1
|
Panferov VG, Zhang W, D'Abruzzo N, Wang S, Liu J. Kinetic Profiling of Oxidoreductase-Mimicking Nanozymes: Impact of Multiple Activities, Chemical Transformations, and Colloidal Stability. ACS NANO 2024; 18:34870-34883. [PMID: 39666441 DOI: 10.1021/acsnano.4c12539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In contrast to homogeneous enzyme catalysis, nanozymes are nanosized heterogeneous catalysts that perform reactions on a rigid surface. This fundamental difference between enzymes and nanozymes is often overlooked in kinetic studies and practical applications. In this article, using 14 nanozymes of various compositions (core@shell, metal-organic frameworks, metal, and metal oxide nanoparticles), we systematically demonstrate that nontypical features of nanozymes, such as multiple catalytic activities, chemical transformations, and aggregation, need to be considered in nanozyme catalysis. Ignoring these features results in the inaccurate quantification of catalytic activity. Neglecting the multiple activities led to a six-time underestimation of Mn2O3 oxidation activity and mischaracterization of this material as a low-active peroxidase-mimicking nanozyme. Additionally, overlooking chemical stability during catalytic reactions led to the reporting of high peroxidase-mimicking activity for Au@Ag nanoparticles, which, in reality, exhibited no intrinsic activity and oxidized the substrate through the leakage of Ag+ ions. Ignoring the chemical stability of Au@Prussian Blue nanoparticles may lead to more than four times overestimation of peroxidase-mimicking activity after just 24 h of storage. Finally, disregarding the colloidal stability of nanozymes led to a five-time inaccuracy in catalytic activity. These findings underscore the necessity of optimizing procedures to account for these factors in nanozyme kinetic measurements, which will in turn ensure more reliable biosensors and the success of other practical applications.
Collapse
Affiliation(s)
- Vasily G Panferov
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia
| | - Wenjun Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada
| | - Nicholas D'Abruzzo
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada
| | - Sihan Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Brambilla D, Panico F, Zarini L, Mussida A, Ferretti AM, Aslan M, Ünlü MS, Chiari M. Copolymer-Coated Gold Nanoparticles: Enhanced Stability and Customizable Functionalization for Biological Assays. BIOSENSORS 2024; 14:319. [PMID: 39056595 PMCID: PMC11274550 DOI: 10.3390/bios14070319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Gold nanoparticles (AuNPs) play a vital role in biotechnology, medicine, and diagnostics due to their unique optical properties. Their conjugation with antibodies, antigens, proteins, or nucleic acids enables precise targeting and enhances biosensing capabilities. Functionalized AuNPs, however, may experience reduced stability, leading to aggregation or loss of functionality, especially in complex biological environments. Additionally, they can show non-specific binding to unintended targets, impairing assay specificity. Within this work, citrate-stabilized and silica-coated AuNPs (GNPs and SiGNPs, respectively) have been coated using N,N-dimethylacrylamide-based copolymers to increase their stability and enable their functionalization with biomolecules. AuNP stability after modification has been assessed by a combination of techniques including spectrophotometric characterization, nanoparticle tracking analysis, transmission electron microscopy and functional microarray tests. Two different copolymers were identified to provide a stable coating of AuNPs while enabling further modification through click chemistry reactions, due to the presence of azide groups in the polymers. Following this experimental design, AuNPs decorated with ssDNA and streptavidin were synthesized and successfully used in a biological assay. In conclusion, a functionalization scheme for AuNPs has been developed that offers ease of modification, often requiring single steps and short incubation time. The obtained functionalized AuNPs offer considerable flexibility, as the functionalization protocol can be personalized to match requirements of multiple assays.
Collapse
Affiliation(s)
- Dario Brambilla
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Privata Mario Bianco 9, 20131 Milan, Italy; (F.P.); (L.Z.); (A.M.); (M.C.)
| | - Federica Panico
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Privata Mario Bianco 9, 20131 Milan, Italy; (F.P.); (L.Z.); (A.M.); (M.C.)
| | - Lorenzo Zarini
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Privata Mario Bianco 9, 20131 Milan, Italy; (F.P.); (L.Z.); (A.M.); (M.C.)
| | - Alessandro Mussida
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Privata Mario Bianco 9, 20131 Milan, Italy; (F.P.); (L.Z.); (A.M.); (M.C.)
