1
|
Kim K, Fazzone B, Cort TA, Kunz EM, Alvarez S, Moerschel J, Palzkill VR, Dong G, Anderson EM, O'Malley KA, Berceli SA, Ryan TE, Scali ST. Mitochondrial targeted catalase improves muscle strength following arteriovenous fistula creation in mice with chronic kidney disease. Sci Rep 2024; 14:8288. [PMID: 38594299 PMCID: PMC11004135 DOI: 10.1038/s41598-024-58805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Hand dysfunction is a common observation after arteriovenous fistula (AVF) creation for hemodialysis access and has a variable clinical phenotype; however, the underlying mechanism responsible is unclear. Grip strength changes are a common metric used to assess AVF-associated hand disability but has previously been found to poorly correlate with the hemodynamic perturbations post-AVF placement implicating other tissue-level factors as drivers of hand outcomes. In this study, we sought to test if expression of a mitochondrial targeted catalase (mCAT) in skeletal muscle could reduce AVF-related limb dysfunction in mice with chronic kidney disease (CKD). Male and female C57BL/6J mice were fed an adenine-supplemented diet to induce CKD prior to placement of an AVF in the iliac vascular bundle. Adeno-associated virus was used to drive expression of either a green fluorescent protein (control) or mCAT using the muscle-specific human skeletal actin (HSA) gene promoter prior to AVF creation. As expected, the muscle-specific AAV-HSA-mCAT treatment did not impact blood urea nitrogen levels (P = 0.72), body weight (P = 0.84), or central hemodynamics including infrarenal aorta and inferior vena cava diameters (P > 0.18) or velocities (P > 0.38). Hindlimb perfusion recovery and muscle capillary densities were also unaffected by AAV-HSA-mCAT treatment. In contrast to muscle mass and myofiber size which were not different between groups, both absolute and specific muscle contractile forces measured via a nerve-mediated in-situ preparation were significantly greater in AAV-HSA-mCAT treated mice (P = 0.0012 and P = 0.0002). Morphological analysis of the post-synaptic neuromuscular junction uncovered greater acetylcholine receptor cluster areas (P = 0.0094) and lower fragmentation (P = 0.0010) in AAV-HSA-mCAT treated mice. Muscle mitochondrial oxidative phosphorylation was not different between groups, but AAV-HSA-mCAT treated mice had lower succinate-fueled mitochondrial hydrogen peroxide emission compared to AAV-HSA-GFP mice (P < 0.001). In summary, muscle-specific scavenging of mitochondrial hydrogen peroxide significantly improves neuromotor function in mice with CKD following AVF creation.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Brian Fazzone
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Tomas A Cort
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Eric M Kunz
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Samuel Alvarez
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Jack Moerschel
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Victoria R Palzkill
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Gengfu Dong
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Erik M Anderson
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Kerri A O'Malley
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA.
- Center for Exercise Science, University of Florida, Gainesville, FL, USA.
| | - Salvatore T Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA.
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA.
