1
|
Lin J, Chen Z, Lu Y, Shi H, Lin P. Bruton tyrosine kinase degrader BP001 attenuates the inflammation caused by high glucose in raw264.7 cell. In Vitro Cell Dev Biol Anim 2024; 60:667-677. [PMID: 38775977 DOI: 10.1007/s11626-024-00919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 07/31/2024]
Abstract
BP001 is a promising small molecule compound that has been specifically designed to target and degrade Bruton's tyrosine kinases (BTK), which is known to play a crucial role in lymphoma development. Macrophages are important immune cells in inflammation regulation and immune response. In this study, we aimed to investigate the effect of BP001 on RAW264.7 macrophage activation stimulated by a high glucose environment. Our findings revealed that treatment with BP001 significantly inhibited the production of nitric oxide (NO), reactive oxygen species (ROS), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) in RAW264.7 macrophages exposed to high glucose conditions. Furthermore, we observed that BP001 treatment also down-regulated the expression of BTK in these activated macrophages. To elucidate the underlying mechanism behind these observations, we investigated the phosphorylation level of NF-κB. Our results demonstrated that BP001 treatment led to decreased phosphorylation levels of NF-κB, thereby inhibiting the level of inflammation. In addition, we also found that BP001 could restore RAW264.7 macrophages from the pro-inflammatory state to the normal phenotype and reduce the occurrence of inflammation. The regulatory function of BP001 in autoimmunity is mediated through the degradation of BTK protein, thereby attenuating macrophage activation. Additionally, BTK plays a pivotal role in transcriptional regulation by inducing NF-κB activity. Consequently, it is not difficult to understand that BP001 effectively inhibits inflammation. In conclusion, the present study provides evidence that BP001, a BTK degrader, can serve as a novel immunomodulator of inflammation induced by high glucose, making it an attractive candidate for further investigation.
Collapse
Affiliation(s)
- Jun Lin
- School of Life Sciences and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Zhendong Chen
- School of Life Sciences and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Yinying Lu
- School of Life Sciences and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Hongyu Shi
- School of Life Sciences and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Pei Lin
- School of Life Sciences and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
2
|
Kumar H, Dhalaria R, Guleria S, Cimler R, Sharma R, Siddiqui SA, Valko M, Nepovimova E, Dhanjal DS, Singh R, Kumar V, Pathera AK, Verma N, Kaur T, Manickam S, Alomar SY, Kuča K. Anti-oxidant potential of plants and probiotic spp. in alleviating oxidative stress induced by H 2O 2. Biomed Pharmacother 2023; 165:115022. [PMID: 37336149 DOI: 10.1016/j.biopha.2023.115022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
Cells produce reactive oxygen species (ROS) as a metabolic by-product. ROS molecules trigger oxidative stress as a feedback response that significantly initiates biological processes such as autophagy, apoptosis, and necrosis. Furthermore, extensive research has revealed that hydrogen peroxide (H2O2) is an important ROS entity and plays a crucial role in several physiological processes, including cell differentiation, cell signalling, and apoptosis. However, excessive production of H2O2 has been shown to disrupt biomolecules and cell organelles, leading to an inflammatory response and contributing to the development of health complications such as collagen deposition, aging, liver fibrosis, sepsis, ulcerative colitis, etc. Extracts of different plant species, phytochemicals, and Lactobacillus sp (probiotic) have been reported for their anti-oxidant potential. In this view, the researchers have gained significant interest in exploring the potential plants spp., their phytochemicals, and the potential of Lactobacillus sp. strains that exhibit anti-oxidant properties and health benefits. Thus, the current review focuses on comprehending the information related to the formation of H2O2, the factors influencing it, and their pathophysiology imposed on human health. Moreover, this review also discussed the anti-oxidant potential and role of different extract of plants, Lactobacillus sp. and their fermented products in curbing H2O2‑induced oxidative stress in both in-vitro and in-vivo models via boosting the anti-oxidative activity, inhibiting of important enzyme release and downregulation of cytochrome c, cleaved caspases-3, - 8, and - 9 expression. In particular, this knowledge will assist R&D sections in biopharmaceutical and food industries in developing herbal medicine and probiotics-based or derived food products that can effectively alleviate oxidative stress issues induced by H2O2 generation.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Richard Cimler
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany.
