1
|
Kopecky BJ, Lavine KJ. Cardiac macrophage metabolism in health and disease. Trends Endocrinol Metab 2024; 35:249-262. [PMID: 37993313 PMCID: PMC10949041 DOI: 10.1016/j.tem.2023.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Cardiac macrophages are essential mediators of cardiac development, tissue homeostasis, and response to injury. Cell-intrinsic shifts in metabolism and availability of metabolites regulate macrophage function. The human and mouse heart contain a heterogeneous compilation of cardiac macrophages that are derived from at least two distinct lineages. In this review, we detail the unique functional roles and metabolic profiles of tissue-resident and monocyte-derived cardiac macrophages during embryonic development and adult tissue homeostasis and in response to pathologic and physiologic stressors. We discuss the metabolic preferences of each macrophage lineage and how metabolism influences monocyte fate specification. Finally, we highlight the contribution of cardiac macrophages and derived metabolites on cell-cell communication, metabolic health, and disease pathogenesis.
Collapse
Affiliation(s)
- Benjamin J Kopecky
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kory J Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Sandoval C, Nahuelqueo K, Mella L, Recabarren B, Souza-Mello V, Farías J. Role of long-chain polyunsaturated fatty acids, eicosapentaenoic and docosahexaenoic, in the regulation of gene expression during the development of obesity: a systematic review. Front Nutr 2023; 10:1288804. [PMID: 38024342 PMCID: PMC10665854 DOI: 10.3389/fnut.2023.1288804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION There exists a correlation between obesity and the consumption of an excessive amount of calories, with a particular association between the intake of saturated and trans fats and an elevated body mass index. Omega-3 fatty acids, specifically eicosapentaenoic and docosahexaenoic acids, have been identified as potential preventive nutrients against the cardiometabolic hazards that are commonly associated with obesity. The objective of this comprehensive review was to elucidate the involvement of long-chain polyunsaturated fatty acids, specifically eicosapentaenoic acid and docosahexaenoic acid, in the modulation of gene expression during the progression of obesity. METHODS The present analysis focused on primary studies that investigated the association between long-chain polyunsaturated fatty acids, gene expression, and obesity in individuals aged 18 to 65 years. Furthermore, a comprehensive search was conducted on many databases until August 2023 to identify English-language scholarly articles utilizing MeSH terms and textual content pertaining to long-chain polyunsaturated fatty acids, gene expression, obesity, and omega-3. The protocol has been registered on PROSPERO under the registration number CRD42022298395. A comprehensive analysis was conducted on a total of nine primary research articles. All research collected and presented quantitative data. RESULTS AND DISCUSSION The findings of our study indicate that the incorporation of eicosapentaenoic and docosahexaenoic acid may have potential advantages and efficacy in addressing noncommunicable diseases, including obesity. This can be attributed to their anti-inflammatory properties and their ability to regulate genes associated with obesity, such as PPARγ and those within the ALOX family. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022298395, CRD42022298395.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Osorno, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Karen Nahuelqueo
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Luciana Mella
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Blanca Recabarren
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Vanessa Souza-Mello
- Laboratorio de Morfometría, Metabolismo y Enfermedades Cardiovasculares, Centro Biomédico, Instituto de Biología, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
3
|
Bogen KT. Ultrasensitive dose-response for asbestos cancer risk implied by new inflammation-mutation model. ENVIRONMENTAL RESEARCH 2023; 230:115047. [PMID: 36965808 DOI: 10.1016/j.envres.2022.115047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/09/2022] [Indexed: 05/30/2023]
