1
|
Yang Z, Yu Q, Wu J, Deng H, Zhang Y, Wang W, Xian T, Huang L, Zhang J, Yuan S, Leng J, Zhan L, Jiang Z, Wang J, Zhang K, Zhou P. Ultrafast laser state active controlling based on anisotropic quasi-1D material. LIGHT, SCIENCE & APPLICATIONS 2024; 13:81. [PMID: 38584173 PMCID: PMC11251271 DOI: 10.1038/s41377-024-01423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
Laser state active controlling is challenging under the influence of inherent loss and other nonlinear effects in ultrafast systems. Seeking an extension of degree of freedom in optical devices based on low-dimensional materials may be a way forward. Herein, the anisotropic quasi-one-dimensional layered material Ta2PdS6 was utilized as a saturable absorber to modulate the nonlinear parameters effectively in an ultrafast system by polarization-dependent absorption. The polarization-sensitive nonlinear optical response facilitates the Ta2PdS6-based mode-lock laser to sustain two types of laser states, i.e., conventional soliton and noise-like pulse. The laser state was switchable in the single fiber laser with a mechanism revealed by numerical simulation. Digital coding was further demonstrated in this platform by employing the laser as a codable light source. This work proposed an approach for ultrafast laser state active controlling with low-dimensional material, which offers a new avenue for constructing tunable on-fiber devices.
Collapse
Affiliation(s)
- Zixin Yang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Qiang Yu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China.
| | - Haiqin Deng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
| | - Yan Zhang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wenchao Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Tianhao Xian
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luyi Huang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Junrong Zhang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Shuai Yuan
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinyong Leng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Li Zhan
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zongfu Jiang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Junyong Wang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Kai Zhang
- i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Pu Zhou
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China.
| |
Collapse
|
2
|
Xu B, Jin Z, Shi L, Zhang H, Liu Q, Qin P, Jiang K, Wang J, Tang W, Xia W. Two types of ultrafast mode-locking operations from an Er-doped fiber laser based on germanene nanosheets. FRONTIERS OF OPTOELECTRONICS 2023; 16:13. [PMID: 37284945 DOI: 10.1007/s12200-023-00068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 06/08/2023]
Abstract
As a member of Xenes family, germanene has excellent nonlinear saturable absorption characteristics. In this work, we prepared germanene nanosheets by liquid phase exfoliation and measured their saturation intensity as 0.6 GW/cm2 with a modulation depth of 8%. Then, conventional solitons with a pulse width of 946 fs and high-energy noise-like pulses with a pulse width of 784 fs were obtained by using germanene nanosheet as a saturable absorber for a mode-locked Erbium-doped fiber laser. The characteristics of the two types of pulses were investigated experimentally. The results reveal that germanene has great potential for modulation devices in ultrafast lasers and can be used as a material for creation of excellent nonlinear optical devices to explore richer applications in ultrafast photonics.
Collapse
Affiliation(s)
- Baohao Xu
- School of Physics and Technology, University of Jinan, Jinan, 250022, China
| | - Zhiyuan Jin
- School of Physics and Technology, University of Jinan, Jinan, 250022, China
| | - Lie Shi
- School of Physics and Technology, University of Jinan, Jinan, 250022, China
| | - Huanian Zhang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Qi Liu
- Shandong Huaguang Optoelectronics Co., Ltd., Jinan, 250101, China
| | - Peng Qin
- Shandong Huaguang Optoelectronics Co., Ltd., Jinan, 250101, China
| | - Kai Jiang
- School of Physics and Technology, University of Jinan, Jinan, 250022, China
| | - Jing Wang
- School of Physics and Technology, University of Jinan, Jinan, 250022, China
| | - Wenjing Tang
- School of Physics and Technology, University of Jinan, Jinan, 250022, China.
| | - Wei Xia
- School of Physics and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
3
|
Yttrium Oxide (Y2O3) as a Pulse Initiator in a Mode-Locking Erbium-Doped Fiber Laser. PHOTONICS 2022. [DOI: 10.3390/photonics9070486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Mode-locking is an ultra-short pulse laser generation technique. The range of pulse duration may vary from picoseconds to femtoseconds. Yttrium Oxide (Y2O3) based saturable absorber (SA) was appropriately revealed in the mode-locked method within the 1.55-micron regime. Y2O3 is perfect for strength, melting point, and chemical stability and can be used as a laminated insulator due to its properties. Moreover, Y2O3 also owns broadband service, switching speed, and engineering features. The Y2O3-PVA film was produced by combining the 50 mg Y2O3 powder into a 50 mL polyvinyl alcohol (PVA) solution and stirring it at room temperature for about 24 h. A mode-locked pulse was recorded with the integrated Y2O3-PVA SA in the erbium-doped fiber laser (EDFL) cavity, and the output spectrum optical spectrum analyzer displayed was around 1560.66 nm. In addition to the sustained mode-locked pulse, a nearly constant repetition rate of 1.01 MHz at a specific pump power begins from 175.87 mW to 228.04 mW while the pulse duration is 4.15 ps. Lastly, the mode-locked pulse had been evaluated, which showed the peak power started from 4.94 kW to 6.07 kW.
Collapse
|
4
|
Wang M, Zhao J, Chen Y, Liu M, Ouyang D, Pei J, Ruan S. 10 µJ noise-like pulse generated from all fiberized Tm-doped fiber oscillator and amplifier. OPTICS EXPRESS 2021; 29:10172-10180. [PMID: 33820150 DOI: 10.1364/oe.421867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Herein, we presented a high energy noise-like (NL) pulse Tm-doped fiber laser (TDFL) system. Relying on the nonlinear amplifying loop mirror (NALM), stable noise-like pulses with coherence spike width of ∼317 fs and envelope width of ∼4.2 ns were obtained from an all polarization-maintaining fiberized oscillator at central wavelength of ∼1946.4 nm with 3 dB bandwidth of ∼24.9 nm. After the amplification in an all-fiberized TDF amplifier system, the maximum average output power of ∼32.8 W and pulse energy of ∼10.1 µJ were obtained, which represents the highest pulse energy of NL pulse at ∼2 µm, to the best of our knowledge. We believe that the high energy NL pulse source has the potential application in mid-infrared supercontinuum generation.
Collapse
|