1
|
Yang X, Liang Y, Li K, Hu Q, He J, Xie J. Advances in Microencapsulation of Flavor Substances: Preparation Techniques, Wall Material Selection, Characterization Methods, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9459-9477. [PMID: 40198106 DOI: 10.1021/acs.jafc.4c11399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
This review systematically examines advances in flavor microencapsulation technology from 2014 to 2024, focusing on innovations in preparation techniques, trends in wall material selection, and characterization methods. Literature metrological analysis shows that spray drying is the predominant technology (25% of reports); its shortcomings in volatile flavor retention have driven improved strategies such as vacuum low-temperature drying, ultrasound assistance, and monodisperse atomization. Emerging technologies such as electrohydrodynamic methods (electrospinning/electrospraying) and supercritical fluid processing are favored due to their nonthermal advantages. Overall, traditional polysaccharides have been widely used due to their good emulsifying and stabilizing properties. In the meanwhile, plant-based polysaccharides (e.g., inulin, hemicellulose) and proteins (e.g., pea protein) are increasingly preferred as the wall materials driven by sustainability and clean-labeling requirements. Morphological analysis and particle size and distribution studies have highlighted the key role of microstructure in stability and release kinetics, with multicore and multishell structures optimizing controlled release performance. Despite progress, gaps remain in the standardized assessment of encapsulation efficacy, the cost-effectiveness of novel materials, and practical food applications. In the future, a combination of interdisciplinary approaches is needed to investigate low-energy preparation technologies, functionalized wall materials, and intelligent release mechanisms to achieve the better application of flavor microencapsulates in food.
Collapse
Affiliation(s)
- Xiaodong Yang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102488, China
| | - Yu Liang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102488, China
| | - Kexin Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102488, China
| | - Qingqing Hu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102488, China
| | - Jinxin He
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102488, China
| | - Jianchun Xie
- School of Food Science and Health, Beijing Technology and Business University, Beijing 102488, China
| |
Collapse
|
2
|
Zhang Z, Li F, Zhang Z, Muhmood A, Li S, Liu M, Zhou S, Du Z, Ruan C, Sun J. Microcapsule Techniques to Emphasize Functional Plant Oil Quality and Their Applications in the Food Industry: A Review. Foods 2025; 14:677. [PMID: 40002120 PMCID: PMC11854101 DOI: 10.3390/foods14040677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Natural functional plant oils (FPOs) have been widely exploited due to their abundant biological activities. However, when exposed to oxygen, light, moisture, and heat, some limitations such as oxidative deterioration, impaired flavor, loss of nutritional value and volatile compounds, and decreased shelf life hinder the widespread application of FPOs in the food industry. Notably, the microencapsulation technique is one of the advanced technologies, which has been used to maintain the biological and physicochemical properties of FPOs. The present review provided a comprehensive overview of the nutrient compositions and functionality of FPOs, preparation techniques for microcapsules, and applications of microencapsulated FPOs (MFPOs) in the food industry. FPOs obtained from a wide range of sources were abundant in bioactive compounds and possessed disease risk mitigation and improved human health properties. The preparation methods of microencapsulation technology included physical, chemical, and physicochemical methods, which had the ability to enhance oxidative stability, functional, shelf life, and thermostability properties of FPOs. In this context, MFPOs had been applied as a fortification in sausage, meat, bakery, and flour products. Overall, this work will provide information for academic fields and industries the further exploration of food and nutriment products.
Collapse
Affiliation(s)
- Zhiran Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| | - Fei Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
- Shandong Luhua Group Co., Ltd., Laiyang 265200, China;
| | - Ziyan Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| | - Atif Muhmood
- Department of Agroecology, Aarhus University, 8000 Aarhus, Denmark;
| | - Shengxin Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| | - Mengkai Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| | - Sen Zhou
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| | - Zubo Du
- Shandong Luhua Group Co., Ltd., Laiyang 265200, China;
| | | | - Jie Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (F.L.); (Z.Z.); (S.L.); (M.L.); (S.Z.)
| |
Collapse
|
3
|
Kowalska G, Rosicka-Kaczmarek J, Miśkiewicz K, Nowak A, Motyl I, Oracz J, Brzozowska A, Grzegorczyk A, Świniarska Z. Influence of Novel Microcapsulates of Bee Products on Gut Microbiota Modulation and Their Prebiotic and Pro-Adhesive Properties. Molecules 2024; 29:2751. [PMID: 38930817 PMCID: PMC11206356 DOI: 10.3390/molecules29122751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
With the aim to obtain controlled-release systems and to preserve the antioxidant, immunomodulatory, and prebiotic activity of the bioactive compounds, microencapsulation of both honeydew honey and royal jelly into biopolymeric microparticles based on rye bran heteropolysaccharides (HPS) was successfully performed. Honeydew honey and royal jelly microcapsules were prepared by spray-drying method and were characterized in terms of morphology and biological properties. Due to the resistance of the obtained encapsulates to the acidic pH in the stomach and digestive enzymes, the microcapsules showed prebiotic properties positively influencing both the growth, retardation of the dying phase, and the pro-adhesive properties of probiotic bacteria, i.e., Bifidobacterium spp. and lactic acid bacteria. Moreover, as a result of fermentation of the microcapsules of bee products in the lumen of the large intestine, an increased synthesis of short-chain fatty acids, i.e., butyric acid, was found on average by 39.2% in relation to the SCFA concentrations obtained as a result of fermentation of native bee products, thus opening new perspectives for the exploitation of honeydew honey and royal jelly loaded microcapsules for nutraceutical applications.
