1
|
Fatnani D, Parida AK. Unravelling the halophyte Suaeda maritima as an efficient candidate for phytostabilization of cadmium and lead: Implications from physiological, ionomic, and metabolomic responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108770. [PMID: 38823092 DOI: 10.1016/j.plaphy.2024.108770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Cadmium (Cd) and lead (Pb) are among the most toxic heavy metals affecting human health and crop yield. Suaeda maritima (L.) Dumort is an obligate halophyte that is well adapted to saline soil. The inbuilt salinity tolerance mechanisms of halophytes help them to survive in heavy metal-contaminated rhizospheric soil. In the present study, growth and ionomic responses, reactive oxygen species (ROS) accumulation, modulations of phytochelatins, antioxidative defense, and metabolomic responses were studied in S. maritima imposed to Cd and Pb stresses with an aim to elucidate Cd and Pb tolerance mechanisms and phytoremediation potential of this halophyte. Our results showed a reduction of biomass in S. maritima, which may serve as an energy conservation strategy for survival under heavy metal stress. The increased accumulation of ROS with concomitant higher expression of various antioxidative enzymes suggests the efficient scavenging of ROS. The metabolite profiling revealed significant up-regulation of sugars, sugar alcohols, amino acids, polyphenols, and organic acids under Cd and Pb stresses suggesting their possible role in osmotic balance, ionic homeostasis, ROS scavenging, and signal transduction for stress tolerance. In S. maritima, the translocation factors (Tf) are <1 in both Cd and Pb treatments, which indicates that this halophyte has high phytostabilization potential for Cd and Pb in roots and through restricted translocation of heavy metal ions to the aboveground part. The findings of this study offer comprehensive information on Cd and Pb tolerance mechanisms in S. maritima and suggest that this halophyte can detoxify the HMs through physiological, ionic, antioxidative, and metabolic regulations.
Collapse
Affiliation(s)
- Dhara Fatnani
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Lackner S, Mahnert A, Moissl-Eichinger C, Madl T, Habisch H, Meier-Allard N, Kumpitsch C, Lahousen T, Kohlhammer-Dohr A, Mörkl S, Strobl H, Holasek S. Interindividual differences in aronia juice tolerability linked to gut microbiome and metabolome changes-secondary analysis of a randomized placebo-controlled parallel intervention trial. MICROBIOME 2024; 12:49. [PMID: 38461313 PMCID: PMC10924357 DOI: 10.1186/s40168-024-01774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Aronia melanocarpa is a berry rich in polyphenols known for health benefits. However, the bioavailability of polyphenols has been questioned, and the individual taste acceptance of the fruit with its specific flavor varies. We recently observed substantial differences in the tolerability of aronia juice among healthy females, with half of the individuals tolerating aronia juice without complaints. Given the importance of the gut microbiome in food digestion, we investigated in this secondary analysis of the randomized placebo-controlled parallel intervention study (ClinicalTrials.gov registration: NCT05432362) if aronia juice tolerability was associated with changes in intestinal microbiota and bacterial metabolites, seeking for potential mechanistic insights into the impact on aronia polyphenol tolerance and metabolic outcomes. RESULTS Forty females were enrolled for this 6-week trial, receiving either 100 ml natural aronia juice (verum, V) twice daily or a polyphenol-free placebo (P) with a similar nutritional profile, followed by a 6-week washout. Within V, individuals were categorized into those who tolerated the juice well (Vt) or reported complaints (Vc). The gut microbiome diversity, as analyzed by 16S rRNA gene-based next-generation sequencing, remained unaltered in Vc but changed significantly in Vt. A MICOM-based flux balance analysis revealed pronounced differences in the 40 most predictive metabolites post-intervention. In Vc carbon-dioxide, ammonium and nine O-glycans were predicted due to a shift in microbial composition, while in Vt six bile acids were the most likely microbiota-derived metabolites. NMR metabolomics of plasma confirmed increased lipoprotein subclasses (LDL, VLDL) post-intervention, reverting after wash out. Stool samples maintained a stable metabolic profile. CONCLUSION In linking aronia polyphenol tolerance to gut microbiota-derived metabolites, our study explores adaptive processes affecting lipoprotein profiles during high polyphenol ingestion in Vt and examines effects on mucosal gut health in response to intolerance to high polyphenol intake in Vc. Our results underpin the importance of individualized hormetic dosing for beneficial polyphenol effects, demonstrate dynamic gut microbiome responses to aronia juice, and emphasize personalized responses in polyphenol interventions.