| | - Anna M. Ferretti
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Gaudenzio Fantoli 16/15, 20138 Milan, Italy;
| | - Mete Aslan
- Electrical and Computer Engineering Department, Boston University, Boston, MA 02215, USA; (M.A.); (M.S.Ü.)
| | - M. Selim Ünlü
- Electrical and Computer Engineering Department, Boston University, Boston, MA 02215, USA; (M.A.); (M.S.Ü.)
| | - Marcella Chiari
- Institute of Chemical and Technological Science “Giulio Natta”, National Research Council of Italy, Via Privata Mario Bianco 9, 20131 Milan, Italy; (F.P.); (L.Z.); (A.M.); (M.C.)
| |
Collapse
|
3
|
Barshevskaya LV, Sotnikov DV, Zherdev AV, Dzantiev BB. Modular Set of Reagents in Lateral Flow Immunoassay: Application for Antibiotic Neomycin Detection in Honey. BIOSENSORS 2023; 13:bios13050498. [PMID: 37232859 DOI: 10.3390/bios13050498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
A scheme of modular competitive immunochromatography with an analyte-independent test strip and changeable specific immunoreactants has been proposed. Native (detected) and biotinylated antigens interact with specific antibodies during their preincubation in solution, that is, without the immobilization of reagents. After this, the detectable complexes on the test strip are formed by the use of streptavidin (which binds biotin with high affinity), anti-species antibodies, and immunoglobulin-binding streptococcal protein G. The technique was successfully applied for the detection of neomycin in honey. The visual and instrumental detection limits were 0.3 and 0.014 mg/kg, respectively, and the degree of neomycin revealed in honey samples varied from 85% to 113%. The efficiency of the modular technique with the use of the same test strip for different analytes was confirmed for streptomycin detection. The proposed approach excludes the necessity of finding the condition of immobilization for each new specific immunoreactant and transferring the assay to other analytes by a simple choice of concentrations for preincubated specific antibodies and the hapten-biotin conjugate.
Collapse
Affiliation(s)
- Lyubov V Barshevskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Dmitriy V Sotnikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
4
|
Khongwichit S, Swangphon P, Nanakorn N, Nualla-Ong A, Choowongkomon K, Lieberzeit PA, Chunta S. A simple aptamer/gold nanoparticle aggregation-based colorimetric assay for oxidized low-density lipoprotein determination. Talanta 2023; 254:124199. [PMID: 36549138 DOI: 10.1016/j.talanta.2022.124199] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Oxidized low-density lipoprotein (oxLDL) is the leading cause of atherosclerosis and cardiovascular diseases. Here, we created a simple colorimetric assay for sensitive and specific determination of oxLDL using a selective aptamer coupled with salt-induced gold nanoparticle (AuNP) aggregation. The aptamer was chosen by Systematic Evolution of Ligands by Exponential Enrichment to obtain a novel selective sequence towards oxLDL (as 5'-CCATCACGGGGCAGGCGGACAAGGGGTAAGGGCCACATCA-3'). Mixing a 5 μM aptamer solution with an aliquot of a sample containing oxLDL followed by adding AuNP solution (OD = 1) and 80 mmol L-1 NaCl achieved rapid results within 19 min: linear response to oxLDL from 0.002 to 0.5 μmol L-1 with high selectivity, a recovery accuracy of 100-111% at the 95% confidence interval, and within-run and between-run precision of 1-6% and 1-5% coefficient variations, respectively. Artificial serum diluted at least 1:8 with distilled water, analyzed by the aptamer-based colorimetric assay, showed excellent correlation with conventional thiobarbituric acid reactive substances (TBARS) (R2 = 0.9792) as a rapid colorimetric method without the need for sample preparation other than dilution.
Collapse
Affiliation(s)
- Soemwit Khongwichit
- Prince of Songkla University, Faculty of Medical Technology, Songkhla, 90110, Thailand; Prince of Songkla University, Faculty of Science, Division of Biological Science, Songkhla, 90110, Thailand
| | - Piyawut Swangphon
- Prince of Songkla University, Faculty of Medical Technology, Songkhla, 90110, Thailand
| | - Natthaphon Nanakorn
- Prince of Songkla University, Faculty of Medical Technology, Songkhla, 90110, Thailand
| | - Aekkaraj Nualla-Ong
- Prince of Songkla University, Faculty of Science, Division of Biological Science, Songkhla, 90110, Thailand
| | - Kiattawee Choowongkomon
- Kasetsart University, KU Institute for Advanced Studies Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Bangkok, 10900, Thailand
| | - Peter A Lieberzeit
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Vienna, 1090, Austria
| | - Suticha Chunta
- Prince of Songkla University, Faculty of Medical Technology, Songkhla, 90110, Thailand.