| |
Collapse
|
2
|
Paradis S, Charles AL, Giannini M, Meyer A, Lejay A, Talha S, Laverny G, Charloux A, Geny B. Targeting Mitochondrial Dynamics during Lower-Limb Ischemia Reperfusion in Young and Old Mice: Effect of Mitochondrial Fission Inhibitor-1 (mDivi-1). Int J Mol Sci 2024; 25:4025. [PMID: 38612835 PMCID: PMC11012338 DOI: 10.3390/ijms25074025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Peripheral arterial disease (PAD) strikes more than 200 million people worldwide and has a severe prognosis by potentially leading to limb amputation and/or death, particularly in older patients. Skeletal muscle mitochondrial dysfunctions and oxidative stress play major roles in this disease in relation with ischemia-reperfusion (IR) cycles. Mitochondrial dynamics through impairment of fission-fusion balance may contribute to skeletal muscle pathophysiology, but no data were reported in the setting of lower-limb IR despite the need for new therapeutic options. We, therefore, investigated the potential protective effect of mitochondrial division inhibitor-1 (mDivi-1; 50 mg/kg) in young (23 weeks) and old (83 weeks) mice submitted to two-hour ischemia followed by two-hour reperfusion on systemic lactate, muscle mitochondrial respiration and calcium retention capacity, and on transcripts specific for oxidative stress and mitochondrial dynamics. At the systemic levels, an IR-related increase in circulating lactate was still major despite mDivi-1 use (+305.9% p < 0.0001, and +269.4% p < 0.0001 in young and old mice, respectively). Further, IR-induced skeletal muscle mitochondrial dysfunctions (more severely impaired mitochondrial respiration in old mice (OXPHOS CI state, -68.2% p < 0.0001 and -84.9% p < 0.0001 in 23- and 83-week mice) and reduced calcium retention capacity (-46.1% p < 0.001 and -48.2% p = 0.09, respectively) were not corrected by mDivi-1 preconditioning, whatever the age. Further, mDivi-1 treatment did not oppose superoxide anion production (+71.4% p < 0.0001 and +37.5% p < 0.05, respectively). At the transcript level, markers of antioxidant enzymes (SOD 1, SOD 2, catalase, and GPx) and fission markers (Drp1, Fis) remained unchanged or tended to be decreased in the ischemic leg. Fusion markers such as mitofusin 1 or 2 decreased significantly after IR in both groups. In conclusion, aging enhanced the deleterious effects or IR on muscle mitochondrial respiration, and in this setting of lower-limb IR, mDivi-1 failed to protect the skeletal muscle both in young and old mice.
Collapse
Affiliation(s)
- Stéphanie Paradis
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Anne-Laure Charles
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
| | - Margherita Giannini
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Alain Meyer
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Anne Lejay
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Vascular Surgery Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Samy Talha
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Gilles Laverny
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
| | - Anne Charloux
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Bernard Geny
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67081 Strasbourg, France; (S.P.); (A.-L.C.); (M.G.); (A.M.); (A.L.); (S.T.); (A.C.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
3
|
Charles AL, Charloux A, Vogel T, Raul JS, Kindo M, Wolff V, Geny B. Cumulative Deleterious Effects of Tetrahydrocannabinoid (THC) and Ethanol on Mitochondrial Respiration and Reactive Oxygen Species Production Are Enhanced in Old Isolated Cardiac Mitochondria. Int J Mol Sci 2024; 25:1835. [PMID: 38339113 PMCID: PMC10855679 DOI: 10.3390/ijms25031835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Delta 9 tetrahydrocannabinol (THC), the main component of cannabis, has adverse effects on the cardiovascular system, but whether concomitant ethanol (EtOH) and aging modulate its toxicity is unknown. We investigated dose responses of THC and its vehicle, EtOH, on mitochondrial respiration and reactive oxygen production in both young and old rat cardiac mitochondria (12 and 90 weeks). THC dose-dependently impaired mitochondrial respiration in both groups, and such impairment was enhanced in aged rats (-97.5 ± 1.4% vs. -75.6 ± 4.0% at 2 × 10-5 M, and IC50: 0.7 ± 0.05 vs. 1.3 ± 0.1 × 10-5 M, p < 0.01, for old and young rats, respectively). The EtOH-induced decrease in mitochondrial respiration was greater in old rats (-50.1 ± 2.4% vs. -19.8 ± 4.4% at 0.9 × 10-5 M, p < 0.0001). Further, mitochondrial hydrogen peroxide (H2O2) production was enhanced in old rats after THC injection (+46.6 ± 5.3 vs. + 17.9 ± 7.8%, p < 0.01, at 2 × 10-5 M). In conclusion, the deleterious cardiac effects of THC were enhanced with concomitant EtOH, particularly in old cardiac mitochondria, showing greater mitochondrial respiration impairment and ROS production. These data improve our knowledge of the mechanisms potentially involved in cannabis toxicity, and likely support additional caution when THC is used by elderly people who consume alcohol.
