1
|
Ramundi V, Zdouc MM, Donati E, van der Hooft JJJ, Cimini S, Righetti L. Non-targeted metabolomics-based molecular networking enables the chemical characterization of Rumex sanguineus, a wild edible plant. Metabolomics 2025; 21:19. [PMID: 39853612 PMCID: PMC11761831 DOI: 10.1007/s11306-024-02210-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/07/2024] [Indexed: 01/26/2025]
Abstract
INTRODUCTION AND OBJECTIVE Rumex sanguineus, a traditional medicinal plant of the Polygonaceae family, is gaining popularity as an edible resource. However, despite its historical and nutritional significance, its chemical composition remains poorly understood. To deepen the understanding of the of Rumex sanguineus composition, an in-depth analysis using non-targeted, mass spectrometry-based metabolomics was performed. METHODS: Rumex roots, stems and leaves samples were analyzed by UHPLC-HRMS and subsequently subjected to feature-based molecular networking. RESULTS AND CONCLUSION Overall, 347 primary and specialized metabolites grouped into 8 biochemical classes were annotated. Most of these metabolites (60%) belong to the polyphenols and anthraquinones classes. To investigate potential' toxicity due to the presence of anthraquinones, the amount of emodin was quantified with analytical standard, revealing higher accumulation in leaves compared to stems and roots. This highlights the need for thorough metabolomic studies to understand both beneficial and harmful compounds, especially in plants with historical medicinal use transitioning to modern culinary use.
Collapse
Affiliation(s)
- Valentina Ramundi
- Laboratory of Organic Chemistry, Wageningen University & Research, 6708 WE, Wageningen, the Netherlands
- Institute for Biological Systems (ISB), National Research Council of Italy (CNR), Via Salaria Km 29.300, Monterotondo Scalo, 00015, Rome, Italy
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128, Rome, Italy
- Helmholtz-Munich Metabolomics and Proteomics Core Facility (MPC) , Ingolstädter Landstraße 1, Buildings 25 and 34, 85764, Munich, Neuherberg, Germany
| | - Mitja M Zdouc
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Enrica Donati
- Institute for Biological Systems (ISB), National Research Council of Italy (CNR), Via Salaria Km 29.300, Monterotondo Scalo, 00015, Rome, Italy
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Department of Biochemistry, University of Johannesburg, Johannesburg, 2006, South Africa
| | - Sara Cimini
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128, Rome, Italy
- National Biodiversity Future Center, NBFC, 90133, Palermo, Italy
| | - Laura Righetti
- Laboratory of Organic Chemistry, Wageningen University & Research, 6708 WE, Wageningen, the Netherlands.
- Wageningen Food Safety Research, Wageningen University & Research, 6700 AE, Wageningen, the Netherlands.
| |
Collapse
|
2
|
Imtiaz I, Schloss J, Bugarcic A. Traditional and contemporary herbal medicines in management of cancer: A scoping review. J Ayurveda Integr Med 2024; 15:100904. [PMID: 38395014 PMCID: PMC10901831 DOI: 10.1016/j.jaim.2024.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Cancer is one of the leading causes of death worldwide and is primarily managed by chemotherapy, radiation and surgery. Traditional medicine is widely used worldwide due to availability, affordability, wide applicability and accessibility. While potential for traditional medicines in management of cancer is well-documented, there is limited literature that collates traditional knowledge and contemporary herbal medicine practice. To collate available evidence on herbal medicines used in the management of all cancers from traditional world-wide sources, and the management of lung and colorectal cancers in contemporary practice. Medicinal plants with anti-cancer properties were identified following JBI methodology for scoping reviews through searches of the following sources: Trove, Archive.Org, and Henriette's herbal medicine page (traditional texts), book list available from World Naturopathic Federation white paper (contemporary naturopathic texts), and in PubMed, MEDLINE, SCOPUS, ScienceDirect, AMED and JSTOR (case studies). Of the 1973 citations retrieved, 38 traditional texts, 3 contemporary naturopathic texts and 10 case studies were included in the review. The traditional texts (n = 110) noted the highest number of different anti-cancer herbal species, followed by case reports (n = 52) and contemporary texts (n = 13). This review identified various herbal medicines used to treat cancer traditionally which is distinct to those found in contemporary use. Moreover, this review identified the use of herbs from other native medical systems around the world in the contemporary naturopathic practice and individual case management. The evidence presented in the review could be utilized in pre-clinical settings to research traditional preparations of herbs.
