1
|
Ohtsuka H, Kawai S, Ito Y, Kato Y, Shimasaki T, Imada K, Otsubo Y, Yamashita A, Mishiro‐Sato E, Kuwata K, Aiba H. Novel TORC1 inhibitor Ecl1 is regulated by phosphorylation in fission yeast. Aging Cell 2025; 24:e14450. [PMID: 39910760 PMCID: PMC11984688 DOI: 10.1111/acel.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 02/07/2025] Open
Abstract
Extender of chronological lifespan 1 (Ecl1) inhibits target of rapamycin complex 1 (TORC1) and is necessary for appropriate cellular responses to various stressors, such as starvation, in fission yeast. However, little is known about the effect of posttranslational modifications on Ecl1 regulation. Thus, we investigated the phosphorylation levels of Ecl1 extracted from yeast under conditions of sulfur or metal starvation. Mass spectrometry analysis revealed that Ecl1 was phosphorylated at Thr7, and the level was decreased by starvation. The phosphorylation-mimetic mutation of Thr7 significantly reduced the effects of Ecl1-induced cellular responses to starvation, suggesting that Ecl1 function was suppressed by Thr7 phosphorylation. By contrast, regardless of starvation exposure, TORC1 was significantly suppressed, even when Thr7 phosphorylation-mimetic Ecl1 was overexpressed. This indicated that Ecl1 suppressed TORC1 regardless of Thr7 phosphorylation. We newly identified that Ecl1 physically interacted with TORC1 subunit RAPTOR (Mip1). Based on these evidences, we propose that, Ecl1 has dual functional modes: quantity-dependent TORC1 inhibition and Thr7 phosphorylation-dependent control of cellular function.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Sawa Kawai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Yurika Ito
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Yuka Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Takafumi Shimasaki
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Kazuki Imada
- Department of Chemistry and BiochemistrySuzuka College, National Institute of Technology (KOSEN)SuzukaJapan
- Department of Biology, Graduate School of ScienceOsaka City UniversityOsakaJapan
| | - Yoko Otsubo
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
- Life Science NetworkThe University of TokyoTokyoJapan
| | - Akira Yamashita
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Emi Mishiro‐Sato
- Institute of Transformative bio‐MoleculesTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Keiko Kuwata
- Institute of Transformative bio‐MoleculesTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Hirofumi Aiba
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| |
Collapse
|
2
|
Ohtsuka H, Shimasaki T, Aiba H. Low-Molecular Weight Compounds that Extend the Chronological Lifespan of Yeasts, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Adv Biol (Weinh) 2024; 8:e2400138. [PMID: 38616173 DOI: 10.1002/adbi.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Yeast is an excellent model organism for research for regulating aging and lifespan, and the studies have made many contributions to date, including identifying various factors and signaling pathways related to aging and lifespan. More than 20 years have passed since molecular biological perspectives are adopted in this research field, and intracellular factors and signal pathways that control aging and lifespan have evolutionarily conserved from yeast to mammals. Furthermore, these findings have been applied to control the aging and lifespan of various model organisms by adjustment of the nutritional environment, genetic manipulation, and drug treatment using low-molecular weight compounds. Among these, drug treatment is easier than the other methods, and research into drugs that regulate aging and lifespan is consequently expected to become more active. Chronological lifespan, a definition of yeast lifespan, refers to the survival period of a cell population under nondividing conditions. Herein, low-molecular weight compounds are summarized that extend the chronological lifespan of Saccharomyces cerevisiae and Schizosaccharomyces pombe, along with their intracellular functions. The low-molecular weight compounds are also discussed that extend the lifespan of other model organisms. Compounds that have so far only been studied in yeast may soon extend lifespan in other organisms.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Megawati, Ariani N, Minarti, Darmawan A, Eka Prastya M. Investigations of Antibacterial, Antioxidant, and Antidiabetic Potential of Extract and Its Active Fractions from the Leaves of Horsfieldia spicata (Roxb.) J. Sinclair. Chem Biodivers 2023; 20:e202300113. [PMID: 37165965 DOI: 10.1002/cbdv.202300113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023]
Abstract
This study was undertaken to analyse the potential bioactivities including antibacterial, antioxidant and antidiabetic derived from the methanolic extract and the column chromatography ethyl acetate fraction (AcOEt Fr) of Horsfieldia spicata leaves. Methanolic extract and 4 other fractions was calculated for total phenol and flavonoid contents along with tested for antibacterial, antioxidant and antidiabetic properties. Interestingly, the AcOEt Fr had the highest value for total flavonoid content and the best antioxidant, and antidiabetic activities. Therefore, the AcOEt Fr was further separated using column chromatography technique for obtaining 9 selected fractions namely fraction 1 (F1) - fraction 9 (F9) which were further tested. The results showed that the AcOEt column chromatography fractions namely F2, F3, F4 and F6 had the best clear inhibition antibacterial value against all bacterial tested. In addition, these fractions also exhibited better Minimum Inhibitory Concentrations (MIC) and Minimum Bactericidal Concentrations (MBC) values than others. Antioxidant, 2,2-diphenylpicrylhydrazyl (DPPH) assayed indicated that AcOEt Fr had the strongest IC50 value of 47.30 μg/mL. Further, F4 column chromatography fraction showed the best inhibition against α-Glucosidase enzyme related to antidiabetic activity with an IC50 value of 6.11 μg/mL. Liquid chromatography tandem-mass spectrometry (LC/MS/MS) analysis identified that F4 derived from AcOEt fraction had several compounds belonging to the flavonoid and phenolics such as 3',5-dihydroxy-7,4'-dimethoxyflavone, 5,7-dihydroxy-3-(4'-hydroxybenzyl)chromone, and Kadsurenin I.