Collapse
Affiliation(s)
- Sonja Lackner
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Tobias Madl
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Hansjörg Habisch
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Nathalie Meier-Allard
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Theresa Lahousen
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Alexandra Kohlhammer-Dohr
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Sabrina Mörkl
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Auenbruggerplatz 3, 8036, Graz, Austria
| | - Herbert Strobl
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Sandra Holasek
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria.
| |
Collapse
|
3
|
Haindl MT, Üçal M, Tafrali C, Wonisch W, Erdogan C, Nowakowska M, Adzemovic MZ, Enzinger C, Khalil M, Hochmeister S. Sex Differences under Vitamin D Supplementation in an Animal Model of Progressive Multiple Sclerosis. Nutrients 2024; 16:554. [PMID: 38398879 PMCID: PMC10893160 DOI: 10.3390/nu16040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
A central role for vitamin D (VD) in immune modulation has recently been recognized linking VD insufficiency to autoimmune disorders that commonly exhibit sex-associated differences. Similar to other autoimmune diseases, there is a higher incidence of multiple sclerosis (MS) in women, but a poorer prognosis in men, often characterized by a more rapid progression. Although sex hormones are most likely involved, this phenomenon is still poorly understood. Oxidative stress, modulated by VD serum levels as well as sex hormones, may act as a contributing factor to demyelination and axonal damage in both MS and the corresponding preclinical models. In this study, we analyzed sex-associated differences and VD effects utilizing an animal model that recapitulates histopathological features of the progressive MS phase (PMS). In contrast to relapsing-remitting MS (RRMS), PMS has been poorly investigated in this context. Male (n = 50) and female (n = 46) Dark Agouti rats received either VD (400 IU per week; VD+) or standard rodent food without extra VD (VD-) from weaning onwards. Myelination, microglial activation, apoptotic cell death and neuronal viability were assessed using immunohistochemical markers in brain tissue. Additionally, we also used two different histological markers against oxidized lipids along with colorimetric methods to measure protective polyphenols (PP) and total antioxidative capacity (TAC) in serum. Neurofilament light chain serum levels (sNfL) were analyzed using single-molecule array (SIMOA) analysis. We found significant differences between female and male animals. Female rats exhibited a better TAC and higher amounts of PP. Additionally, females showed higher myelin preservation, lower microglial activation and better neuronal survival while showing more apoptotic cells than male rats. We even found a delay in reaching the peak of the disease in females. Overall, both sexes benefitted from VD supplementation, represented by significantly less cortical, neuroaxonal and oxidative damage. Unexpectedly, male rats had an even higher overall benefit, most likely due to differences in oxidative capacity and defense systems.
Collapse
Affiliation(s)
| | - Muammer Üçal
- Department of Neurosurgery, Medical University of Graz, 8010 Graz, Austria
| | - Cansu Tafrali
- Department of Neurology, Medical University of Graz, 8010 Graz, Austria
| | - Willibald Wonisch
- Otto Loewi Research Center, Department of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Cigdem Erdogan
- Department of Neurology, Medical University of Graz, 8010 Graz, Austria
| | - Marta Nowakowska
- Department of Neurosurgery, Medical University of Graz, 8010 Graz, Austria
| | - Milena Z. Adzemovic
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Michael Khalil
- Department of Neurology, Medical University of Graz, 8010 Graz, Austria
| | - Sonja Hochmeister
- Department of Neurology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
4
|
Wonisch W, Stanger O, Tatzber F, Lindschinger M, Murkovic M, Cvirn G. Stability of bioactive components in smoothies within an extended period of one year. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Lackner S, Sconocchia T, Ziegler T, Passegger C, Meier-Allard N, Schwarzenberger E, Wonisch W, Lahousen T, Kohlhammer-Dohr A, Mörkl S, Derler M, Strobl H, Holasek SJ. Immunomodulatory Effects of Aronia Juice Polyphenols-Results of a Randomized Placebo-Controlled Human Intervention Study and Cell Culture Experiments. Antioxidants (Basel) 2022; 11:1283. [PMID: 35883769 PMCID: PMC9312026 DOI: 10.3390/antiox11071283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Dietary polyphenols, which are present in Aronia melanocarpa, have been associated with various beneficial effects on human health including antioxidant, antiviral, and anti-inflammatory activities. We aimed to investigate the immunomodulatory effects of aronia juice polyphenols in a randomized placebo-controlled human intervention study and cell culture experiments. A total of 40 females were asked to consume either 200 mL of aronia juice or a placebo drink for six weeks and were investigated again after a washout period of another six weeks. We observed that only half of the participants tolerated the aronia juice well (Vt) and the other half reported complaints (Vc). The placebo (P) was generally tolerated with one exception (p = 0.003). Plasma polyphenol levels increased significantly in Vt after the intervention (p = 0.024) but did neither in P nor in Vc. Regulatory T cell (Treg) frequencies remained constant in Vt and P during the intervention, whereas Tregs decreased in Vc (p = 0.018). In cell culture, inhibiting effects of ferulic acid (p = 0.0005) and catechin (p = 0.0393) on the differentiation of Tregs were observed as well as reduced activation of CD4-T cells in ferulic acid (p = 0.0072) and aronia juice (p = 0.0163) treated cells. Interestingly, a CD4+CD25-FoxP3+ cell population emerged in vitro in response to aronia juice, but not when testing individual polyphenols. In conclusion, our data strengthen possible individual hormetic effects, the importance of the food matrix for bioactivity, and the need for further investigations on possible impacts of specific physiological features such as the gut microbiota in the context of personalized nutrition.