Collapse
Affiliation(s)
- I Imtiaz
- National Centre for Naturopathic Medicine, Faculty of Health, Southern Cross University, Lismore NSW, Australia
| | - J Schloss
- National Centre for Naturopathic Medicine, Faculty of Health, Southern Cross University, Lismore NSW, Australia
| | - A Bugarcic
- National Centre for Naturopathic Medicine, Faculty of Health, Southern Cross University, Lismore NSW, Australia.
| |
Collapse
|
3
|
Mohammadhosseinpour S, Bhandari M, Lee DA, Clack B. Anti-Proliferative and Apoptotic Activities of Rumex crispus. Life (Basel) 2023; 14:8. [PMID: 38276257 PMCID: PMC10819952 DOI: 10.3390/life14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Colorectal cancer is the fourth leading cause of cancer death and the third most common cancer diagnosed in the United States. Several anticancer compounds from natural products have been of great interest in cancer chemotherapy and are currently in clinical trials. Natural products that present the targeted killing of cancerous cell and are soluble in water with minimal side effects are ideal candidates. In this study, water-soluble compounds from Rumex crispus plants were screened for anti-proliferative and apoptotic activity against human colorectal adenocarcinoma (DLD-1) cells. The most potent fraction with the highest cell killing and caspase fold change rates was selected for further experiments. The observed changes were further validated by measuring the caspase fold change using RT-qPCR. Furthermore, gene transcript levels were evaluated using an RT2 Profiler assay and a microarray experiment. Our results showed that the most potent L19 fraction exhibits anti-proliferative activity in a dose-dependent manner. The L19 fraction was found to induce apoptotic pathways by triggering different caspases and inflammatory pathways through the activation of non-apoptotic genes. Our study identified and validated the anticancer property of the L19 fraction, which can serve as a strong lead compound for the synthesis of other novel potent analogues.
Collapse
Affiliation(s)
- Sepideh Mohammadhosseinpour
- Department of Biotechnology, Stephen F. Austin State University, The UT System, Nacogdoches, TX 75965, USA (D.A.L.); (B.C.)
- Molecular Biosciences Graduate Program, Arkansas State University, Jonesboro, AR 72401, USA
| | - Mukund Bhandari
- Department of Biotechnology, Stephen F. Austin State University, The UT System, Nacogdoches, TX 75965, USA (D.A.L.); (B.C.)
- Greehey Children Cancer Research Institute, UT Health, San Antonio, TX 78229, USA
| | - Dallas A. Lee
- Department of Biotechnology, Stephen F. Austin State University, The UT System, Nacogdoches, TX 75965, USA (D.A.L.); (B.C.)
- MSEC Program, Texas State University, San Marcos, TX 78666, USA
| | - Beatrice Clack
- Department of Biotechnology, Stephen F. Austin State University, The UT System, Nacogdoches, TX 75965, USA (D.A.L.); (B.C.)
| |
Collapse
|
4
|
Nigussie G, Siyadatpanah A, Norouzi R, Debebe E, Alemayehu M, Dekebo A. Antioxidant Potential of Ethiopian Medicinal Plants and Their Phytochemicals: A Review of Pharmacological Evaluation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1901529. [PMID: 37868204 PMCID: PMC10586904 DOI: 10.1155/2023/1901529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/11/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Background Free radicals are very reactive molecules produced during oxidation events that in turn initiate a chain reaction resulting in cellular damage. Many degenerative diseases in humans, including cancer and central nervous system damage, are caused by free radicals. Scientific evidence indicates that active compounds from natural products can protect cells from free radical damage. As a result, the aim of this review is to provide evidence of the use of diverse Ethiopian medicinal plants with antioxidant properties that have been scientifically validated in order to draw attention and foster further investigations in this area. Methods The keywords antioxidant, radical scavenging activities, reactive oxygen species, natural product, Ethiopian Medicinal plants, and 2, 2-Diphenyl-1-picrylhydrazyl radical scavenging assay (DPPH) were used to identify relevant data in the major electronic scientific databases, including Google Scholar, ScienceDirect, PubMed, Medline, and Science domain. All articles with descriptions that were accessed until November 2022 were included in the search strategy. Results A total of 54 plant species from 33 families were identified, along with 46 compounds isolated. More scientific studies have been conducted on plant species from the Brassicaceae (19%), Asphodelaceae (12%), and Asteraceae (12%) families. The most used solvent and extraction method for plant samples are methanol (68%) and maceration (88%). The most examined plant parts were the leaves (42%). Plant extracts (56%) as well as isolated compounds (61%) exhibited significant antioxidant potential. The most effective plant extracts from Ethiopian flora were Bersama abyssinica, Solanecio gigas, Echinops kebericho, Verbascum sinaiticum, Apium leptophyllum, and Crinum abyssinicum. The best oxidative phytochemicals were Rutin (7), Flavan-3-ol-7-O-glucoside (8), Myricitrin (13), Myricetin-3-O-arabinopyranoside (14), 7-O-Methylaloeresin A (15), 3-Hydroxyisoagatholactone (17), β-Sitosterol-3-O-β-D-glucoside (22), Microdontin A/B (24), and Caffeic acid (39). Conclusion Many crude extracts and compounds exhibited significant antioxidant activity, making them excellent candidates for the development of novel drugs. However, there is a paucity of research into the mechanisms of action as well as clinical evidence supporting some of these isolated compounds. To fully authenticate and then commercialize, further investigation and systematic analysis of these antioxidant-rich species are required.