Collapse
Affiliation(s)
- Megawati
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research, and Innovation Agency (BRIN), Kawasan Sains dan Teknologi (KST) B.J Habibie (PUSPIPTEK) Serpong, 15314>, South Tangerang, Banten, Indonesia
| | - Novita Ariani
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Gd. 452 Kawasan Sains dan Teknologi (KST) B.J Habibie (PUSPIPTEK) Serpong, South Tangerang, Banten, Indonesia, 15314
| | - Minarti
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research, and Innovation Agency (BRIN), Kawasan Sains dan Teknologi (KST) B.J Habibie (PUSPIPTEK) Serpong, 15314>, South Tangerang, Banten, Indonesia
| | - Akhmad Darmawan
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research, and Innovation Agency (BRIN), Kawasan Sains dan Teknologi (KST) B.J Habibie (PUSPIPTEK) Serpong, 15314>, South Tangerang, Banten, Indonesia
| | - Muhammad Eka Prastya
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research, and Innovation Agency (BRIN), Kawasan Sains dan Teknologi (KST) B.J Habibie (PUSPIPTEK) Serpong, 15314>, South Tangerang, Banten, Indonesia
| |
Collapse
|
4
|
Wu K, Liu Y, Yang B, Kung Y, Chang K, Lee M. Rapid discrimination of the native medicinal plant Adenostemma lavenia from its adulterants using PCR-RFLP. PeerJ 2022; 10:e13924. [PMID: 36340190 PMCID: PMC9635354 DOI: 10.7717/peerj.13924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/29/2022] [Indexed: 01/18/2023] Open
Abstract
Background In Taiwan, the aerial part of Adenostemma lavenia (Al) is used in the form of herbal tea or in a folk remedy primarily to mitigate inflammatory conditions in the lungs and liver. Due to the excellent health benefits of Al against inflammation, it has become increasingly crucial and in great demand during the COVID-19 pandemic. However, Al has been found to be adulterated with Wedelia biflora, Sigesbeckia orientalis, and/or Wedelia chinensis because of similarities in appearance and vernacular names. Methods This study aimed to develop a PCR-RFLP DNA molecular method for the authentication of Al. The restriction enzyme BsrI was used according to the sequencing and alignment results of PCR products in the ITS2 regions of Al and its adulterants. Gel electrophoresis resulted in the clear separation of Al and its adulterants into two distinct categories. Results In conclusion, the PCR-RFLP authentication method developed herein provides an easy, rapid, and accurate method to distinguish Al from its adulterants to assure user health and safety.