Collapse
Affiliation(s)
- Sonja Lackner
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| | - Tommaso Sconocchia
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
- Division of Haematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Tobias Ziegler
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
- Juice Plus+ Science Institute, Collierville, TN 38017, USA
| | - Christina Passegger
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| | - Nathalie Meier-Allard
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| | - Elke Schwarzenberger
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| | - Willibald Wonisch
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria;
| | - Theresa Lahousen
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (A.K.-D.); (S.M.)
| | - Alexandra Kohlhammer-Dohr
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (A.K.-D.); (S.M.)
| | - Sabrina Mörkl
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (A.K.-D.); (S.M.)
| | - Martina Derler
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
- Department of Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria
| | - Herbert Strobl
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| | - Sandra Johanna Holasek
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| |
Collapse
|
6
|
Wagner-Skacel J, Haidacher F, Wiener M, Pahsini K, Marinschek S, Lahousen T, Wonisch W, Bengesser S, Butler MI, Lackner S, Meinitzer A, Enko D, Mörkl S. Oxidative Status in Adult Anorexia Nervosa Patients and Healthy Controls—Results from a Cross-Sectional Pilot Study. Antioxidants (Basel) 2022; 11:antiox11050842. [PMID: 35624706 PMCID: PMC9137881 DOI: 10.3390/antiox11050842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress describes an imbalance of reactive oxygen species (ROS) and antioxidative defence systems. Recently, the consequences of oxidative stress have become a central field of research and have been linked to the genesis of multiple psychiatric diseases. Some oxidative stress parameters have not been investigated before in anorexia nervosa (AN) patients, including the gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) and polyphenols (PPm). In this cross-sectional pilot study, we evaluated these markers together with total peroxides (TOC), antioxidative capacity (TAC), endogenous peroxidase activity (EPA) and antibodies against oxidized LDL (oLAb) in serum samples of 20 patients with AN compared to 20 healthy controls. The antioxidative capacity was significantly decreased in AN patients, with a mean TAC of 1.57 mmol/L (SD: ±0.62); t (34) = −2.181, p = 0.036) compared to HC (mean = 1.91 mmol/L (SD: ±0.56), while the other investigated parameters were not significantly different between the two groups. In AN patients, TAC correlated with EPA (rsp = −0.630, p = 0.009). This study suggests that there is an antioxidative deficiency in AN patients. In this respect, there is a demand for interventional studies to determine whether antioxidants can be used as add-on therapy in the treatment of AN.
Collapse
Affiliation(s)
- Jolana Wagner-Skacel
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (J.W.-S.); (F.H.); (M.W.); (K.P.); (S.M.); (T.L.); (S.B.)
- Department of Medical Psychology and Psychotherapy, Medical University of Graz, 8036 Graz, Austria
| | - Fiona Haidacher
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (J.W.-S.); (F.H.); (M.W.); (K.P.); (S.M.); (T.L.); (S.B.)
| | - Markus Wiener
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (J.W.-S.); (F.H.); (M.W.); (K.P.); (S.M.); (T.L.); (S.B.)
| | - Karoline Pahsini
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (J.W.-S.); (F.H.); (M.W.); (K.P.); (S.M.); (T.L.); (S.B.)
| | - Sabine Marinschek
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (J.W.-S.); (F.H.); (M.W.); (K.P.); (S.M.); (T.L.); (S.B.)
| | - Theresa Lahousen
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (J.W.-S.); (F.H.); (M.W.); (K.P.); (S.M.); (T.L.); (S.B.)