Collapse
Affiliation(s)
- Gashaw Nigussie
- Armauer Hansen Research Institute, P.O. Box: 1005, Addis Ababa, Ethiopia
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Abolghasem Siyadatpanah
- Department of Medical Microbiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Eyob Debebe
- Armauer Hansen Research Institute, P.O. Box: 1005, Addis Ababa, Ethiopia
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | | | - Aman Dekebo
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
- Institute of Pharmaceutical Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| |
Collapse
|
5
|
Liu W, Wang X, Ren J, Zheng C, Wu H, Meng F, Ling K, Qi X, Zhou M, Wang Y, Gu R, Han L, Zhang Y. Preparation, characterization, identification, and antioxidant properties of fermented acaí ( Euterpe oleracea). Food Sci Nutr 2023; 11:2925-2941. [PMID: 37324839 PMCID: PMC10261820 DOI: 10.1002/fsn3.3274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 09/20/2024] Open
Abstract
Fermentation technology was used to prepare the acaí (Euterpe oleracea) fermentation liquid. The optimal fermentation parameters included a strain ratio of Lactobacillus paracasei: Leuconostoc mesenteroides: Lactobacillus plantarum = 0.5:1:1.5, a fermentation time of 6 days, and a nitrogen source supplemental level of 2.5%. In optimal conditions, the ORAC value of the fermentation liquid reached the highest value of 273.28 ± 6.55 μmol/L Trolox, which was 55.85% higher than the raw liquid. In addition, the FRAP value of the acaí, as well as its scavenging ability of DPPH, hydroxyl, and ABTS free radicals, increased after fermentation. Furthermore, after fermentation treatment, the microstructure, basic physicochemical composition, amino acid composition, γ-aminobutyric acid, a variety of volatile components, and so on have changed. Therefore, fermentation treatment can significantly improve the nutritional value and flavor of the acaí. This provides a theoretical basis for the comprehensive utilization of acaí.
Collapse
Affiliation(s)
- Wen‐Ying Liu
- Engineering Laboratory for Agro Biomass Recycling & ValorizingCollege of Engineering, China Agricultural UniversityBeijingPeople's Republic of China
| | - Xue Wang
- Heilongjiang Feihe Dairy Co., Ltd.BeijingPeople's Republic of China
| | - Jie Ren
- Beijing Engineering Research Center of Protein and Functional PeptidesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingPeople's Republic of China
| | - Cheng‐Dong Zheng
- Heilongjiang Feihe Dairy Co., Ltd.BeijingPeople's Republic of China
| | - Han‐Shuo Wu
- Beijing Engineering Research Center of Protein and Functional PeptidesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingPeople's Republic of China
| | - Fan‐Tong Meng
- Heilongjiang Feihe Dairy Co., Ltd.BeijingPeople's Republic of China
| | - Kong Ling
- Beijing Engineering Research Center of Protein and Functional PeptidesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingPeople's Republic of China
| | - Xiu‐Yu Qi
- Heilongjiang Feihe Dairy Co., Ltd.BeijingPeople's Republic of China
| | - Ming Zhou
- Beijing Engineering Research Center of Protein and Functional PeptidesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingPeople's Republic of China
| | - Yue Wang
- Heilongjiang Feihe Dairy Co., Ltd.BeijingPeople's Republic of China
| | - Rui‐Zeng Gu
- Beijing Engineering Research Center of Protein and Functional PeptidesChina National Research Institute of Food and Fermentation Industries Co., Ltd.BeijingPeople's Republic of China
| | - Lu‐Jia Han
- Engineering Laboratory for Agro Biomass Recycling & ValorizingCollege of Engineering, China Agricultural UniversityBeijingPeople's Republic of China
| | - Yong‐Jiu Zhang
- Heilongjiang Feihe Dairy Co., Ltd.BeijingPeople's Republic of China
| |
Collapse
|
6
|
Abo-Elghiet F, Mohamed SA, Yasin NAE, Temraz A, El-Tantawy WH, Ahmed SF. The effect of Alnus incana (L.) Moench extracts in ameliorating iron overload-induced hepatotoxicity in male albino rats. Sci Rep 2023; 13:7635. [PMID: 37169909 PMCID: PMC10175300 DOI: 10.1038/s41598-023-34480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
Iron overload causes multiorgan dysfunction and serious damage. Alnus incana from the family Betulaceae, widely distributed in North America, is used for treating diseases. In this study, we investigated the iron chelating, antioxidant, anti-inflammatory, and antiapoptotic activities of the total and butanol extract from Alnus incana in iron-overloaded rats and identified the bioactive components in both extracts using liquid chromatography-mass spectrometry. We induced iron overload in the rats via six intramuscular injections of 12.5 mg iron dextran/100 g body weight for 30 days. The rats were then administered 60 mg ferrous sulfate /kg body weight once daily using a gastric tube. The total and butanol extracts were given orally, and the reference drug (deferoxamine) was administered subcutaneously for another month. After two months, we evaluated the biochemical, histopathological, histochemical, and immunohistochemical parameters. Iron overload significantly increased the serum iron level, liver biomarker activities, hepatic iron content, malondialdehyde, tumor necrosis factor-alpha, and caspase-3 levels. It also substantially (P < 0.05) reduced serum albumin, total protein, and total bilirubin content, and hepatic reduced glutathione levels. It caused severe histopathological alterations compared to the control rats, which were markedly (P < 0.05) ameliorated after treatment. The total extract exhibited significantly higher anti-inflammatory and antiapoptotic activities but lower antioxidant and iron-chelating activities than the butanol extract. Several polyphenolic compounds, including flavonoids and phenolic acids, were detected by ultraperformance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) analysis. Our findings suggest that both extracts might alleviate iron overload-induced hepatoxicity and other pathological conditions characterized by hepatic iron overload, including thalassemia and sickle-cell anemia.