Collapse
Affiliation(s)
- Anne-Laure Charles
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
| | - Anne Charloux
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Thomas Vogel
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Geriatrics Department, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Jean-Sébastien Raul
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Toxicology Laboratory, Institute of Legal Medicine, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Michel Kindo
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Cardiovascular Surgery Department, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Valérie Wolff
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Neuro-Vascular Department, University Hospital of Strasbourg, 67098 Strasbourg, France
| | - Bernard Geny
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67091 Strasbourg, France
| |
Collapse
|
4
|
Boutonnet L, Mallard J, Charles AL, Hucteau E, Gény B, Lejay A, Grandperrin A. Autologous mitochondrial transplantation in male mice as a strategy to prevent deleterious effects of peripheral ischemia-reperfusion. Am J Physiol Cell Physiol 2024; 326:C449-C456. [PMID: 38145293 DOI: 10.1152/ajpcell.00639.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Ischemia-reperfusion (IR) is known to induce severe tissue damage, notably through mitochondrial dysfunction. Mitochondrial transplantation has emerged as a promising therapeutic strategy in cardiac IR; however, few studies have previously assessed its efficacy in the context of peripheral IR. Therefore, the objective of this study was to assess the effect of mitochondrial transplantation in a hindlimb model of IR injury. Thirty-six SWISS mice were divided into three groups: control (CTL, n = 12), ischemia-reperfusion (IR, n = 12), and IR with mitochondrial transplantation (MT, n = 12). Ischemia (2 h) was induced using the tourniquet model around the right hind limb in the IR and MT groups. In MT group, mitochondria isolated from the right rectus muscle, a nonischemic region, were injected shortly before reperfusion. Mitochondrial respiration, calcium retention capacity, and Western blotting analysis were performed 2 h after reperfusion. Compared with the CTL group, IR led to a decrease in the mitochondrial respiratory capacity, particularly for the basal state (-30%; P = 0.015), oxidative phosphorylation (-36%; P = 0.024), and calcium retention capacity (-45%; P = 0.007). Interestingly, mitochondrial transplantation partially restored these functions since no differences between MT and CTL groups were found. In addition, the administration of healthy mitochondria resulted in a positive regulation of redox balance and mitochondrial dynamics within the skeletal muscle. Although further investigations are needed to better characterize underlying mechanisms, mitochondrial transplantation represents a promising strategy in the setting of IR-induced muscular damage.NEW & NOTEWORTHY Ischemia-reperfusion injury leads to severe muscular damage. Even if prompt revascularization is the treatment of choice, muscular alterations can lead to severe sequalae as mitochondrial dysfunction. Accordingly, adjunctive strategies are needed to overcome the muscular damage. Mitochondrial transplantation has shown beneficial effects in cardiac ischemia-reperfusion, but its role in peripheral muscle is not well established. In this study, we found that mitochondrial transplantation partially restored muscular function when submitted to ischemia reperfusion.