| | - Willibald Wonisch
- Division of Physiological Chemistry, Medical University of Graz, 8036 Graz, Austria;
| | - Susanne Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (J.W.-S.); (F.H.); (M.W.); (K.P.); (S.M.); (T.L.); (S.B.)
| | - Mary I. Butler
- Department of Psychiatry and Neurobehavioral Science, University College Cork, T12 YT20 Cork, Ireland;
| | - Sonja Lackner
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8036 Graz, Austria;
| | - Andreas Meinitzer
- Division of Medical and Clinical Laboratory Diagnostics, Medical University Graz, 8036 Graz, Austria; (A.M.); (D.E.)
| | - Dietmar Enko
- Division of Medical and Clinical Laboratory Diagnostics, Medical University Graz, 8036 Graz, Austria; (A.M.); (D.E.)
| | - Sabrina Mörkl
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (J.W.-S.); (F.H.); (M.W.); (K.P.); (S.M.); (T.L.); (S.B.)
- Department of Psychiatry and Neurobehavioral Science, University College Cork, T12 YT20 Cork, Ireland;
- Correspondence: ; Tel.: +43-316-385-81743
| |
Collapse
|
7
|
Tatzber F, Zelzer S, Obermayer-Pietsch B, Rinnerhofer S, Kundi M, Cvirn G, Wultsch G, Herrmann M, Mangge H, Niedrist T, Wonisch W. Occupational Health Aspects with Special Focus on Physiological Differences between Office and Metalworkers. Antioxidants (Basel) 2022; 11:antiox11040633. [PMID: 35453318 PMCID: PMC9032298 DOI: 10.3390/antiox11040633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Physical workload adversely impacts inflammation, oxidative stress and mood in heavy workers. We compared these risk parameters between metalworkers (n = 20) and office workers (n = 30), including gender differences. Blood samples were analyzed with thirty parameters to overview endocrinology, inflammation, and psychological and oxidative stress. Despite an adequate antioxidative supply, oxidative stress occurred in metalworkers, as indicated by significantly increased peroxide and homocysteine (Hcy) levels. Moreover, increased concentrations were observed in this group regarding psychological stress and diet-related parameters. Sex-specific differences were determined for physical dimensions, dehydroepiandrosterone sulfate (DHEAS), Hcy, uric acid, triglycerides, osmolality, anti-Mullerian hormone (AMH) and testosterone. Age-associated differences were observed for DHEAS, glycosylated hemoglobin, adrenaline, AMH and testosterone. In male office workers, the body mass index was associated with increased LDL-HDL, cholesterol-HDL and homeostatic model assessment of insulin resistance (HOMA-IR). In conclusion, these results indicate increased oxidative stress and psychological stress in heavy workers independently of adequate antioxidant sustenance. The sedentary occupation of office workers, in turn, favored diseases of affluence. This might be particularly relevant for long-term occupied persons and older workers due to a hormonal shift coming along, given the risk for oxidative stress-related diseases such as cardiovascular disease, particularly in the case of males, based on their lifestyle habits.
Collapse
Affiliation(s)
- Franz Tatzber
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, Heinrichstraße 31a, 8010 Graz, Austria;
| | - Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 29, 8036 Graz, Austria; (S.Z.); (M.H.); (H.M.); (T.N.)
| | - Barbara Obermayer-Pietsch
- Endocrinology Lab Platform, Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria;
| | - Stefan Rinnerhofer
- Exercise Physiology, Training and Training Therapy Research Group, Institute of Sports Science, University of Graz, Mozartgasse 14, 8010 Graz, Austria;
| | - Michael Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria;
| | - Gerhard Cvirn
- Otto Loewi Research Center, Division of Physiological Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6 HBK M1/D3, 8010 Graz, Austria;
| | - Georg Wultsch
- Arbeitsmedizinisches Institut Graz, Herrgottwiesgasse 149, 8055 Graz, Austria;
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 29, 8036 Graz, Austria; (S.Z.); (M.H.); (H.M.); (T.N.)
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 29, 8036 Graz, Austria; (S.Z.); (M.H.); (H.M.); (T.N.)
| | - Tobias Niedrist
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 29, 8036 Graz, Austria; (S.Z.); (M.H.); (H.M.); (T.N.)
| | - Willibald Wonisch
- Otto Loewi Research Center, Division of Physiological Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6 HBK M1/D3, 8010 Graz, Austria;
- Correspondence: ; Tel.: +43-650-52-99-540
| |
Collapse
|