Collapse
Affiliation(s)
- Fatma Abo-Elghiet
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy for Girls, Al Azhar University, Cairo, Egypt
| | - Shaza A Mohamed
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy for Girls, Al Azhar University, Cairo, Egypt
| | - Noha A E Yasin
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Abeer Temraz
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy for Girls, Al Azhar University, Cairo, Egypt
| | | | - Samah Fathy Ahmed
- National Organization for Drug Control and Research, Dokki, Cairo, Egypt
| |
Collapse
|
7
|
Aierken K, Li J, Xu N, Wu T, Zang D, Aisa HA. Chemical constituents of Rumex dentatus L. and their antimicrobial and anti-inflammatory activities. PHYTOCHEMISTRY 2023; 205:113509. [PMID: 36372239 DOI: 10.1016/j.phytochem.2022.113509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/25/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Antimicrobial bioactivity-guided isolation of the root extract of Rumex dentatus L. resulted in the characterization of nineteen natural products, including three undescribed compounds (rumexs A-C). Rumexs A and B are rare anthraquinone-anthrone dimers consisting of an emodin-10-C-glycoside linked via C-10 to C-7 of a chrysophanol moiety. They differed only in their configuration at C-10; their absolute configurations were determined by NOESY and ECD analysis. LC-HRMS analysis was performed to identify nineteen compounds. Anthraquinone derivatives such as anthraquinone aglycone, oxanthrone C-glycoside, anthraquinone O-glycoside and anthraquinone dimer were found to be the dominant components of R. dentatus. In addition, naphthol, naphthoquinone, chromone, flavonoid, isocoumarin, and lignanamide derivatives were also identified. Chrysophanol and emodin were the most abundant compounds in the crude ethanol extract; their contents were determined by HPLC to be 7.38 and 5.74 mg/g, respectively. The fractions and isolated compounds were tested for their inhibitory activity against Staphylococcus aureus, Candida albicans, and Escherichia coli. Most of them showed inhibitory activity against S. aureus, some fractions and 2-methoxy-6-acetyl-7-methyljuglone exhibited moderate inhibitory activity against C. albicans, and 2-methoxy-6-acetyl-7-methyljuglone had moderate inhibitory effects against E. coli. Emodin exhibited inhibitory activity against NO release in LPS-reduced RAW264.7 cells in a concentration-dependent manner.
Collapse
Affiliation(s)
- Kailibinuer Aierken
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China; University of the Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Jun Li
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Nannan Xu
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Tao Wu
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Deng Zang
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Haji Akber Aisa
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, PR China; University of the Chinese Academy of Sciences, Beijing, 100039, PR China.
| |
Collapse
|
8
|
Li YX, Li N, Li JJ, Zhang M, Zhu HT, Wang D, Zhang YJ. New seco-anthraquinone glucoside from the roots of Rumex crispus. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:29. [PMID: 35918556 PMCID: PMC9346041 DOI: 10.1007/s13659-022-00350-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
A new seco-anthraquinone, crispuside A (1), and three new 3,4-dihydronaphthalen-1(2H)-ones, napthalenones A-C (2-4), were isolated from the roots of Rumex crispus L., along with 10 known anthraquinones (6-14) and naphthalenone (5). Their structures were fully determined by extensive spectroscopic analyses, including ECD, and X-ray crystallography in case of compound 5, whose absolute configuration was determined for the first time. The isolates 1, 6-14 were evaluated for their anti-inflammatory and anti-fungal activity against three skin fungi, e.g., Epidermophyton floccosum, Trichophyton rubrum, and Microsporum gypseum. Most of the isolates showed weak anti-fungal and anti-inflammatory activity. Only compound 9 exhibited obvious anti-fungal activity against E. floccosum (MIC50 = 2.467 ± 0.03 μM) and M. gypseum (MIC50 = 4.673 ± 0.077 μM), while the MIC50 values of the positive control terbinafine were 1.287 ± 0.012 and 0.077 ± 0.00258 μM, respectively. The results indicated that simple emodin type anthraquinone is more potential against skin fungi than its oxyglucosyl, C-glucosyl and glycosylated seco analogues.