Collapse
Affiliation(s)
- Gabriela Kowalska
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22 Street, 90-537 Lodz, Poland; (K.M.); (J.O.); (A.B.); (A.G.); (Z.Ś.)
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22 Street, 90-537 Lodz, Poland; (K.M.); (J.O.); (A.B.); (A.G.); (Z.Ś.)
| | - Karolina Miśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22 Street, 90-537 Lodz, Poland; (K.M.); (J.O.); (A.B.); (A.G.); (Z.Ś.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173 Street, 90-530 Lodz, Poland; (A.N.); (I.M.)
| | - Ilona Motyl
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173 Street, 90-530 Lodz, Poland; (A.N.); (I.M.)
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22 Street, 90-537 Lodz, Poland; (K.M.); (J.O.); (A.B.); (A.G.); (Z.Ś.)
| | - Anna Brzozowska
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22 Street, 90-537 Lodz, Poland; (K.M.); (J.O.); (A.B.); (A.G.); (Z.Ś.)
| | - Aleksandra Grzegorczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22 Street, 90-537 Lodz, Poland; (K.M.); (J.O.); (A.B.); (A.G.); (Z.Ś.)
| | - Zuzanna Świniarska
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22 Street, 90-537 Lodz, Poland; (K.M.); (J.O.); (A.B.); (A.G.); (Z.Ś.)
| |
Collapse
|
4
|
Didar Z. Characterization of white chocolate enriched with co-encapsulated Lactobacillus acidophilus ( La-5) and rose hip shell fruit extract: Characterization, probiotic viability during storage, and in vitro gastrointestinal digestion. Food Sci Nutr 2024; 12:890-906. [PMID: 38370043 PMCID: PMC10867508 DOI: 10.1002/fsn3.3805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 02/20/2024] Open
Abstract
This research focused on the production of a new kind of probiotic chocolate containing co-encapsulated Lactobacillus acidophilus (La-5) bacteria and rose hip shell fruit extract. Several properties of chocolate samples, including rheological, textural, thermal properties, particle size distribution, color indices, total phenolic and anthocyanin magnitude, antioxidant potential, and Raman spectroscopy were performed. The prepared white chocolates were assessed for the survival of the probiotic cell and the stability of anthocyanins and phenolic components in different storage times (until 90 days) and different storage temperatures (at 4 and 25°C). Observations imply that both temperature and duration of storage had an impact on the extent of survival of probiotics as well as stability of total phenolic content (TPC) and anthocyanin content (p < .05). During in vitro gastrointestinal circumstances, the extent of survival of L. acidophilus, in two chocolate matrixes, was assessed. At the end of gastric and intestinal condition, the log of viable cells was 7 and 6, respectively. The magnitude of the bioaccessibility of anthocyanin and phenolic components was 81% and 78%, respectively. Sensory evaluation affirmed that there was no remarkable variation between samples in terms of overall acceptance.