Abstract
Alterations in complex cellular phenotype each typically involve multistep activation of an ultrasensitive molecular switch (e.g., to adaptively initiate an apoptosis, inflammasome, Nrf2-ARE anti-oxidant, or heat-shock activation pathway) that triggers expression of a suite of target genes while efficiently limiting false-positive switching from a baseline state. Such switches exhibit nonlinear signal-activation relationships. In contrast, a linear no-threshold (LNT) dose-response relationship is expected for damage that accumulates in proportion to dose, as hypothesized for increased risk of cancer in relation to genotoxic dose according to the multistage somatic mutation/clonal-expansion theory of cancer, e.g., as represented in the Moolgavkar-Venzon-Knudsen (MVK) cancer model by a doubly stochastic nonhomogeneous Poisson process. Mesothelioma and lung cancer induced by exposure to carcinogenic (e.g., certain asbestos) fibers in humans and experimental animals are thought to involve modes of action driven by mutations, cytotoxicity-associated inflammation, or both, rendering ambiguous expectations concerning the nature of model-implied shape of the low-dose response for above-background increase in risk of incurring these endpoints. A recent Inflammation Somatic Mutation (ISM) theory of cancer posits instead that tissue-damage-associated inflammation that epigenetically recruits, activates and orchestrates stem cells to engage in tissue repair does not merely promote cancer, but rather is a requisite co-initiator (acting together with as few as two somatic mutations) of the most efficient pathway to any type of cancer in any reparable tissue (Dose-Response 2019; 17(2):1-12). This theory is reviewed, implications of this theory are discussed in relation to mesothelioma and lung cancer associated with chronic asbestos inhalation, one of the two types of ISM-required mutations is here hypothesized to block or impede inflammation resolution (e.g., by doing so for GPCR-mediated signal transduction by one or more endogenous autacoid specialized pro-resolving mediators or SPMs), and supporting evidence for this hypothesis is discussed.
Collapse
Affiliation(s)
- Kenneth T Bogen
- 9832 Darcy Forest Drive, Silver Spring, MD, 20910, United States.
| |
Collapse
|
4
|
Ma Y, Chu M, Fu Z, Liu Q, Liang J, Xu J, Weng Z, Chen X, Xu C, Gu A. The Association of Metabolomic Profiles of a Healthy Lifestyle with Heart Failure Risk in a Prospective Study. Nutrients 2023; 15:2934. [PMID: 37447260 PMCID: PMC10346862 DOI: 10.3390/nu15132934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Lifestyle has been linked to the incidence of heart failure, but the underlying biological mechanisms remain unclear. Using the metabolomic, lifestyle, and heart failure data of the UK Biobank, we identified and validated healthy lifestyle-related metabolites in a matched case-control and cohort study, respectively. We then evaluated the association of healthy lifestyle-related metabolites with heart failure (HF) risk and the added predictivity of these healthy lifestyle-associated metabolites for HF. Of 161 metabolites, 8 were identified to be significantly related to healthy lifestyle. Notably, omega-3 fatty acids and docosahexaenoic acid (DHA) positively associated with a healthy lifestyle score (HLS) and exhibited a negative association with heart failure risk. Conversely, creatinine negatively associated with a HLS, but was positively correlated with the risk of HF. Adding these three metabolites to the classical risk factor prediction model, the prediction accuracy of heart failure incidence can be improved as assessed by the C-statistic (increasing from 0.806 [95% CI, 0.796-0.816] to 0.844 [95% CI, 0.834-0.854], p-value < 0.001). A healthy lifestyle is associated with significant metabolic alterations, among which metabolites related to healthy lifestyle may be critical for the relationship between healthy lifestyle and HF. Healthy lifestyle-related metabolites might enhance HF prediction, but additional validation studies are necessary.