Collapse
Affiliation(s)
- Lauréline Boutonnet
- Mitochondria, Oxidative Stress and Muscular Protection Laboratory (UR 3072), Biomedicine Research Centre of Strasbourg CRBS, Strasbourg, France
| | - Joris Mallard
- Mitochondria, Oxidative Stress and Muscular Protection Laboratory (UR 3072), Biomedicine Research Centre of Strasbourg CRBS, Strasbourg, France
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
- Faculty of Sports Science, University of Strasbourg, Strasbourg, France
| | - Anne-Laure Charles
- Mitochondria, Oxidative Stress and Muscular Protection Laboratory (UR 3072), Biomedicine Research Centre of Strasbourg CRBS, Strasbourg, France
- Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Elyse Hucteau
- Mitochondria, Oxidative Stress and Muscular Protection Laboratory (UR 3072), Biomedicine Research Centre of Strasbourg CRBS, Strasbourg, France
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
- Faculty of Sports Science, University of Strasbourg, Strasbourg, France
| | - Bernard Gény
- Mitochondria, Oxidative Stress and Muscular Protection Laboratory (UR 3072), Biomedicine Research Centre of Strasbourg CRBS, Strasbourg, France
- Faculty of Medicine, University of Strasbourg, Strasbourg, France
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, Strasbourg, France
| | - Anne Lejay
- Mitochondria, Oxidative Stress and Muscular Protection Laboratory (UR 3072), Biomedicine Research Centre of Strasbourg CRBS, Strasbourg, France
- Faculty of Medicine, University of Strasbourg, Strasbourg, France
- Department of Vascular Surgery and Kidney Transplantation, University Hospital of Strasbourg, Strasbourg, France
| | - Antoine Grandperrin
- Mitochondria, Oxidative Stress and Muscular Protection Laboratory (UR 3072), Biomedicine Research Centre of Strasbourg CRBS, Strasbourg, France
- Faculty of Sports Science, University of Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Hyeon J, Lee J, Kim E, Lee HM, Kim KP, Shin J, Park HS, Lee YI, Nam CH. Vutiglabridin exerts anti-ageing effects in aged mice through alleviating age-related metabolic dysfunctions. Exp Gerontol 2023; 181:112269. [PMID: 37567452 DOI: 10.1016/j.exger.2023.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Ageing alters the ECM, leading to mitochondrial dysfunction and oxidative stress, which triggers an inflammatory response that exacerbates with age. Age-related changes impact satellite cells, affecting muscle regeneration, and the balance of proteins. Furthermore, ageing causes a decline in NAD+ levels, and alterations in fat metabolism that impact our health. These various metabolic issues become intricately intertwined with ageing, leading to a variety of individual-level diseases and profoundly affecting individuals' healthspan. Therefore, we hypothesize that vutiglabridin capable of alleviating these metabolic abnormalities will be able to ameliorate many of the problems associated with ageing. METHOD The efficacy of vutiglabridin, which alleviates metabolic issues by enhancing mitochondrial function, was assessed in aged mice treated with vutiglabridin and compared to untreated elderly mice. On young mice, vutiglabridin-treated aged mice, and non-treated aged mice, the Senescence-associated beta-galactosidase staining and q-PCR for ageing marker genes were carried out. Bulk RNA-seq was carried out on GA muscle, eWAT, and liver from each group of mice to compare differences in gene expression in various gene pathways. Blood from each group of mice was used to compare and analyze the ageing lipid profile. RESULTS SA-β-gal staining of eWAT, liver, kidney, and spleen of ageing mice showed that vutiglabridin had anti-ageing effects compared to the control group, and q-PCR of ageing marker genes including Cdkn1a and Cdkn2a in each tissue showed that vutiglabridin reduced the ageing process. In aged mice treated with vutiglabridin, GA muscle showed improved homeostasis compared to controls, eWAT showed restored insulin sensitivity and prevented FALC-induced inflammation, and liver showed reduced inflammation levels due to prevented TLO formation, improved mitochondrial complex I assembly, resulting in reduced ROS formation. Furthermore, blood lipid analysis revealed that ageing-related lipid profile was relieved in ageing mice treated with vutiglabridin versus the control group. CONCLUSION Vutiglabridin slows metabolic ageing mechanisms such as decreased insulin sensitivity, increased inflammation, and altered NAD+ metabolism in adipose tissue in mice experiments, while also retaining muscle homeostasis, which is deteriorated with age. It also improves the lipid profile in the blood and restores mitochondrial function in the liver to reduce ROS generation.
