1
|
Villalva M, García-Díez E, López de Las Hazas MDC, Lo Iacono O, Vicente-Díez JI, García-Cabrera S, Alonso-Bernáldez M, Dávalos A, Martín MÁ, Ramos S, Pérez-Jiménez J. Cocoa-carob blend acute intake modifies miRNAs related to insulin sensitivity in type 2 diabetic subjects: a randomised controlled nutritional trial. Food Funct 2025; 16:3211-3226. [PMID: 40190095 DOI: 10.1039/d4fo04498c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Postprandial metabolic disturbances are exacerbated in type 2 diabetes (T2D). Cocoa and carob, despite showing promising effects on these alterations in preclinical studies, have not yet been jointly tested in a clinical trial. Therefore, this acute, randomised, controlled, crossover nutritional trial evaluated the postprandial effects of a cocoa-carob blend (CCB) in participants with T2D (n = 20) and overweight/obesity. The subjects followed three treatments: hypercaloric breakfast (high-sugar and high-saturated fat, 900 kcal) as the control (treatment C); the same breakfast together with 10 g of the CCB, with 5.6 g of dietary fibre and 1.6 g of total polyphenols (treatment A); and the same breakfast after consuming the CCB (10 g) the night before (treatment B). Various analyses were performed, including the determination of the clinical markers of T2D (fasting and postprandial glucose and insulin, GLP-1, and glycaemic profile), satiety evaluation, analysis of exosomal miRNA expression and ex vivo determination of inflammation modulation. No effect on glucose homeostasis (glucose, insulin, and GLP-1) was found in the study population. However, eight exosomal miRNAs were found to be significantly modified owing to CCB supplementation compared with treatment C, with three of them (miR-20A-5p, miR-23A-3p, and miR-17-5p) associated with an improvement in insulin sensitivity. Furthermore, the CCB caused a decrease in hunger feelings (0-120 min), as assessed by the visual analogue scale (VAS). Finally, treatment A caused a significant decrease in the glucose increment within 0-30 min of treatment in subjects with overweight. No significant modifications were found in the other assessed parameters. The acute intake of the CCB by subjects with T2D showed modest although significant results, which need to be validated in a long-term randomised controlled trial.
Collapse
Affiliation(s)
- Marisol Villalva
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid, CEI UAM + CSIC, Madrid, Spain
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition, Spanish Research Council (ICTAN-CSIC), Calle Jose Antonio Novais, 6, 28040 Madrid, Spain.
| | - Esther García-Díez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition, Spanish Research Council (ICTAN-CSIC), Calle Jose Antonio Novais, 6, 28040 Madrid, Spain.
| | | | - Oreste Lo Iacono
- Servicio de Aparato Digestivo, Hospital General Universitario/Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | - Sara García-Cabrera
- Monóvar Health Center, Primary Care Management, Madrid Region Health Service, Madrid, Spain
| | - Marta Alonso-Bernáldez
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
- Consorcio CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Ángeles Martín
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition, Spanish Research Council (ICTAN-CSIC), Calle Jose Antonio Novais, 6, 28040 Madrid, Spain.
- CIBER Diabetes and Associated Metabolic Diseases: Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre | CIBERDEM, Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Sonia Ramos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition, Spanish Research Council (ICTAN-CSIC), Calle Jose Antonio Novais, 6, 28040 Madrid, Spain.
- CIBER Diabetes and Associated Metabolic Diseases: Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre | CIBERDEM, Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition, Spanish Research Council (ICTAN-CSIC), Calle Jose Antonio Novais, 6, 28040 Madrid, Spain.
- CIBER Diabetes and Associated Metabolic Diseases: Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre | CIBERDEM, Carlos III Health Institute (ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Tian X, Wang L, Zhong L, Zhang K, Ge X, Luo Z, Zhai X, Liu S. The research progress and future directions in the pathophysiological mechanisms of type 2 diabetes mellitus from the perspective of precision medicine. Front Med (Lausanne) 2025; 12:1555077. [PMID: 40109716 PMCID: PMC11919862 DOI: 10.3389/fmed.2025.1555077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder characterized by pathophysiological mechanisms such as insulin resistance and β-cell dysfunction. Recent advancements in T2DM research have unveiled intricate multi-level regulatory networks and contributing factors underlying this disease. The emergence of precision medicine has introduced new perspectives and methodologies for understanding T2DM pathophysiology. A recent study found that personalized treatment based on genetic, metabolic, and microbiome data can improve the management of T2DM by more than 30%. This perspective aims to summarize the progress in T2DM pathophysiological research from the past 5 years and to outline potential directions for future studies within the framework of precision medicine. T2DM develops through the interplay of factors such as gut microbiota, genetic and epigenetic modifications, metabolic processes, mitophagy, NK cell activity, and environmental influences. Future research should focus on understanding insulin resistance, β-cell dysfunction, interactions between gut microbiota and their metabolites, and the regulatory roles of miRNA and genes. By leveraging artificial intelligence and integrating data from genomics, epigenomics, metabolomics, and microbiomics, researchers can gain deeper insights into the pathophysiological mechanisms and heterogeneity of T2DM. Additionally, exploring the combined effects and interactions of these factors may pave the way for more effective prevention strategies and personalized treatments for T2DM.