Collapse
Affiliation(s)
- Yong-Xiang Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Na Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
| | - Jing-Juan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
| | - Man Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, People's Republic of China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
9
|
Li JJ, Li YX, Li N, Zhu HT, Wang D, Zhang YJ. The genus Rumex (Polygonaceae): an ethnobotanical, phytochemical and pharmacological review. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:21. [PMID: 35710954 PMCID: PMC9203642 DOI: 10.1007/s13659-022-00346-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Rumex L., a genus in Polygonaceae family with about 200 species, is growing widely around the world. Some Rumex species, called "sorrel" or "dock", have been used as food application and treatment of skin diseases and hemostasis after trauma by the local people of its growing areas for centuries. To date, 29 Rumex species have been studied to contain about 268 substances, including anthraquinones, flavonoids, naphthalenes, stilbenes, diterpene alkaloids, terpenes, lignans, and tannins. Crude extract of Rumex spp. and the pure isolates displayed various bioactivities, such as antibacterial, anti-inflammatory, antitumor, antioxidant, cardiovascular protection and antiaging activities. Rumex species have important potential to become a clinical medicinal source in future. This review covers research articles from 1900 to 2022, fetched from SciFinder, Web of Science, ResearchGate, CNKI and Google Scholar, using "Rumex" as a search term ("all fields") with no specific time frame set for the search. Thirty-five Rumex species were selected and summarized on their geographical distribution, edible parts, traditional uses, chemical research and pharmacological properties.
Collapse
Affiliation(s)
- Jing-Juan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yong-Xiang Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Na Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
10
|
Chand J, Panda SR, Jain S, Murty USN, Das AM, Kumar GJ, Naidu VGM. Phytochemistry and polypharmacology of cleome species: A comprehensive Ethnopharmacological review of the medicinal plants. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114600. [PMID: 34487845 DOI: 10.1016/j.jep.2021.114600] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cleome species in particular (C. gynandra Linn, C. viscosa Linn, C. rutidosperma DC, C. felina Linn.), commonly known as spider flowers, belong to the genus of flowering plants in Cleomaceae family. Found primarily in the African countries (Kenya, Tanzania, Egypt, South Africa, and Nigeria), Asian countries (India and Afghanistan), European countries (Italy), and also in other countries like Brazil and Austria. These plants are commonly cultivated as a vegetable crop for their nutritional benefits, and the leaves are widely consumed for their health-promoting effects. The different parts of the plants, such as leaves, seeds, flowers, and roots, are used to treat acute and chronic inflammatory disorders, hepatotoxicity, malaria, fungal diseases, and cancer. AIM OF THE STUDY Detailed investigations in underlining the molecular mechanisms and their wide variety of effects in treating various diseases remain ambiguous. The review focuses on an in-depth discussion of studies targeting phytochemistry and polypharmacology. Thus, the review aims to recapitulate the therapeutic potential of the components of Cleome involved in the treatment of a wide variety of ailments from ancient times were collected and presented along with strategies aiming for future studies. MATERIALS AND METHODS The information provided is collected from several scientific databases (PubMed, Elsevier, ScienceDirect) and traditional medicine books, and other professional websites. RESULTS AND CONCLUSION Investigations and current evidence revealed that the different chemical constituents present in cleome species possess various health-promoting effects along with the aerial parts showing promising traditional uses in traditional healing and culinary. An explorative survey in the current review highlights the traditional healing effects along with a broad scope of studies that can be performed in the future.
Collapse
Affiliation(s)
- Jagdish Chand
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, 844102, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Siddhi Jain
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - U S N Murty
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Archana Moni Das
- Chemical Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India
| | - Gangasani Jagadeesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India.
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India; Center for GMP Extraction Facility, NIPER, Guwahati, India.
| |
Collapse
|
11
|
Fang JY, Huang TH, Chen WJ, Aljuffali IA, Hsu CY. Rhubarb hydroxyanthraquinones act as antiobesity agents to inhibit adipogenesis and enhance lipolysis. Biomed Pharmacother 2021; 146:112497. [PMID: 34891117 DOI: 10.1016/j.biopha.2021.112497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
Rhubarb as an herbal medicine has been shown to exhibit antiadipogenic activity. This study evaluated and compared the lipid-lowering activity of five rhubarb hydroxyanthraquinones (HAQs), including chrysophanol, aloe emodin, emodin, physcion, and rhein, aiming to identify candidate compounds for obesity treatment. Examination of the antiobesity effects of HAQs in 3T3-L1 adipocytes and high-fat diet (HFD)-induced obese rats showed that these anthraquinone compounds inhibited lipid accumulation in 3T3-L1 cells before and after differentiation. Emodin and rhein showed greater inhibition than the other compounds; dosage at 50 μM reduced intracellular triglyceride (TG) by about 30% in the differentiated adipocytes. Both compounds also revealed lipolytic effects to increase glycerol release from adipocytes. Adipokine overexpression induced by differentiation was downregulated by emodin and rhein through mitogen-activated protein kinase (MAPK) signaling. Despite their structural similarity, emodin and rhein exhibited different mechanisms on adipogenesis and lipid metabolism. Rhein restrained lipid deposition by controlling adipogenic transcriptional factors and lipolytic lipases during differentiation. The lipid-lowering effects of emodin did not use these pathways but reduced levels of lipogenic enzymes. HFD consumption in rats significantly increased body weight, visceral fat mass and adipocyte size, which were attenuated by intraperitoneal delivery of emodin or rhein. Rhein showed greater amelioration of obesity than emodin, decreasing plasma cholesterol by 29% and 14%, respectively. HAQs also suppressed cytokine upregulation in the liver and adipose tissues of obese rats. Rhein is a potential antiobesity agent through its ability to regulate obesity-associated adipogenesis, lipolysis and inflammation.