Collapse
Affiliation(s)
- Jooseung Hyeon
- Aging and Immunity Laboratory, Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Jihan Lee
- Aging and Immunity Laboratory, Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Eunju Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea; Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeong Min Lee
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea; Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea; Glaceum Incorporation, Research Department, Suwon, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea; Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Jaejin Shin
- Glaceum Incorporation, Research Department, Suwon, Republic of Korea
| | - Hyung Soon Park
- Glaceum Incorporation, Research Department, Suwon, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, Department of Interdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Chang-Hoon Nam
- Aging and Immunity Laboratory, Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea.
| |
Collapse
|
6
|
Alfatni A, Charles AL, Sauer F, Riou M, Goupilleau F, Talha S, Meyer A, Andres E, Kindo M, Mazzucotelli JP, Epailly E, Geny B. Peripheral Blood Mononuclear Cells Mitochondrial Respiration and Superoxide Anion after Heart Transplantation. J Clin Med 2022; 11:jcm11237247. [PMID: 36498821 PMCID: PMC9735976 DOI: 10.3390/jcm11237247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The mitochondrial function of circulating peripheral blood mononuclear cells (PBMCs) is an interesting new approach to cardiac diseases. Thus, PBMC's mitochondrial respiration decreases in relation to heart failure severity. However, no data are available on heart-transplanted patients (Htx). POPULATION AND METHODS We determined PBMCs mitochondrial respiration by high-resolution respirometry (Oroboros Instruments) and superoxide anion production using electron paramagnetic resonance (Bruker-Biospin) in 20 healthy subjects and 20 matched Htx and investigated clinical, biological, echocardiographic, coronarography and biopsy characteristics. RESULTS PBMCs mitochondrial respiratory chain complex II respiration was decreased in Htx (4.69 ± 0.84 vs. 7.69 ± 1.00 pmol/s/million cell in controls and Htx patients, respectively; p = 0.007) and complex IV respiration was increased (24.58 ± 2.57 vs. 15.68 ± 1.67 pmol/s/million cell; p = 0.0035). Superoxide anion production was also increased in Htx (1.47 ± 0.10 vs. 1.15 ± 0.10 µmol/min; p = 0.041). The leucocyte-to-lymphocyte ratio was increased in Htx, whom complex II correlated with leucocyte number (r = 0.51, p = 0.02) and with the left ventricular posterior wall peak early diastolic myocardial velocity (r = -0.62, p = 0.005). Complex IV was increased in the two patients with acute rejection and correlated negatively with Htx's isovolumetric relation time (r = -0.45, p = 0.045). DISCUSSION Although presenting with normal systolic function, Htx demonstrated abnormal PBMC's mitochondrial respiration. Unlike immunosuppressive therapies, subclinical diastolic dysfunction might be involved in these changes. Additionally, lymphopenia might reduce complex II, and acute rejection enhances complex IV respirations. CONCLUSION PBMC's mitochondrial respiration appears modified in Htx, potentially linked to cellular shift, mild diastolic dysfunction and/or acute rejection.
Collapse
Affiliation(s)
- Abrar Alfatni
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 11 Rue Humann, 67000 Strasbourg, France
| | - Anne-Laure Charles
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 11 Rue Humann, 67000 Strasbourg, France
| | - François Sauer
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 11 Rue Humann, 67000 Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, NHC, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
| | - Marianne Riou
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 11 Rue Humann, 67000 Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, NHC, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
| | - Fabienne Goupilleau
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 11 Rue Humann, 67000 Strasbourg, France
| | - Samy Talha
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 11 Rue Humann, 67000 Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, NHC, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
| | - Alain Meyer
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 11 Rue Humann, 67000 Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, NHC, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
| | - Emmanuel Andres
- Department of Internal Medicine, University Hospital of Strasbourg, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