Collapse
Affiliation(s)
- Yuanyuan Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Maomao Chu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Zuqiang Fu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- School of Public Health, Southeast University, Nanjing 211189, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiu Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Toxicology, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
5
|
Melo CPB, Saito P, Martinez RM, Staurengo-Ferrari L, Pinto IC, Rodrigues CCA, Badaro-Garcia S, Vignoli JA, Baracat MM, Bussmann AJC, Georgetti SR, Verri WA, Casagrande R. Aspirin-Triggered Resolvin D1 (AT-RvD1) Protects Mouse Skin against UVB-Induced Inflammation and Oxidative Stress. Molecules 2023; 28:molecules28052417. [PMID: 36903662 PMCID: PMC10005614 DOI: 10.3390/molecules28052417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Intense exposure to UVB radiation incites excessive production of reactive oxygen species (ROS) and inflammation. The resolution of inflammation is an active process orchestrated by a family of lipid molecules that includes AT-RvD1, a specialized proresolving lipid mediator (SPM). AT-RvD1 is derived from omega-3, which presents anti-inflammatory activity and reduces oxidative stress markers. The present work aims to investigate the protective effect of AT-RvD1 on UVB-induced inflammation and oxidative stress in hairless mice. Animals were first treated with 30, 100, and 300 pg/animal AT-RvD1 (i.v.) and then exposed to UVB (4.14 J/cm2). The results showed that 300 pg/animal of AT-RvD1 could restrict skin edema, neutrophil and mast cell infiltration, COX-2 mRNA expression, cytokine release, and MMP-9 activity and restore skin antioxidant capacity as per FRAP and ABTS assays and control O2•- production, lipoperoxidation, epidermal thickening, and sunburn cells development. AT-RvD1 could reverse the UVB-induced downregulation of Nrf2 and its downstream targets GSH, catalase, and NOQ-1. Our results suggest that by upregulating the Nrf2 pathway, AT-RvD1 promotes the expression of ARE genes, restoring the skin's natural antioxidant defense against UVB exposition to avoid oxidative stress, inflammation, and tissue damage.
Collapse
Affiliation(s)
- Cristina P. B. Melo
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Priscila Saito
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Renata M. Martinez
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Larissa Staurengo-Ferrari
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Immunology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Ingrid C. Pinto
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Camilla C. A. Rodrigues
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Stephanie Badaro-Garcia
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Josiane A. Vignoli
- Department of Biochemistry and Biotechnology, Centre of Exact Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Marcela M. Baracat
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Allan J. C. Bussmann
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
| | - Sandra R. Georgetti
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| |
Collapse
|
6
|
Rangarajan S, Orujyan D, Rangchaikul P, Radwan MM. Critical Role of Inflammation and Specialized Pro-Resolving Mediators in the Pathogenesis of Atherosclerosis. Biomedicines 2022; 10:2829. [PMID: 36359349 PMCID: PMC9687471 DOI: 10.3390/biomedicines10112829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2023] Open
Abstract
Recent research on how the body resolves this inflammation is gaining traction and has shed light on new avenues for future management of cardiovascular diseases. In this narrative review, we discuss the pathophysiological mechanisms of atherosclerosis, the recent development in the understanding of a new class of molecules called Specialized Pro-resolving Mediators (SPMs), and the impact of such findings in the realm of cardiovascular treatment options. We searched the MEDLINE database restricting ourselves to original research articles as much as possible on the complex pathophysiology of atherosclerosis and the role of SPMs. We expect to see further research in translating these findings to bedside clinical trials in treating conditions with a pathophysiological basis of inflammation, such as coronary artery disease, asthma, and periodontal disease.
Collapse
Affiliation(s)
- Subhapradha Rangarajan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Davit Orujyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Patrida Rangchaikul
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Mohamed M. Radwan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
7
|
Gharraee N, Wang Z, Pflum A, Medina-Hernandez D, Herrington D, Zhu X, Meléndez GC. Eicosapentaenoic Acid Ameliorates Cardiac Fibrosis and Tissue Inflammation in Spontaneously Hypertensive Rats. J Lipid Res 2022; 63:100292. [PMID: 36206854 PMCID: PMC9643491 DOI: 10.1016/j.jlr.2022.100292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Hypertension affects 1 in 3 adults in the United States and leads to left ventricular (LV) concentric hypertrophy, interstitial fibrosis, and increased stiffness. The treatment of cardiac fibrosis remains challenging and empiric. Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid that is highly effective in reducing cardiovascular events in patients and cardiac fibrosis and hypertrophy in animals when administered before pressure overload by promoting the increase of anti-inflammatory M1 macrophages. In this study, we investigated whether EPA mitigates the exacerbation of cardiac remodeling and fibrosis induced by established hypertension, a situation that closely recapitulates a clinical scenario. Twelve-week-old spontaneously hypertensive rats were randomized to eat an EPA-enriched or control diet for 20 weeks. We report that rats eating the EPA-enriched diet exhibited a reduction of interstitial cardiac fibrosis and ameliorated LV diastolic dysfunction despite the continuous increase in blood pressure. However, we found that EPA did not have an impact on cardiac hypertrophy. Interestingly, the EPA diet increased mRNA expression of M2 macrophage marker Mrc1 and interleukin-10 in cardiac tissue. These findings indicated that the antifibrotic effects of EPA are mediated in part by phenotypic polarization of macrophages toward anti-inflammatory M2 macrophages and increases of the anti-inflammatory cytokine, interleukin-10. In summary, EPA prevents the exacerbation of cardiac fibrosis and LV diastolic dysfunction during sustained pressure overload. EPA could represent a novel treatment strategy for hypertensive cardiomyopathy.