Collapse
Affiliation(s)
- Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Tse-Hung Huang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Wei-Jhang Chen
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, SaudiArabia
| | - Ching-Yun Hsu
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
12
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
13
|
Abstract
Reactive oxygen species (ROS) are related to several degenerative diseases. In this study, Acacia, a genus with many fast-growing species, was investigated to explore the many phytochemical compounds that are biologically active in processes dealing with ROS-related diseases. This study aimed to select extracts of Acacia heartwood on the basis of their pharmacological and phytochemical profiles and identify their bioactive compounds. Five methanolic extracts from Acacia heartwood were evaluated for their antioxidant activity using three different in vitro assays: toxicity toward Artemia salina and phenolic and polyphenolic content. Multivariate analysis was conducted to select two promising extracts and then their bioactive compounds were identified using liquid chromatography coupled with mass spectrometry. Acacia crassicarpa extracts showed the highest antioxidant activity, as well as phenolic and hydrolyzable tannin contents, but low toxicity. The A. mangium extract exhibited high flavonoid and condensed tannin content, whereas A. decurrrens had the highest toxicity with low antioxidant activity. Pearson’s correlation analysis demonstrated no correlation between antioxidant activity and toxicity. Moreover, the phytochemical profile exhibited an association with pharmacological parameters. Principal component analysis followed by cluster analysis divided the extracts into three clusters. Two heartwood extracts of A. crassicarpa and A. auriculiformis were chosen as the best extracts. Identification showed that these extracts were dominated by phenolic compounds, as well as anthraquinone and xanthone.
Collapse
|
14
|
Fategbe MA, Avwioroko OJ, Ibukun EO. Comparative Biochemical Evaluation of the Proximate, Mineral, and Phytochemical Constituents of Xylopia aethiopica Whole Fruit, Seed, and Pericarp. Prev Nutr Food Sci 2021; 26:219-229. [PMID: 34316487 PMCID: PMC8276704 DOI: 10.3746/pnf.2021.26.2.219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/06/2022] Open
Abstract
This study evaluated the relative abundance of proximate, mineral, and phytochemical constituents of the anatomical parts of Xylopia aethiopica (XA) fruit using standard analytical procedures. The results showed that whole fruits (WF) have higher contents of crude protein, crude fiber, fat, ash, and moisture than the seeds (S) and pericarps (P). However, highest contents of crude carbohydrate and nitrogen free extracts were found in the P, followed by the S. The content of minerals (sodium, potassium, calcium, phosphorus, iron, zinc, magnesium, and copper) and phytochemicals were present in the following order of abundance: WF>S>P. Furthermore, the phytochemical constituents in each XA parts were present in the following order of relative abundance: total flavonoids>tannins>total phenolics>cardiac glycoside>alkaloids>steroids. Vitamin A was abundant in all three parts, with the abundance highest in WF [4.83±0.06 g vitamin A equivalent (vit A eq)/100 g] and lowest in P (1.64±0.02 g vit A eq/100 g). This preliminary study indicates XA fruits are rich in minerals, anti-nutrients, and phytochemicals. Therefore, these data could represent a biochemical rationale for inclusion of XA as a spice or functional ingredient in many Nigerian local soups to help prevent ailments.