| | - Michel Kindo
- Cardiovascular Service, University Hospital of Strasbourg, NHC, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
| | - Jean-Philippe Mazzucotelli
- Cardiovascular Service, University Hospital of Strasbourg, NHC, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
| | - Eric Epailly
- Cardiovascular Service, University Hospital of Strasbourg, NHC, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
| | - Bernard Geny
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 11 Rue Humann, 67000 Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, NHC, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
- Correspondence:
| |
Collapse
|
7
|
Oulehri W, Collange O, Tacquard C, Bellou A, Graff J, Charles AL, Geny B, Mertes PM. Impaired Myocardial Mitochondrial Function in an Experimental Model of Anaphylactic Shock. BIOLOGY 2022; 11:730. [PMID: 35625458 PMCID: PMC9139016 DOI: 10.3390/biology11050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 12/07/2022]
Abstract
Anaphylactic shock (AS) is associated with a profound vasodilation and cardiac dysfunction. The cellular mechanisms underlying AS-related cardiac dysfunction are unknown. We hypothesized that myocardial mitochondrial dysfunction may be associated with AS cardiac dysfunction. In controls and sensitized Brown Norway rats, shock was induced by ovalbumin i.v bolus, and abdominal aortic blood flow (ABF), systemic mean arterial pressure (MAP), and lactatemia were measured for 15 min. Myocardial mitochondrial function was assessed with the evaluation of mitochondrial respiration, oxidative stress production by reactive oxygen species (ROS), reactive nitrogen species (RNS), and the measurement of superoxide dismutases (SODs) activity. Oxidative damage was assessed by lipid peroxidation. The mitochondrial ultrastructure was assessed using transmission electronic microscopy. AS was associated with a dramatic drop in ABF and MAP combined with a severe hyperlactatemia 15 min after shock induction. CI-linked substrate state (197 ± 21 vs. 144 ± 21 pmol/s/mg, p < 0.05), OXPHOS activity by complexes I and II (411 ± 47 vs. 246 ± 33 pmol/s/mg, p < 0.05), and OXPHOS activity through complex II (316 ± 40 vs. 203 ± 28 pmol/s/mg, p < 0.05) were significantly impaired. ROS and RNS production was not significantly increased, but SODs activity was significantly higher in the AS group (11.15 ± 1.02 vs. 15.50 ± 1.40 U/mL/mg protein, p = 0.02). Finally, cardiac lipid peroxidation was significantly increased in the AS group (8.50 ± 0.67 vs. 12.17 ± 1.44 µM/mg protein, p < 0.05). No obvious changes were observed in the mitochondrial ultrastructure between CON and AS groups. Our experimental model of AS results in rapid and deleterious hemodynamic effects and was associated with a myocardial mitochondrial dysfunction with oxidative damage and without mitochondrial ultrastructural injury.
Collapse
Affiliation(s)
- Walid Oulehri
- Pôle Anesthésie, Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France; (W.O.); (O.C.); (C.T.)
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
| | - Olivier Collange
- Pôle Anesthésie, Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France; (W.O.); (O.C.); (C.T.)
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
| | - Charles Tacquard
- Pôle Anesthésie, Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France; (W.O.); (O.C.); (C.T.)
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
| | - Abdelouahab Bellou
- Institute of Sciences in Emergency Medicine, Academy of Medical Sciences, Guangdong General People Hospital, Guangzhou 510060, China;
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Global Healthcare Network & Research Innovation Institute LLC, Brookline, MA 02446, USA
| | - Julien Graff
- Faculté de Médecine de Strasbourg, Institut d’Histologie, Service Central de Microscopie Électronique, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France;
| | - Anne-Laure Charles
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
- Service de Physiologie et d’Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Bernard Geny
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
- Service de Physiologie et d’Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Paul-Michel Mertes
- Pôle Anesthésie, Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France; (W.O.); (O.C.); (C.T.)
- Faculté de Médecine de Strasbourg, UR 3072 Institut de Physiologie, FMTS (Fédération de Médecine Translationnelle de Strasbourg), Université de Strasbourg, 67091 Strasbourg, France; (A.-L.C.); (B.G.)