Collapse
Affiliation(s)
- Kunchang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yunchen Liu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Bocheng Yang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yenying Kung
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Center of Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kaiwei Chang
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Center of Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mengshiou Lee
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Ohtsuka H, Matsumoto T, Mochida T, Shimasaki T, Shibuya M, Yamamoto Y, Aiba H. Tschimganine has different targets for chronological lifespan extension and growth inhibition in fission yeast. Biosci Biotechnol Biochem 2022; 86:775-779. [PMID: 35416247 DOI: 10.1093/bbb/zbac051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/25/2022] [Indexed: 11/14/2022]
Abstract
Tschimganine inhibits growth and extends the chronological lifespan in Schizosaccharomyces pombe. We synthesized a Tschimganine analog, Mochimganine, which extends the lifespan similar to Tschimganine but exhibits a significantly weaker growth inhibition effect. Based on the comparative analysis of these compounds, we propose that Tschimganine has at least 2 targets: one extends the lifespan and the other inhibits growth.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takuma Matsumoto
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takahiro Mochida
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Masatoshi Shibuya
- Laboratory of Molecular Design, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yoshihiko Yamamoto
- Laboratory of Molecular Design, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
6
|
Priddy C, Li J. The role of the Nrf2/Keap1 signaling cascade in mechanobiology and bone health. Bone Rep 2021; 15:101149. [PMID: 34869801 PMCID: PMC8626578 DOI: 10.1016/j.bonr.2021.101149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
In conjunction with advancements in modern medicine, bone health is becoming an increasingly prevalent concern among a global population with an ever-growing life expectancy. Countless factors contribute to declining bone strength, and age exacerbates nearly all of them. The detrimental effects of bone loss have a profound impact on quality of life. As such, there is a great need for full exploration of potential therapeutic targets that may provide antiaging benefits and increase the life and strength of bone tissues. The Keap1-Nrf2 pathway is a promising avenue of this research. The cytoprotective and antioxidant functions of this pathway have been shown to mitigate the deleterious effects of oxidative stress on bone tissues, but the exact cellular and molecular mechanisms by which this occurs are not yet fully understood. Presently, refined animal and loading models are allowing exploration into the effect of the Keap1-Nrf2 pathway in a tissue-specific or even cell-specific manner. In addition, Nrf2 activators currently undergoing clinical trials can be utilized to investigate the particular cellular mechanisms at work in this cytoprotective cascade. Although the timing and dosing of treatment with Nrf2 activators need to be further investigated, these activators have great potential to be used clinically to prevent and treat osteoporosis.
Collapse
Affiliation(s)
- Carlie Priddy
- Department of Biology, Indiana University – Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jiliang Li
- Department of Biology, Indiana University – Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
7
|
Antiaging Properties of the Ethanol Fractions of Clove (Syzygium aromaticum L.) Bud and Leaf at the Cellular Levels: Study in Yeast Schizosaccharomyces pombe. Sci Pharm 2021. [DOI: 10.3390/scipharm89040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The exposure of reactive oxygen species is one of the aging triggers at cellular level. The antioxidants have been used as strategic efforts in overcoming the accumulation of ROS. Previous research using crude extracts of clove bud and leaves showed its potential as an antioxidant agent. However, no data were available regarding the antioxidant and antiaging activities of subsequent fractions of clove extracts. Therefore, this study aimed to analyze the antioxidant and antiaging activities of the n-hexane and ethanol fractions from clove bud and leaves. Antioxidant and antiaging activities were tested at the cellular level using the yeast model Schizosaccharomyces pombe. The highest flavonoid content was shown by clove leaf n-hexane fraction (25.6 mgQE·g−1). However, ethanol fraction of clove bud (FEB) showed the highest antioxidant activity based on TBA and antiglycation assays. FEB (8 μg·mL−1) and leaf ethanol fraction (FEL) (10 μg·mL−1) were able to induce yeast tolerance against oxidative stress. In addition, FEB could induce mitochondrial activity and delay the G1 phase of the cell cycle. FEB was found to be rich in gallic acid and (15Z)-9,12,13-trihydroxy-15-octadecenoic. Based on the data, FEB shows the potential antiaging activity, which is promising for further development as biopharmaceutical product formulations.
Collapse
|
8
|
Antiaging and Antioxidant Bioactivities of Asteraceae Plant Fractions on the Cellular Functions of the Yeast Schizosaccharomyces pombe. Adv Pharmacol Pharm Sci 2021; 2021:2119634. [PMID: 34589709 PMCID: PMC8476265 DOI: 10.1155/2021/2119634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/11/2021] [Accepted: 09/07/2021] [Indexed: 01/23/2023] Open
Abstract
Research on antioxidants has been gaining worldwide attention because of their essential applications for medicinal purposes. In this study, we conducted bioprospecting of six Asteraceae plants as the source of antiaging and antioxidant agents. Water and chloroform fractions from Ageratum conyzoides L., Dichrocephala integrifolia (L.f.) Kuntze, Galinsoga parviflora (Cav.), Mikania micrantha Kunth, Sphagneticola trilobata (L.) Pruski, and Synedrella nodiflora L. were collected and assayed for their in vitro antioxidant activities and potential antiaging properties using the yeast Schizosaccharomyces pombe as the model organism. Based on the in vitro assay, the water fractions of S. trilobata showed a strong antioxidant activity. Interestingly, all treatment solutions promoted the stress tolerance phenotype of S. pombe to strong H2O2-induced oxidative stress conditions. Moreover, compared with the treatments without plant extract/fraction, all extract and fraction treatments, except the chloroform fractions of A. conyzoides, promoted yeast cell longevity. Strong induction of mitochondria activity was found following the treatments with the extracts and fractions of S. nodiflora, D. integrifolia, and M. micrantha and likely mimicked the calorie restriction-induced lifespan. Interestingly, S. nodiflora water fractions significantly upregulated the mRNA transcripts of the Pap1-mediated core environmental stress response, namely, ctt1 gene in S. pombe. These data indicated that the fractions of Asteraceae plants had potential antioxidant and antiaging activities through various cellular modulations. S. nodiflora water fraction has been shown to have antioxidant and antiaging activities in S. pombe, by modulating stress tolerance response, inducing mitochondrial activity, and increasing the ctt1 gene expression. Compounds analysis identified that S. nodiflora water fraction contained some primarily compounds including oxyphyllacinol, valine, and sugiol.