Collapse
Affiliation(s)
- Mojisola Adebimpe Fategbe
- Department of Biochemistry, School of Science, Federal University of Technology Akure, Ondo State 340252, Nigeria
| | - Oghenetega Jonathan Avwioroko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State 232102, Nigeria
| | - Emmanuel Olufemi Ibukun
- Department of Biochemistry, School of Science, Federal University of Technology Akure, Ondo State 340252, Nigeria
| |
Collapse
|
15
|
Jargalsaikhan G, Wu JY, Chen YC, Yang LL, Wu MS. Comparison of the Phytochemical Properties, Antioxidant Activity and Cytotoxic Effect on HepG2 Cells in Mongolian and Taiwanese Rhubarb Species. Molecules 2021; 26:1217. [PMID: 33668690 PMCID: PMC7956657 DOI: 10.3390/molecules26051217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022] Open
Abstract
The Mongolian rhubarb-Rheum undulatum L. (RU)-and Rumex crispus L. (RC)-a Taiwanese local rhubarb belonging to the family of Polygonaceae-are principal therapeutic materials in integrative medicine due to their rich quantities of bioactive compounds; however, their phytochemical and antioxidant properties, and anti-cancer activity is poorly investigated. Furthermore, the phytochemical characteristics of both species may be affected by their different geographical distribution and climatic variance. The current study aimed to compare RU with RC extracts in different polarity solvents (n-hexane, ethyl acetate, acetone, ethanol, and water) for their phytochemical contents including the total phenolic content (TPC), total anthraquinone content (TAC), total flavonoid content (TFC), antioxidant and free radical scavenging capacities, and anticancer ability on the HepG2 cell. Except for the n-hexane extract, all of the RU extracts had considerably higher TPCs than RC extracts, ranging from 8.39 to 11.16 mg gallic acid equivalent (GAE) per gram of dry weight, and the TPCs of each extract were also significantly correlated with their antioxidant capacities by ABTS, DPPH, and FRAP assays (p < 0.05). Moreover, there was no remarkable association between the antioxidant capacities and either TACs or TFCs in both the RU and RC extracts. Besides, high-performance liquid chromatography (HPLC) analysis revealed that both the RU and RC extracts contained chrysophanol, emodin, and physcion, and those bioactive compounds were relatively higher in the n-hexane solvent extracts. Additionally, we observed different levels of dose-dependent cytotoxic effects in all the extracts by cell viability assay. Notably, the ethanol extract of RU had a compelling cytotoxic effect with the lowest half-maximum inhibition concentration (IC50-171.94 ± 6.56 µg/mL at 48 h) among the RU extracts than the ethanol extract of RC. Interestingly, the ethanol extract of RU but not RC significantly induced apoptosis in the human liver cancer cell line, HepG2, with a distinct pattern in caspase-3 activation, resulting in increased PARP cleavage and DNA damage. In summary, Mongolian Rhubarb, RU, showed more phytochemical contents, as well as a higher antioxidant capacity and apoptotic effect to HepG2 than RC; thus, it can be exploited for the proper source of natural antioxidants and liver cancer treatment in further investigation.
Collapse
Affiliation(s)
- Ganbolor Jargalsaikhan
- International MS/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (G.J.); (Y.-C.C.)
- Liver Center, Ulaanbaatar 14230, Mongolia
| | - Jin-Yi Wu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan;
| | - Yen-Chou Chen
- International MS/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (G.J.); (Y.-C.C.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Orthopedics Research Center, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Ling-Ling Yang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- American College of Acupuncture and Oriental Medicine, Houston, TX 77063, USA
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Integrative Therapy Center for Gastroenterological Cancers, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
16
|
Schultz F, Osuji OF, Wack B, Anywar G, Garbe LA. Antiinflammatory Medicinal Plants from the Ugandan Greater Mpigi Region Act as Potent Inhibitors in the COX-2/PGH 2 Pathway. PLANTS 2021; 10:plants10020351. [PMID: 33673238 PMCID: PMC7918315 DOI: 10.3390/plants10020351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Our study investigates 16 medicinal plants via assessment of inhibition of proinflammatory enzymes such as cyclooxygenases (COX). The plants are used by traditional healers in the Greater Mpigi region in Uganda to treat inflammation and related disorders. We present results of diverse in vitro experiments performed with 76 different plant extracts, namely, (1) selective COX-2 and COX-1 inhibitor screening; (2) 15-LOX inhibition screening; (3) antibacterial resazurin assay against multidrug-resistant Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, and Escherichia coli K12; (4) DPPH assay for antioxidant activity; and (5) determination of the total phenolic content (TPC). Results showed a high correlation between traditional use and pharmacological activity, e.g., extracts of 15 out of the 16 plant species displayed significant selective COX-2 inhibition activity in the PGH2 pathway. The most active COX-2 inhibitors (IC50 < 20 µg/mL) were nine extracts from Leucas calostachys, Solanum aculeastrum, Sesamum calycinum subsp. angustifolium, Plectranthus hadiensis, Morella kandtiana, Zanthoxylum chalybeum, and Warburgia ugandensis. There was no counteractivity between COX-2 and 15-LOX inhibition in these nine extracts. The ethyl acetate extract of Leucas calostachys showed the lowest IC50 value with 0.66 µg/mL (COX-2), as well as the most promising selectivity ratio with 0.1 (COX-2/COX-1). The TPCs and the EC50 values for DPPH radical scavenging activity showed no correlation with COX-2 inhibitory activity. This led to the assumption that the mechanisms of action are most likely not based on scavenging of reactive oxygen species and antioxidant activities. The diethyl ether extract of Harungana madagascariensis stem bark displayed the highest growth inhibition activity against S. aureus (MIC value: 13 µg/mL), L. innocua (MIC value: 40 µg/mL), and L. monocytogenes (MIC value: 150 µg/mL). This study provides further evidence for the therapeutic use of the previously identified plants used medicinally in the Greater Mpigi region.