Collapse
Affiliation(s)
- Nazli Gharraee
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Zhan Wang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Adam Pflum
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Danielle Medina-Hernandez
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - David Herrington
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Xuewei Zhu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Giselle C Meléndez
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
8
|
Phung HH, Lee CH. Mouse models of nonalcoholic steatohepatitis and their application to new drug development. Arch Pharm Res 2022; 45:761-794. [DOI: 10.1007/s12272-022-01410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
9
|
Kotlyarov S, Kotlyarova A. Clinical significance of polyunsaturated fatty acids in the prevention of cardiovascular diseases. Front Nutr 2022; 9:998291. [PMID: 36276836 PMCID: PMC9582942 DOI: 10.3389/fnut.2022.998291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are one of the most important problems of modern medicine. They are associated with a large number of health care visits, hospitalizations and mortality. Prevention of atherosclerosis is one of the most effective strategies and should start as early as possible. Correction of lipid metabolism disorders is associated with definite clinical successes, both in primary prevention and in the prevention of complications of many cardiovascular diseases. A growing body of evidence suggests a multifaceted role for polyunsaturated fatty acids. They demonstrate a variety of functions in inflammation, both participating directly in a number of cellular processes and acting as a precursor for subsequent biosynthesis of lipid mediators. Extensive clinical data also support the importance of polyunsaturated fatty acids, but all questions have not been answered to date, indicating the need for further research.
Collapse
Affiliation(s)
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, Ryazan, Russia
| |
Collapse
|
10
|
Jung YS. Natural Antioxidant in Cardiovascular and Cerebrovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11061159. [PMID: 35740056 PMCID: PMC9220211 DOI: 10.3390/antiox11061159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Yi-Sook Jung
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
| |
Collapse
|
11
|
Hao W, Li M, Cai Q, Wu S, Li X, He Q, Hu Y. Roles of NRF2 in Fibrotic Diseases: From Mechanisms to Therapeutic Approaches. Front Physiol 2022; 13:889792. [PMID: 35721561 PMCID: PMC9203969 DOI: 10.3389/fphys.2022.889792] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Fibrosis is a persistent inflammatory response that causes scarring and tissue sclerosis by stimulating myofibroblasts to create significant quantities of extracellular matrix protein deposits in the tissue. Oxidative stress has also been linked to the development of fibrosis in several studies. The nuclear erythroid 2-related factor 2 (NRF2) transcription factor controls the expression of several detoxification and antioxidant genes. By binding to antioxidant response elements, NRF2 is activated by oxidative or electrophilic stress and promotes its target genes, resulting in a protective effect on cells. NRF2 is essential for cell survival under oxidative stress conditions. This review describes Kelch-like epichlorohydrin-associated protein 1 (KEAP1)/NRF2 signaling mechanisms and presents recent research advances regarding NRF2 and its involvement in primary fibrotic lesions such as pulmonary fibrosis, hepatic fibrosis, myocardial fibrosis, and renal fibrosis. The related antioxidant substances and drugs are described, along with the mechanisms by which KEAP1/NRF2 regulation positively affects the therapeutic response. Finally, the therapeutic prospects and potential value of NRF2 in fibrosis are summarized. Further studies on NRF2 may provide novel therapeutic approaches for fibrosis.