Collapse
|
9
|
Abstract
Essential oils possess antiaging properties due to their antioxidant activity. This study aims to determine the antiaging activities of four main Indonesian essential oils and their irritation potential on the skin. The spot yeast and in vivo rat skin with UVB exposure methods were used to analyze the antiaging activity of essential oils on aging triggered by endogenous and exogenous factors, respectively. Meanwhile, patch tests and clinical evaluations were used for the skin irritation potential analysis. The antiaging activity results from the endogenous factor showed that the use of clove, patchouli, nutmeg, and citronella oils increased yeast viability at concentrations of 20, 40, 60, and 100 µg/mL, respectively. Furthermore, nutmeg, cloves, citronella, and patchouli oils decreased the wrinkle score on rat skin after UVB exposure (exogenous factor). The skin irritation potential results of patchouli, nutmeg, citronella, and clove oils were none (0), slightly (0.02), moderately (0.09), and very irritating (0.39), respectively.
Collapse
|
10
|
Maeda M, Suzuki M, Fuchino H, Tanaka N, Kobayashi T, Isogai R, Batubara I, Iswantini D, Matsuno M, Kawahara N, Koketsu M, Hamamoto A, Takemori H. Diversity of Adenostemma lavenia, multi-potential herbs, and its kaurenoic acid composition between Japan and Taiwan. J Nat Med 2021; 76:132-143. [PMID: 34510371 DOI: 10.1007/s11418-021-01565-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/29/2021] [Indexed: 11/30/2022]
Abstract
Adenostemma lavenia (L.) Kuntze (Asteraceae) is widely distributed in tropical regions of East Asia, and both A. lavenia and A. madurense (DC) are distributed in Japan. In China and Taiwan, A. lavenia is used as a folk medicine for treating lung congestion, pneumonia, and hepatitis. However, neither phylogenic nor biochemical analysis of this plants has been performed to date. We have reported that the aqueous extract of Japanese A. lavenia contained high levels of ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid (11αOH-KA; a kaurenoic acid), which is a potent anti-melanogenic compound. Comparison of chloroplast DNA sequences suggested that A. lavenia is originated from A. madurense. Analyses of kaurenoic acids revealed that Japanese A. lavenia and A. madurense contained high levels of 11αOH-KA and moderate levels of 11α,15OH-KA, while Taiwanese A. lavenia mainly contained 9,11αOH-KA. The diverse biological activities (downregulation of Tyr, tyrosinase, gene expression [anti-melanogenic] and iNOS, inducible nitric oxide synthase, gene expression [anti-inflammatory], and upregulation of HO-1, heme-oxygenase, gene expression [anti-oxidative]) were associated with 11αOH-KA and 9,11αOH-KA but not with 11α,15OH-KA. Additionally, 11αOH-KA and 9,11αOH-KA decreased Keap1 (Kelch-like ECH-associated protein 1) protein levels, which was accompanied by upregulation of protein level and transcriptional activity of Nrf2 (NF-E2-related factor-2) followed by HO-1 gene expression. 11αOH-KA and 9,11αOH-KA differ from 11α,15OH-KA in terms of the presence of a ketone (αβ-unsaturated carbonyl group, a thiol modulator) at the 15th position; therefore, thiol moieties on the target proteins, including Keap1, may be important for the biological activities of 11αOH-KA and 9,11αOH-KA and A. lavenia extract.