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 81237, Bratislava, Slovakia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Vijay Kumar
- Central Ayurveda Research Institute, Jhansi 284003, Uttar Pradesh, India
| | | | - Narinder Verma
- School of Management and Liberal Arts, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Talwinder Kaur
- Department of Microbiology, DAV University, Sarmastpur, Jalandhar, Punjab, 144001, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, 18071 Granada, Spain; Biomedical Research Center, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic.
| |
Collapse
|
3
|
Li J, Liao R, Zhang S, Weng H, Liu Y, Tao T, Yu F, Li G, Wu J. Promising remedies for cardiovascular disease: Natural polyphenol ellagic acid and its metabolite urolithins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154867. [PMID: 37257327 DOI: 10.1016/j.phymed.2023.154867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a significant worldwide factor contributing to human fatality and morbidity. With the increase of incidence rates, it is of concern that there is a lack of current therapeutic alternatives because of multiple side effects. Ellagic acid (EA), the natural polyphenol (C14H6O8), is abundant in pomegranates, berries, and nuts. EA and its intestinal microflora metabolite, urolithins, have recently attracted much attention as a potential novel "medicine" because of their wide pharmacological properties. PURPOSE This study aimed to critically analyze available literature to summarize the beneficial effects of EA and urolithins, and highlights their druggability and therapeutic potential in various CVDs. METHODS We systematically studied research and review articles between 1984 and 2022 available on various databases to obtain the data on EA and urolithins with no language restriction. Their cardiovascular protective activities, underlying mechanism, and druggability were highlighted and discussed comprehensively. RESULTS We found that EA and urolithins may exert preventive and curative effects on CVD with negligible side effects and possibly regulate lipid metabolism imbalance, pro-inflammatory factor production, vascular smooth muscle cell proliferation, cardiomyocyte apoptosis, endothelial cell dysfunction, and Ca2+ intake and release. Potentially, this may lead to the prevention and amelioration of atherosclerosis, hypertension, myocardial infarction, cardiac fibrosis, cardiomyopathy, cardiac arrhythmias, and cardiotoxicities in vivo. Several molecules and signaling pathways are associated with their therapeutic actions, including phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, NF-κB, nuclear factor erythroid-2 related factor 2, sirtuin1, miRNA, and extracellular signal-regulated kinase 1/2. CONCLUSION In vitro and in vivo studies shows that EA and urolithins could be used as valid candidates for early prevention and effective therapeutic strategies for various CVDs.
Collapse
Affiliation(s)
- Jingyan Li
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Ruixue Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shijia Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221000, China
| | - Huimin Weng
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuanzhi Liu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tianyi Tao
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Fengxu Yu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Yoon SR, Choi M, Kim OY. Effect of Breakfast Consumption and Meal Time Regularity on Nutrient Intake and Cardiometabolic Health in Korean Adults. J Lipid Atheroscler 2021; 10:240-250. [PMID: 34095015 PMCID: PMC8159763 DOI: 10.12997/jla.2021.10.2.240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
Objective Dietary factors are important contributors to obesity and related metabolic disorders. Few studies have evaluated the impact of dietary habits (e.g., breakfast consumption frequency and meal regularity) on metabolic health. We investigated the effects of breakfast consumption frequency and meal time regularity on nutrient intake and cardiometabolic status in Korean adults. Methods Participants without diagnosed diseases (n=217) were examined for anthropometric and biochemical parameters, lifestyle, dietary habits, and nutrient intake. They were categorized into 4 groups by breakfast consumption frequency (≥6 or <6 times/week) and meal time regularity (regular or irregular): breakfast ≥6 times/week and regular eating (HBRE), breakfast ≥6 times/week and irregular eating (HBIE), breakfast <6 times/week and regular eating (LBRE) and breakfast <6 times/week and irregular eating (LBIE). Results Participants in the LBIE group were the youngest, had higher waist circumference, body mass index, triglyceride levels, and inflammation, and consumed the highest daily total caloric intake (TCI), the highest proportion of fats, and the lowest proportion of carbohydrates. The LBIE group also had the lowest proportion of energy intake at breakfast and the highest proportion at dinner. The LBIE group consumed the lowest amounts of fiber, beta-carotene, vitamin K, folate, calcium and iron, and had the highest prevalence of inadequate nutrient intake for TCI, protein, vitamins A, C, B6, and B12, folate, calcium, iron, zinc, and copper. Conclusion Regular breakfast consumption and meal times are related to healthy lifestyle habits and adequate nutrient intake, which affect metabolic health, thereby helping prevent obesity and related metabolic disorders.
Collapse
Affiliation(s)
- So Ra Yoon
- Institute of Health Insurance and Clinical Research, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Miok Choi
- Department of Food Science and Nutrition, Dong-A University, Busan, Korea.,Dietetic Department, Dong-A University Hospital, Busan, Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan, Korea.,Department of Health Sciences, Dong-A University, Busan, Korea
| |
Collapse
|
5
|
Antioxidant and Anti-Inflammatory Properties of Plants Extract. Antioxidants (Basel) 2019; 8:antiox8110549. [PMID: 31739391 PMCID: PMC6912251 DOI: 10.3390/antiox8110549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
|