Collapse
Affiliation(s)
- Wenlong Hao
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Minghao Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qingmin Cai
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shiying Wu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiangyao Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Quanyu He
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongbin Hu
- Department of Pathology, Basic Medical School, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongbin Hu,
| |
Collapse
|
12
|
Hiram R. Resolution-promoting autacoids demonstrate promising cardioprotective effects against heart diseases. Mol Biol Rep 2022; 49:5179-5197. [PMID: 35142983 PMCID: PMC9262808 DOI: 10.1007/s11033-022-07230-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
Chronic heart diseases have in common an unresolved inflammatory status. In atherosclerosis, myocarditis, myocardial infarction, or atrial fibrillation, mounting evidence suggests that unresolved inflammation contributes to the chronicity, aggravation, and morbidity of the disease. Following cardiac injury or infection, acute inflammation is a normal and required process to repair damaged tissues or eliminate pathogens and promote restoration of normal functions and structures. However, if acute inflammation is not followed by resolution, a chronic and deleterious inflammatory status may occur, characterized by the persistence of inflammatory biomarkers, promoting aggravation of myocardial pathogenesis, abnormal structural remodeling, development of cardiac fibrosis, and loss of function. Although traditional antiinflammatory strategies, including the use of COX-inhibitors, to inhibit the production of inflammation promotors failed to promote homeostasis, mounting evidence suggests that activation of specific endogenous autacoids may promote resolution and perpetuate cardioprotective effects. The recent discovery of the active mechanism of resolution suggests that proresolving signals and cellular processes may help to terminate inflammation and combat the development of its chronic profile in cardiac diseases. This review discussed (I) the preclinical and clinical evidence of inflammation-resolution in cardiac disorders including atrial fibrillation; (II) how and why many traditional antiinflammatory treatments failed to prevent or cure cardiac inflammation and fibrosis; and (III) whether new therapeutic strategies may interact with the resolution machinery to have cardioprotective effects. RvD D-series resolving, RvE E-series resolving, LXA4 lipoxin A4, MaR1 maresin-1.
Collapse
Affiliation(s)
- Roddy Hiram
- Department of Medicine, Faculty of Medicine, Montreal Heart Institute (MHI), Université de Montréal, Research Center, 5000 Belanger, St. Montreal, QC, H1T 1C8, Canada.
| |
Collapse
|
13
|
Val-Blasco A, Prieto P, Jaén RI, Gil-Fernández M, Pajares M, Domenech N, Terrón V, Tamayo M, Jorge I, Vázquez J, Bueno-Sen A, Vallejo-Cremades MT, Pombo-Otero J, Sanchez-García S, Ruiz-Hurtado G, Gómez AM, Zaragoza C, Crespo-Leiro MG, López-Collazo E, Cuadrado A, Delgado C, Boscá L, Fernández-Velasco M. Specialized Proresolving Mediators Protect Against Experimental Autoimmune Myocarditis by Modulating Ca2+ Handling and NRF2 Activation. JACC Basic Transl Sci 2022; 7:544-560. [PMID: 35818504 PMCID: PMC9270570 DOI: 10.1016/j.jacbts.2022.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
Administration of BML-111, a stable LXA4 analog, protects against cardiac dysfunction by avoiding Ca2+ mishandling induced by autoimmune myocarditis in a mouse model. Beneficial effects of the SPMs on intracellular Ca2+ handling are mainly caused by a regulation of SERCA2A by NRF2. Cardiac tissue obtained from individuals diagnosed with myocarditis, compared with healthy myocardium tissues, displayed depressed mRNA levels of ATP2A2 (SERCA2A) and NF2L2 (NRF2).