Collapse
Affiliation(s)
- Miwa Maeda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| | - Mayu Suzuki
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Norika Tanaka
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| | - Takahiro Kobayashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| | - Ryosuke Isogai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| | - Irmanida Batubara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, IPB Dramaga Campus, Bogor, West Java, 16680, Indonesia.,Tropical Biopharmaca Research Center, IPB University, Taman Kencana Campus, Bogor, West Java, 16128, Indonesia
| | - Dyah Iswantini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, IPB Dramaga Campus, Bogor, West Java, 16680, Indonesia.,Tropical Biopharmaca Research Center, IPB University, Taman Kencana Campus, Bogor, West Java, 16128, Indonesia
| | - Michiyo Matsuno
- The Kochi Prefectural Makino Botanical Garden, 4200-6 Godaisan, Kochi, 781-8125, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan.,The Kochi Prefectural Makino Botanical Garden, 4200-6 Godaisan, Kochi, 781-8125, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| | - Akie Hamamoto
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan.
| |
Collapse
|
11
|
Xia M, Li Y. Complete chloroplast genome sequence of Adenostemma lavenia (Asteraceae) and phylogenetic analysis with related species. Mitochondrial DNA B Resour 2021; 6:2134-2136. [PMID: 34286079 PMCID: PMC8266254 DOI: 10.1080/23802359.2021.1944369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Adenostemma lavenia is a perennial medical herb in the family Asteraceae. Here, we sequenced and analyzed the complete chloroplast genome of A. lavenia. The complete chloroplast genome size is 150,063 bp with a GC content of 37.63%. The A. lavenia chloroplast genome is a typical quadripartite structure, including a large single-copy region (LSC) of 82,017 bp and a small single-copy region (SSC) of 18,142 bp separated by a pair of inverted repeats (IRs) of 24,952 bp each. A total of 114 unique genes, including 29 tRNA genes, four rRNA genes, and 81 protein-coding genes were found in the chloroplast genome. Phylogenetic analysis revealed that A. lavenia is more closely related with Chromolaena odorata.
Collapse
Affiliation(s)
- Mingze Xia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
12
|
Ohtsuka H, Shimasaki T, Aiba H. Extension of chronological lifespan in Schizosaccharomyces pombe. Genes Cells 2021; 26:459-473. [PMID: 33977597 PMCID: PMC9290682 DOI: 10.1111/gtc.12854] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023]
Abstract
There are several examples in the nature wherein the mechanism of longevity control of unicellular organisms is evolutionarily conserved with that of higher multicellular organisms. The present microreview focuses on aging and longevity studies, particularly on chronological lifespan (CLS) concerning the unicellular eukaryotic fission yeast Schizosaccharomyces pombe. In S. pombe, >30 compounds, 8 types of nutrient restriction, and >80 genes that extend CLS have been reported. Several CLS control mechanisms are known to be involved in nutritional response, energy utilization, stress responses, translation, autophagy, and sexual differentiation. In unicellular organisms, the control of CLS is directly linked to the mechanism by which cells are maintained in limited‐resource environments, and their genetic information is left to posterity. We believe that this important mechanism may have been preserved as a lifespan control mechanism for higher organisms.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
13
|
Tang Q, Wang Q, Sun Z, Kang S, Fan Y, Hao Z. Bergenin Monohydrate Attenuates Inflammatory Response via MAPK and NF-κB Pathways Against Klebsiella pneumonia Infection. Front Pharmacol 2021; 12:651664. [PMID: 34017253 PMCID: PMC8129520 DOI: 10.3389/fphar.2021.651664] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background:Klebsiella pneumonia has emerged as a critical pathogen causing severe clinical problems, such as pneumonia and sepsis. Meanwhile, intensified drug resistance induced by antibiotic therapy necessitates discovering novel and active molecules from Traditional Chinese Medicine (TCM) for treatment. Methods and results: In this study, the isolated Bergenin monohydrate showed an anti-inflammatory effect in Klebsiella-infected mice. We initially investigated the anti-inflammatory effects and cytoprotection against oxidative stress in vitro and in vivo. Interestingly, a specific dose of Bm can effectively ameliorate lung injury and suppress the expression of inflammatory cytokines such as TNF-α, IL-6, IL-1β and PEG2. Moreover, Bm was also shown to reduced the levels of MPO, MDA and increased SOD and GSH activities. Moreover, we assessed the intracellular signaling molecules including p38, ERK, JNK, IκB, NF-κB-p65 by western blotting and verified through MAPK and NF-κB pathways inhibition experiments. These results reveal that Bm executed its effects via the classical MAPK signaling pathway and NF-κB pathway. Conclusion: Given its underlying anti-inflammatory effect, Bm may be used as a promising therapeutic against Klebsiella-induced infection, thus providing a benefit for the future clinical therapy of pneumonia and medicine design.
Collapse
Affiliation(s)
- Qihe Tang
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Qingyu Wang
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhuojian Sun
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Songyao Kang
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Yimeng Fan
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhihui Hao
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|