| |
Collapse
|
5
|
Mehrizi TZ, Ardestani MS, Kafiabad SA. A Review of the Use of Metallic Nanoparticles as a Novel Approach for Overcoming the Stability Challenges of Blood Products: A Narrative Review from 2011-2021. Curr Drug Deliv 2023; 20:261-280. [PMID: 35570560 DOI: 10.2174/1567201819666220513092020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE To obtain safe and qualified blood products (e.g., platelets, plasma, and red blood cells), various limitations such as limited shelf life (especially for platelets) and stability must be addressed. In this review study, the most commonly used metal nanomaterials (e.g., gold, silver, iron, and magnetic) reported in the literature from 2011 to 2021 were discussed owing to their unique properties, which provide exciting approaches to overcome these limitations and improve the stability, safety, and quality of blood products. Novelty: This study reviews for the first time the results of studies (from 2011 to 2021) that consider the effects of various metallic nanoparticles on the different blood products. RESULTS The results of this review study showed that some metallic nanoparticles are effective in improving the stability of plasma proteins. For this purpose, modified Fe3O4 magnetic nanoparticles and citrate-AuNPs protect albumin products against stressful situations. Also, SiO2 microspheres and silicacoated magnetite nanoparticles are highly capable of improving IgG stability. ZnO nanoparticles also reduced thrombin production, and protein-coated GMNP nanoparticles prevented unwanted leakage of factor VIII through blood vessels. Furthermore, the stability and longevity of erythrocytes can be improved by AuNP nanoparticles and Zr-based organic nanoparticles. In addition, platelet storage time can be improved using PEGylated Au and functionalized iron oxide nanoparticles. SUGGESTION According to the results of this study, it is suggested that further research should be conducted on metal nanoparticles as the most promising candidates to prepare metal nanoparticles with improved properties to increase the stability of various blood products.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Amini Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
6
|
Recent developments in the colorimetric sensing of biological molecules using gold nanoparticles-based probes. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Zadeh Mehrizi T, Mousavi Hosseini K. An overview on the investigation of nanomaterials' effect on plasma components: immunoglobulins and coagulation factor VIII, 2010-2020 review. NANOSCALE ADVANCES 2021; 3:3730-3745. [PMID: 36133015 PMCID: PMC9419877 DOI: 10.1039/d1na00119a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/16/2021] [Indexed: 05/04/2023]
Abstract
FVIII and immunoglobulins (Igs) are the most prominent plasma proteins, which play a vital role in plasma hemostasis. These proteins have been implemented frequently in protein therapy. Therefore, their maintenance, durability, and stability are highly essential. Herein, various approaches to improve protein functions have been investigated, such as using recombinant protein replacement. In comparison, advances in nanotechnology have provided adequate context to boost biomaterial utilization. In this regard, the applications of various nanoparticles such as polymeric nanomaterials (PEG and PLGA), metal nanoparticles, dendrimers, and lipid based nanomaterials (liposomes and lipid nanoparticles) in stability and the functional improvement of antibodies and coagulation factor VIII (FVIII) have been reviewed from 2010 to 2020. Reviewing related articles has shown that not only can nanomaterials adequately protect the structure of proteins, but have also improved proteins' functions in some cases. For example, the high rate of FVIII instability has been successfully enhanced by bio-PEGylation. Also, utilizing PEGylated liposomes, using the PEG-lip technique for coating nanostructures, leads to FIIIV half-life prolongation. Hence, PEGylation had most impact on the stability of FVIII. Likewise, PEG-coated liposome nano-carriers also presented such a good effect on stability improvements for FVIII due to their ability to tune the immune system by reducing FVIII immunogenicity. Similarly, Ig PEGylation and conjugation to magnetic nanoparticles resulted in increased half-life and better purification of Igs, respectively, without any loss in structural or functional features. Consequently, metal-organic frameworks and recent hybrid systems have been introduced as promising nanomaterials in biomedical applications. As far as we know, this is the first study in this field, which considers the applications of nanoparticles for improving the storage and stability of antibodies and coagulation FVIII.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine Tehran Iran +989338606292
| | - Kamran Mousavi Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine Tehran Iran +989338606292
| |
Collapse
|