Specialized proresolving mediators and, in particular, 5(S), (6)R, 7-trihydroxyheptanoic acid methyl ester (BML-111) emerge as new therapeutic tools to prevent cardiac dysfunction and deleterious cardiac damage associated with myocarditis progression. The cardioprotective role of BML-111 is mainly caused by the prevention of increased oxidative stress and nuclear factor erythroid-derived 2-like 2 (NRF2) down-regulation induced by myocarditis. At the molecular level, BML-111 activates NRF2 signaling, which prevents sarcoplasmic reticulum–adenosine triphosphatase 2A down-regulation and Ca2+ mishandling, and attenuates the cardiac dysfunction and tissue damage induced by myocarditis.
Collapse
Affiliation(s)
- Almudena Val-Blasco
- Innate Immune Response Group, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
- Signaling and Cardiovascular Pathophysiology, Unite Mixte de Recherche S 1180, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Paris, France
| | - Patricia Prieto
- Pharmacology, Pharmacognosy, and Botany Department, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Dr Patricia Prieto, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Rafael Iñigo Jaén
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas, Autonomous University of Madrid (UAM), Madrid, Spain
| | - Marta Gil-Fernández
- Innate Immune Response Group, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas, Autonomous University of Madrid (UAM), Madrid, Spain
| | - Marta Pajares
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas, Autonomous University of Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Nieves Domenech
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, Sergas, Universidad da Coruña, A Coruña, Spain
| | - Verónica Terrón
- Innate Immune Response Group, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
| | - María Tamayo
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas, Autonomous University of Madrid (UAM), Madrid, Spain
| | - Inmaculada Jorge
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jesús Vázquez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Andrea Bueno-Sen
- Innate Immune Response Group, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
| | | | - Jorge Pombo-Otero
- Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, Sergas, Universidad da Coruña, A Coruña, Spain
| | - Sergio Sanchez-García
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas, Autonomous University of Madrid (UAM), Madrid, Spain
| | - Gema Ruiz-Hurtado
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiorenal Translational Laboratory, Institute of Research i+12, CIBERCV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana María Gómez
- Signaling and Cardiovascular Pathophysiology, Unite Mixte de Recherche S 1180, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Paris, France
| | - Carlos Zaragoza
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Departamento de Cardiología, Unidad de Investigación Mixta Universidad Francisco de Vitoria, Madrid, Spain
| | - María Generosa Crespo-Leiro
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, Sergas, Universidad da Coruña, A Coruña, Spain
| | - Eduardo López-Collazo
- Innate Immune Response Group, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Res de Enfermedades Respiratorias, Madrid, Spain
| | - Antonio Cuadrado
- Innate Immune Response Group, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas, Autonomous University of Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, UAM, Madrid, Spain
| | - Carmen Delgado
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas, Autonomous University of Madrid (UAM), Madrid, Spain
| | - Lisardo Boscá
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas, Autonomous University of Madrid (UAM), Madrid, Spain
- Dr Lisardo Bosca, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| | - María Fernández-Velasco
- Innate Immune Response Group, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Address for correspondence: Dr María Fernández-Velasco, Instituto de Investigación Hospital la Paz, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid. Spain.
| |
Collapse
|
14
|
Specialized Proresolving Lipid Mediators: A Potential Therapeutic Target for Atherosclerosis. Int J Mol Sci 2022; 23:ijms23063133. [PMID: 35328553 PMCID: PMC8955102 DOI: 10.3390/ijms23063133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease (CVD) is a global public health issue due to its high morbidity, mortality, and economic impact. The implementation of innovative therapeutic alternatives for CVD is urgently required. Specialized proresolving lipid mediators (SPMs) are bioactive compounds derived from ω-3 and ω-6 fatty acids, integrated into four families: Lipoxins, Resolvins, Protectins, and Maresins. SPMs have generated interest in recent years due to their ability to promote the resolution of inflammation associated with the pathogeneses of numerous illnesses, particularly CVD. Several preclinical studies in animal models have evidenced their ability to decrease the progression of atherosclerosis, intimal hyperplasia, and reperfusion injury via diverse mechanisms. Large-scale clinical trials are required to determine the effects of SPMs in humans. This review integrates the currently available knowledge of the therapeutic impact of SPMs in CVD from preclinical and clinical studies, along with the implicated molecular pathways. In vitro results have been promising, and as such, SPMs could soon represent a new therapeutic alternative for CVD.