| |
Collapse
|
8
|
Yang Q, Li C, Chen Q. SS31 Ameliorates Oxidative Stress via the Restoration of Autophagic Flux to Protect Aged Mice From Hind Limb Ischemia. Front Cardiovasc Med 2022; 9:789331. [PMID: 35497980 PMCID: PMC9046554 DOI: 10.3389/fcvm.2022.789331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Background Oxidative stress and impaired autophagic flux play important roles in the development of peripheral artery disease (PAD). SS31 is considered an important antioxidant peptide and autophagy regulator. We aimed to investigate the role of SS31 in PAD myopathy and its possible mechanism both in vivo and in vitro. Methods A hind limb ischemia (HLI) model was established with old C57BL/6 (14-month-old) mice. Mice in the SS31 group were intraperitoneally injected with SS31 (3 mg/kg) for 4 weeks. We examined skeletal muscle function and histomorphology, autophagy-related protein levels and reactive oxygen species (ROS) content. For the in vitro experiments, after C2C12 myotubes were treated with CoCl2, SS31, and chloroquine (CQ) or rapamycin (RAPA), we measured ROS content, autophagy-related protein levels and antioxidant enzyme expression. Results SS31 treatment effectively enhanced the recovery of skeletal muscle function, alleviated skeletal muscle injury and suppressed mitochondrial ROS production in ischemic limbs. SS31 reduced apoptosis and oxidative stress, and SS31 restored impaired autophagic flux by inhibiting the AKT-mTOR pathway. In vitro studies showed that SS31 restored autophagic flux and improved oxidative stress in C2C12 cells. Moreover, phosphorylated AKT (p-AKT) and phosphorylated mTOR (p-mTOR) levels were reduced. Conclusion These experiments indicated that SS31 can inhibit oxidative stress by restoring autophagic flux to reverse hypoxia-induced injury in vivo and in vitro.
Collapse
|
9
|
Fatahi A, Zarrinkalam E, Azizbeigi K, Ranjbar K. Cardioprotective effects of exercise preconditioning on ischemia-reperfusion injury and ventricular ectopy in young and senescent rats. Exp Gerontol 2022; 162:111758. [PMID: 35247502 DOI: 10.1016/j.exger.2022.111758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Aging decreases ischemic tolerance, while exercise prevents myocardial ischemia reperfusion (IR) injury. The cardioprotective role of high intensity interval training (HIIT), however, is unknown. METHODS Accordingly, we investigated 8 weeks (5 days/week, 40 min/day) of HIIT treadmill exercise (60%/90% of VO2 peak) on IR injury in young (2-month) and senescent (20-month) Wistar rat myocardia (N = 10/group). Surgical IR (30 min/120 min) was performed via reversible left anterior descending artery ligation and ECG was analyzed to determine ventricular ectopy during IR period. RESULTS Infarction size and oxidative stress were measured in hearts post-mortem. Glutathione peroxidase activity and Myeloperoxidase levels were mitigated with age, but elevated post IR. HIIT potentiated antioxidant defenses in young and old hearts, and infarction size was lower in young HIIT trained. Metrics of reactive oxygen species were not lower after IR, and were not affected by HIIT in young or old rats. Ventricular ectopy score in senescent rats was insignificantly more than young rats and HIIT significantly decreased ventricular ectopy score in young and senescent rats. CONCLUSIONS Findings indicate that IR tolerance is mitigated in senescent hearts, while HIIT ameliorated infarction by increasing antioxidant enzymes activity in young and senescent hearts.
Collapse
Affiliation(s)
- Adnan Fatahi
- Department of Physical Education and Sport Science, Marivan Branch, Islamic Azad University, Marivan, Iran
| | - Ebrahim Zarrinkalam
- Department of Physical Education and Sport Science, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Kamal Azizbeigi
- Exercise Physiology Department, Faculty of Physical Education and Sport Science, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Kamal Ranjbar
- Department of Physical Education and Sport Science, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran.