Collapse
Affiliation(s)
- Fabien Schultz
- Institute of Biotechnology, Faculty III—Process Sciences, Technical University of Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany; (O.F.O.); (B.W.); (L.-A.G.)
- Correspondence: ; Tel.: +49-395-5693-2704
| | - Ogechi Favour Osuji
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany; (O.F.O.); (B.W.); (L.-A.G.)
| | - Barbara Wack
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany; (O.F.O.); (B.W.); (L.-A.G.)
| | - Godwin Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, Makerere University, P.O. Box 7062 Kampala, Uganda;
| | - Leif-Alexander Garbe
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany; (O.F.O.); (B.W.); (L.-A.G.)
- ZELT—Neubrandenburg Center for Nutrition and Food Technology gGmbH, Seestraße 7A, 17033 Neubrandenburg, Germany
| |
Collapse
|
17
|
Lee S, Nguyen QN, Phung HM, Shim SH, Kim D, Hwang GS, Kang KS. Preventive Effects of Anthraquinones Isolated from an Endophytic Fungus, Colletotrichum sp. JS-0367 in Tumor Necrosis Factor-α-Stimulated Damage of Human Dermal Fibroblasts. Antioxidants (Basel) 2021; 10:antiox10020200. [PMID: 33573167 PMCID: PMC7910856 DOI: 10.3390/antiox10020200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/19/2022] Open
Abstract
Reactive oxygen species (ROS) are a major causative factor of inflammatory responses and extracellular matrix degradation. ROS also cause skin aging and diverse cutaneous lesions. Therefore, antioxidants that inhibit the generation of ROS may be beneficial in the relief of skin aging and diseases. We investigated the anti-skin aging effect of anthraquinones from cultures of Colletotrichum sp., an endophytic fungus isolated from Morus alba L. using human dermal fibroblasts (HDFs). We preferentially evaluated the preventive effects of anti-oxidative anthraquinones (1, 4) against the generation of ROS, nitric oxide (NO), and prostaglandins-E2 (PGE2). Among them, 1,3-dihydroxy-2,8-dimethoxy-6-methylanthraquinone (1) suppressed the generation of ROS, NO, and PGE2 in tumor necrosis factor-alpha (TNF-α)-stimulated HDFs. Compound 1 reversed the TNF-induced increase in matrix metalloproteinase (MMP)-1 and a decrease in procollagen I α1 (COLIA1). It also suppressed inducible NO synthase, cyclooxygenase-2, interleukin (IL)-1β, IL-6, and IL-8, which upregulate inflammatory reactions. Mechanistically, compound 1 suppressed nuclear factor-κB, activator protein 1, and mitogen-activated protein kinases in TNF-α-stimulated HDFs. These results suggest that compound 1 may be beneficial for improving skin aging and diverse cutaneous lesions.
Collapse
Affiliation(s)
- Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Korea; (S.L.); (D.K.)
| | - Quynh Nhu Nguyen
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (Q.N.N.); (H.M.P.); (G.S.H.)
| | - Hung Manh Phung
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (Q.N.N.); (H.M.P.); (G.S.H.)
| | - Sang Hee Shim
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea;
| | - Daeyoung Kim
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Korea; (S.L.); (D.K.)
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (Q.N.N.); (H.M.P.); (G.S.H.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (Q.N.N.); (H.M.P.); (G.S.H.)
- Correspondence: ; Tel.: +82-31-750-5402; Fax: +82-31-750-5416
| |
Collapse
|
18
|
To Be or Not to Be… An Antioxidant? That Is the Question. Antioxidants (Basel) 2020; 9:antiox9121234. [PMID: 33291380 PMCID: PMC7762054 DOI: 10.3390/antiox9121234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
|
19
|
Printing-Based Assay and Therapy of Antioxidants. Antioxidants (Basel) 2020; 9:antiox9111052. [PMID: 33126547 PMCID: PMC7692755 DOI: 10.3390/antiox9111052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Antioxidants are essential in regulating various physiological functions and oxidative deterioration. Over the past decades, many researchers have paid attention to antioxidants and studied the screening of antioxidants from natural products and their utilization for treatments in diverse pathological conditions. Nowadays, as printing technology progresses, its influence in the field of biomedicine is growing significantly. The printing technology has many advantages. Especially, the capability of designing sophisticated platforms is useful to detect antioxidants in various samples. The high flexibility of 3D printing technology is advantageous to create geometries for customized patient treatment. Recently, there has been increasing use of antioxidant materials for this purpose. This review provides a comprehensive overview of recent advances in printing technology-based assays to detect antioxidants and 3D printing-based antioxidant therapy in the field of tissue engineering. This review is divided into two sections. The first section highlights colorimetric assays using the inkjet-printing methods and electrochemical assays using screen-printing techniques for the determination of antioxidants. Alternative screen-printing techniques, such as xurography, roller-pen writing, stamp contact printing, and laser-scribing, are described. The second section summarizes the recent literature that reports antioxidant-based therapy using 3D printing in skin therapeutics, tissue mimetic 3D cultures, and bone tissue engineering.
Collapse
|