Collapse
|
15
|
Involvement of ischemia-driven 5-lipoxygenase-resolvin-E1-chemokine like receptor-1 axis in the resolution of post-coronary artery bypass graft inflammation in coronary arteries. Mol Biol Rep 2022; 49:3123-3134. [DOI: 10.1007/s11033-022-07143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
|
16
|
Exercise Training Alleviates Cardiac Fibrosis through Increasing Fibroblast Growth Factor 21 and Regulating TGF-β1-Smad2/3-MMP2/9 Signaling in Mice with Myocardial Infarction. Int J Mol Sci 2021; 22:ijms222212341. [PMID: 34830222 PMCID: PMC8623999 DOI: 10.3390/ijms222212341] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022] Open
Abstract
Exercise training has been reported to alleviate cardiac fibrosis and ameliorate heart dysfunction after myocardial infarction (MI), but the molecular mechanism is still not fully clarified. Fibroblast growth factor 21 (FGF21) exerts a protective effect on the infarcted heart. This study investigates whether exercise training could increase FGF21 protein expression and regulate the transforming growth factor-β1 (TGF-β1)-Smad2/3-MMP2/9 signaling pathway to alleviate cardiac fibrosis following MI. Male wild type (WT) C57BL/6J mice and Fgf21 knockout (Fgf21 KO) mice were used to establish the MI model and subjected to five weeks of different types of exercise training. Both aerobic exercise training (AET) and resistance exercise training (RET) significantly alleviated cardiac dysfunction and fibrosis, up-regulated FGF21 protein expression, inhibited the activation of TGF-β1-Smad2/3-MMP2/9 signaling pathway and collagen production, and meanwhile, enhanced antioxidant capacity and reduced cell apoptosis in the infarcted heart. In contrast, knockout of Fgf21 weakened the cardioprotective effects of AET after MI. In vitro, cardiac fibroblasts (CFs) were isolated from neonatal mice hearts and treated with H2O2 (100 μM, 6 h). Recombinant human FGF21 (rhFGF21, 100 ng/mL, 15 h) and/or 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR, 1 mM, 15 h) inhibited H2O2-induced activation of the TGF-β1-Smad2/3-MMP2/9 signaling pathway, promoted CFs apoptosis and reduced collagen production. In conclusion, exercise training increases FGF21 protein expression, inactivates the TGF-β1-Smad2/3-MMP2/9 signaling pathway, alleviates cardiac fibrosis, oxidative stress, and cell apoptosis, and finally improves cardiac function in mice with MI. FGF21 plays an important role in the anti-fibrosis effect of exercise training.
Collapse
|
17
|
González-Bosch C, Boorman E, Zunszain PA, Mann GE. Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol 2021; 47:102165. [PMID: 34662811 PMCID: PMC8577496 DOI: 10.1016/j.redox.2021.102165] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Short-chain fatty acids (SCFAs), produced by colonic bacteria and obtained from the diet, have been linked to beneficial effects on human health associated with their metabolic and signaling properties. Their physiological functions are related to their aliphatic tail length and dependent on the activation of specific membrane receptors. In this review, we focus on the mechanisms underlying SCFAs mediated protection against oxidative and mitochondrial stress and their role in regulating metabolic pathways in specific tissues. We critically evaluate the evidence for their cytoprotective roles in suppressing inflammation and carcinogenesis and the consequences of aging. The ability of these natural compounds to induce signaling pathways, involving nuclear erythroid 2-related factor 2 (Nrf2), contributes to the maintenance of redox homeostasis under physiological conditions. SCFAs may thus serve as nutritional and therapeutic agents in healthy aging and in vascular and other diseases such as diabetes, neuropathologies and cancer. SCFAs are a link between the microbiota, redox signaling and host metabolism. SCFAs modulate Nrf2 redox signaling through specific free fatty acid receptors. Butyrate induces epigenetic regulation and/or Nrf2 nuclear translocation. Butyrate and propionate protect the blood-brain barrier by facilitating docosahexaenoic acid transport. Regulation of redox homeostasis by SCFAs supports their potential as therapeutic nutrients in health and disease.