| |
Collapse
|
10
|
Skeletal Muscle Mitochondrial Dysfunction and Oxidative Stress in Peripheral Arterial Disease: A Unifying Mechanism and Therapeutic Target. Antioxidants (Basel) 2020; 9:antiox9121304. [PMID: 33353218 PMCID: PMC7766400 DOI: 10.3390/antiox9121304] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral artery disease (PAD) is caused by atherosclerosis in the lower extremities, which leads to a spectrum of life-altering symptomatology, including claudication, ischemic rest pain, and gangrene requiring limb amputation. Current treatments for PAD are focused primarily on re-establishing blood flow to the ischemic tissue, implying that blood flow is the decisive factor that determines whether or not the tissue survives. Unfortunately, failure rates of endovascular and revascularization procedures remain unacceptably high and numerous cell- and gene-based vascular therapies have failed to demonstrate efficacy in clinical trials. The low success of vascular-focused therapies implies that non-vascular tissues, such as skeletal muscle and oxidative stress, may substantially contribute to PAD pathobiology. Clues toward the importance of skeletal muscle in PAD pathobiology stem from clinical observations that muscle function is a strong predictor of mortality. Mitochondrial impairments in muscle have been documented in PAD patients, although its potential role in clinical pathology is incompletely understood. In this review, we discuss the underlying mechanisms causing mitochondrial dysfunction in ischemic skeletal muscle, including causal evidence in rodent studies, and highlight emerging mitochondrial-targeted therapies that have potential to improve PAD outcomes. Particularly, we will analyze literature data on reactive oxygen species production and potential counteracting endogenous and exogenous antioxidants.
Collapse
|
11
|
Shimizu I, Minamino T. Cellular Senescence in Arterial Diseases. J Lipid Atheroscler 2020; 9:79-91. [PMID: 32821723 PMCID: PMC7379072 DOI: 10.12997/jla.2020.9.1.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cell-proliferation potency is limited, as cells cannot proceed through the cell cycle continually. Instead, they eventually show an irreversible arrest of proliferation, commonly referred to as cellular senescence. Following the initial discovery of this phenomenon by Hayflick et al., studies have indicated that cells are also destined to undergo aging. In addition to the irreversible termination of proliferation, senescent cells are characterized by a flattened and enlarged morphology. Senescent cells become pro-inflammatory and contribute to the initiation and maintenance of sustained chronic sterile inflammation. Aging is associated with the accumulation of senescent cells in the cardiovascular system, and in general these cells are considered to be pathogenic because they mediate vascular remodeling. Recently, genetic and pharmacological approaches have enabled researchers to eliminate senescent cells both in vitro and in vivo. The term “senolysis” is now used to refer to the depletion of senescent cells, and evidence indicates that senolysis contributes to the reversal of age-related pathogenic phenotypes without the risk of tumorigenesis. The concept of senolysis has opened new avenues in research on aging, and senolysis may be a promising therapeutic approach for combating age-related disorders, including arterial diseases.
Collapse
Affiliation(s)
- Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
12
|
Pizzimenti M, Riou M, Charles AL, Talha S, Meyer A, Andres E, Chakfé N, Lejay A, Geny B. The Rise of Mitochondria in Peripheral Arterial Disease Physiopathology: Experimental and Clinical Data. J Clin Med 2019; 8:jcm8122125. [PMID: 31810355 PMCID: PMC6947197 DOI: 10.3390/jcm8122125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Peripheral arterial disease (PAD) is a frequent and serious condition, potentially life-threatening and leading to lower-limb amputation. Its pathophysiology is generally related to ischemia-reperfusion cycles, secondary to reduction or interruption of the arterial blood flow followed by reperfusion episodes that are necessary but also—per se—deleterious. Skeletal muscles alterations significantly participate in PAD injuries, and interestingly, muscle mitochondrial dysfunctions have been demonstrated to be key events and to have a prognosis value. Decreased oxidative capacity due to mitochondrial respiratory chain impairment is associated with increased release of reactive oxygen species and reduction of calcium retention capacity leading thus to enhanced apoptosis. Therefore, targeting mitochondria might be a promising therapeutic approach in PAD.
Collapse
Affiliation(s)
- Mégane Pizzimenti
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Marianne Riou
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Anne-Laure Charles
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
| | - Samy Talha
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Alain Meyer
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Emmanuel Andres
- Internal Medicine, Diabete and Metabolic Diseases Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France;
| | - Nabil Chakfé
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Vascular Surgery and Kidney Transplantation Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Anne Lejay
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Vascular Surgery and Kidney Transplantation Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Bernard Geny
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
- Correspondence:
| |
Collapse
|