Collapse
Affiliation(s)
- Xinyi Tian
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liuqing Wang
- Institute of Chinese Medical History and Literatures, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liuting Zhong
- First School of Clinical Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Kaiqi Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolei Ge
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengrong Luo
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Zhai
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaoyan Liu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Alia S, Di Paolo A, Membrino V, Di Crescenzo T, Vignini A. Beneficial Effects on Oxidative Stress and Human Health by Dietary Polyphenols. Antioxidants (Basel) 2024; 13:1314. [PMID: 39594456 PMCID: PMC11591040 DOI: 10.3390/antiox13111314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
During the past few years, researchers have dedicated themselves to studying phytochemicals which make up the nutritional and non-nutritional bioactive compounds found in fruits, vegetables, cereals, and other plant foods [...].
Collapse
Affiliation(s)
- Sonila Alia
- Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy; (S.A.); (A.D.P.); (V.M.); (T.D.C.)
| | - Alice Di Paolo
- Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy; (S.A.); (A.D.P.); (V.M.); (T.D.C.)
| | - Valentina Membrino
- Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy; (S.A.); (A.D.P.); (V.M.); (T.D.C.)
| | - Tiziana Di Crescenzo
- Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy; (S.A.); (A.D.P.); (V.M.); (T.D.C.)
| | - Arianna Vignini
- Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy; (S.A.); (A.D.P.); (V.M.); (T.D.C.)
- Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, 60100 Ancona, Italy
| |
Collapse
|
4
|
Gallardo-Villanueva P, Fernández-Marcelo T, Villamayor L, Valverde AM, Ramos S, Fernández-Millán E, Martín MA. Synergistic Effect of a Flavonoid-Rich Cocoa-Carob Blend and Metformin in Preserving Pancreatic Beta Cells in Zucker Diabetic Fatty Rats. Nutrients 2024; 16:273. [PMID: 38257166 PMCID: PMC10821282 DOI: 10.3390/nu16020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The loss of functional beta-cell mass in diabetes is directly linked to the development of diabetic complications. Although dietary flavonoids have demonstrated antidiabetic properties, their potential effects on pancreatic beta-cell preservation and their synergistic benefits with antidiabetic drugs remain underexplored. We have developed a potential functional food enriched in flavonoids by combining cocoa powder and carob flour (CCB), which has shown antidiabetic effects. Here, we investigated the ability of the CCB, alone or in combination with metformin, to preserve pancreatic beta cells in an established diabetic context and their potential synergistic effect. Zucker diabetic fatty rats (ZDF) were fed a CCB-rich diet or a control diet, with or without metformin, for 12 weeks. Markers of pancreatic oxidative stress and inflammation, as well as relative beta-cell mass and beta-cell apoptosis, were analyzed. Results demonstrated that CCB feeding counteracted pancreatic oxidative stress by enhancing the antioxidant defense and reducing reactive oxygen species. Moreover, the CCB suppressed islet inflammation by preventing macrophage infiltration into islets and overproduction of pro-inflammatory cytokines, along with the inactivation of nuclear factor kappa B (NFκB). As a result, the CCB supplementation prevented beta-cell apoptosis and the loss of beta cells in ZDF diabetic animals. The observed additive effect when combining the CCB with metformin underscores its potential as an adjuvant therapy to delay the progression of type 2 diabetes.
Collapse
Affiliation(s)
- Paula Gallardo-Villanueva
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.G.-V.); (T.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
| | - Tamara Fernández-Marcelo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.G.-V.); (T.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
| | - Laura Villamayor
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
- Instituto de Investigaciones Biomedicas Sols-Morreale (IIB-CSIC), 28029 Madrid, Spain
| | - Angela M. Valverde
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
- Instituto de Investigaciones Biomedicas Sols-Morreale (IIB-CSIC), 28029 Madrid, Spain
| | - Sonia Ramos
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain
| | - Elisa Fernández-Millán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.G.-V.); (T.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
| | - María Angeles Martín
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain
| |
Collapse
|