Collapse
Affiliation(s)
- Carmen González-Bosch
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK; Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de Alimentos (IATA/CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Emily Boorman
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK; Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
18
|
Oppedisano F, Mollace R, Tavernese A, Gliozzi M, Musolino V, Macrì R, Carresi C, Maiuolo J, Serra M, Cardamone A, Volterrani M, Mollace V. PUFA Supplementation and Heart Failure: Effects on Fibrosis and Cardiac Remodeling. Nutrients 2021; 13:nu13092965. [PMID: 34578843 PMCID: PMC8471017 DOI: 10.3390/nu13092965] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) characterized by cardiac remodeling is a condition in which inflammation and fibrosis play a key role. Dietary supplementation with n-3 polyunsaturated fatty acids (PUFAs) seems to produce good results. In fact, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have anti-inflammatory and antioxidant properties and different cardioprotective mechanisms. In particular, following their interaction with the nuclear factor erythropoietin 2 related factor 2 (NRF2), the free fatty acid receptor 4 (Ffar4) receptor, or the G-protein coupled receptor 120 (GPR120) fibroblast receptors, they inhibit cardiac fibrosis and protect the heart from HF onset. Furthermore, n-3 PUFAs increase the left ventricular ejection fraction (LVEF), reduce global longitudinal deformation, E/e ratio (early ventricular filling and early mitral annulus velocity), soluble interleukin-1 receptor-like 1 (sST2) and high-sensitive C Reactive protein (hsCRP) levels, and increase flow-mediated dilation. Moreover, lower levels of brain natriuretic peptide (BNP) and serum norepinephrine (sNE) are reported and have a positive effect on cardiac hemodynamics. In addition, they reduce cardiac remodeling and inflammation by protecting patients from HF onset after myocardial infarction (MI). The positive effects of PUFA supplementation are associated with treatment duration and a daily dosage of 1–2 g. Therefore, both the European Society of Cardiology (ESC) and the American College of Cardiology/American Heart Association (ACC/AHA) define dietary supplementation with n-3 PUFAs as an effective therapy for reducing the risk of hospitalization and death in HF patients. In this review, we seek to highlight the most recent studies related to the effect of PUFA supplementation in HF. For that purpose, a PubMed literature survey was conducted with a focus on various in vitro and in vivo studies and clinical trials from 2015 to 2021.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- Correspondence: (F.O.); (V.M.)
| | - Rocco Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Division of Cardiology, University Hospital Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Cardiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy;
| | - Annamaria Tavernese
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Jessica Maiuolo
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
| | - Antonio Cardamone
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
| | | | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (R.M.); (C.C.); (J.M.); (M.S.); (A.C.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- Department of Cardiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy;
- Correspondence: (F.O.); (V.M.)
| |
Collapse
|
19
|
Specialized Pro-Resolving Lipid Mediators in Neonatal Cardiovascular Physiology and Diseases. Antioxidants (Basel) 2021; 10:antiox10060933. [PMID: 34201378 PMCID: PMC8229722 DOI: 10.3390/antiox10060933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease remains a leading cause of mortality worldwide. Unresolved inflammation plays a critical role in cardiovascular diseases development. Specialized Pro-Resolving Mediators (SPMs), derived from long chain polyunsaturated fatty acids (LCPUFAs), enhances the host defense, by resolving the inflammation and tissue repair. In addition, SPMs also have anti-inflammatory properties. These physiological effects depend on the availability of LCPUFAs precursors and cellular metabolic balance. Most of the studies have focused on the impact of SPMs in adult cardiovascular health and diseases. In this review, we discuss LCPUFAs metabolism, SPMs, and their potential effect on cardiovascular health and diseases primarily focusing in neonates. A better understanding of the role of these SPMs in cardiovascular health and diseases in neonates could lead to the development of novel therapeutic approaches in cardiovascular dysfunction.
Collapse
|