of current clinical studies. Antioxidants show notable potential in counteracting the negative effects of oxidative stress on sperm. Based on the evidence, these antioxidants, individually or synergistically, can enhance sperm health and reproductive outcomes. However, certain limitations in the studies call for careful interpretation. Antioxidants are integral in tackling male infertility attributed to oxidative stress. The current findings underscore their therapeutic value, yet there's a pressing need for deeper, comprehensive research. Future studies should focus on refining dosage guidelines, identifying potential side effects, and discerning the most efficacious antioxidant combinations for male infertility solutions.
Collapse
Affiliation(s)
- Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
20
|
Walke G, Gaurkar SS, Prasad R, Lohakare T, Wanjari M. The Impact of Oxidative Stress on Male Reproductive Function: Exploring the Role of Antioxidant Supplementation. Cureus 2023; 15:e42583. [PMID: 37641770 PMCID: PMC10460465 DOI: 10.7759/cureus.42583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Male reproductive function is highly susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production and antioxidant defense mechanisms. Oxidative stress can significantly impair sperm quality, including count, motility, morphology, and DNA integrity, leading to male infertility. Antioxidants play a crucial role in maintaining reproductive health by neutralizing ROS and protecting sperm cells from oxidative damage. This review article explores the impact of oxidative stress on male reproductive function and investigates the potential benefits of antioxidant supplementation in mitigating its detrimental effects. A comprehensive literature search was conducted to gather relevant studies examining the effects of oxidative stress on male fertility and the outcomes of antioxidant supplementation. The findings reveal that antioxidant supplementation can improve sperm quality, DNA integrity, and fertility outcomes in some individuals. However, conflicting research findings and limitations in study design highlight the need for further investigation. Factors such as individual variations, underlying causes of infertility, dosage, and duration of supplementation should be carefully considered. Lifestyle modifications, including a healthy diet and exercise, are crucial in reducing oxidative stress and optimizing male reproductive health. This review article provides valuable insights into the complex relationship between oxidative stress and male reproductive function, emphasizing the potential role of antioxidant supplementation as a supportive strategy. Further research is warranted to establish optimal protocols, identify specific subgroups that may benefit the most, and explore advancements in antioxidant therapies to improve male fertility outcomes.
Collapse
Affiliation(s)
- Gireeja Walke
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sagar S Gaurkar
- Department of Otolaryngology - Head and Neck Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roshan Prasad
- Department of Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tejaswee Lohakare
- Department of Child Health Nursing, Smt. Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mayur Wanjari
- Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|