Collapse
Affiliation(s)
- Zohreh Didar
- Department of Food Science and Technology, Neyshabur BranchIslamic Azad UniversityNeyshaburIran
| |
Collapse
|
5
|
Paramasivam G, Sanmugam A, Palem VV, Sevanan M, Sairam AB, Nachiappan N, Youn B, Lee JS, Nallal M, Park KH. Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: A review. Int J Biol Macromol 2024; 254:127904. [PMID: 37939770 DOI: 10.1016/j.ijbiomac.2023.127904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Nanomaterials are emerging facts used to deliver therapeutic agents in living systems. Nanotechnology is used as a compliment by implementing different kinds of nanotechnological applications such as nano-porous structures, functionalized nanomaterials, quantum dots, carbon nanomaterials, and polymeric nanostructures. The applications are in the initial stage, which led to achieving several diagnoses and therapy in clinical practice. This review conveys the importance of nanomaterials in post-genomic employment, which includes the design of immunosensors, immune assays, and drug delivery. In this view, genomics is a molecular tool containing large databases that are useful in choosing an apt molecular inhibitor such as drug, ligand and antibody target in the drug delivery process. This study identifies the expression of genes and proteins in analysis and classification of diseases. Experimentally, the study analyses the design of a disease model. In particular, drug delivery is a boon area to treat cancer. The identified drugs enter different phase trails (Trails I, II, and III). The genomic information conveys more essential entities to the phase I trials and helps to move further for other trails such as trails-II and III. In such cases, the biomarkers play a crucial role by monitoring the unique pathological process. Genetic engineering with recombinant DNA techniques can be employed to develop genetically engineered disease models. Delivering drugs in a specific area is one of the challenging issues achieved using nanoparticles. Therefore, genomics is considered as a vast molecular tool to identify drugs in personalized medicine for cancer therapy.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - Vishnu Vardhan Palem
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore 641114, Tamil Nadu, India
| | - Ananda Babu Sairam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - Nachiappan Nachiappan
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery, Biomedical Research Institute, Pusan National University Hospital, Busan 46241, Republic of Korea; School of Medicine, Pusan National University, Busan 46241, Republic of Korea
| | - Muthuchamy Nallal
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
6
|
Didar Z. Effect of mulberry molasses microcapsules as a sugar substitute in white chocolate formulation on physicochemical, thermal, textural, and functional properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Dundar AN, Cinar A, Altuntas S, Ulubayram N, Taner G, Dagdelen AF, Demircan H, Oral RA. The role of microencapsulation in maintaining biological activity of royal jelly: comparison with biological activity and bioaccessibility of microencapsulated, fresh and lyophilized forms during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5502-5511. [PMID: 35355271 DOI: 10.1002/jsfa.11905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Royal jelly (RJ) is a unique beehive product and has been recommended for human health since ancient times because of its antioxidant, antimicrobial, antiproliferative, neuroprotective, anti-lipidemic and anti-aging features. However, the biggest obstacle in the use of RJ is the need for cold storage and the instability of bioactive components over time. In the present study, 10-hydroxy-2-decenoic acid (10-HDA) content, as well as antioxidant [using 1,1-diphenyl-2-picrylhydrazy and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) methods] and antimicrobial activity (five Gram-positive, five Gram-negative and three yeasts), were comparatively evaluated for three RJ forms, two of which can be stored at 24 ± 1 °C during storage. RESULTS Microencapsulated royal jelly (MRJ) stored at room temperature succeeded in preserving its 10-HDA content, a major bioactive compound, during the 6 months, with respect to lyophilized royal jelly (LRJ) and fresh RJ stored at 4 °C. The initial 10-HDA contents of RJ, LRJ and MRJ were determined as 1.90%, 5.26% and 2.75%, respectively. Moreover, the total phenolic content, antioxidant capacity and antimicrobial activity mostly remained constant throughout the storage period (P ≥ 0.05). Gram-positive strains were generally more sensitive than Gram-negative strains. In the present study, the in vitro simulated digestion analysis showed that MRJ can tolerate the digestion process. CONCLUSION Overall, the encapsulation process was considered as one preservative technique for RJ. The microencapsulation of RJ as shown in the results of the present study are encouraging in terms of enabling the local beekeeping sector to achieve ease of production and increased product diversity. MRJ shows promise as a commercial product with a high export value for producers. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ayse Neslihan Dundar
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Aycan Cinar
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Seda Altuntas
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Neslihan Ulubayram
- Vocational School of Altıntaş, Department of Food Processing, Kütahya Dumlupınar University, Kütahya, Turkey
| | - Gokce Taner
- Faculty of Engineering and Natural Sciences, Department of Bioengineering, Bursa Technical University, Bursa, Turkey
| | - Adnan Fatih Dagdelen
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Huseyin Demircan
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Rasim Alper Oral
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| |
Collapse
|
8
|
Arabinoxylan-Based Microcapsules Being Loaded with Bee Products as Bioactive Food Components Are Able to Modulate the Cell Migration and Inflammatory Response-In Vitro Study. Nutrients 2022; 14:nu14122529. [PMID: 35745258 PMCID: PMC9228011 DOI: 10.3390/nu14122529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of the research was to use bioactive heteropolysaccharides isolated from rye bran to obtain innovative systems for the controlled release of bioactive compounds. The core of the obtained encapsulates was honey and royal jelly. It was shown for the first time that preparations effectively ameliorated inflammatory response in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, decreasing the secretion of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and nitric oxide (NO). The in vitro digestion process revealed that bee products’ encapsulates were stronger oxidative stress reducers and had sustained ability to reduction in inflammation state mediators. The lack of inhibitory effect on migration rate of human microvascular endothelial cells (HMEC-1) endothelial cells and mouse embryonic fibroblasts (NIH-3T3), both cell models involved in wound healing process, additionally identified these preparations as agents potentially used in the management of inflammatory response. In the process of a simulated digestion in vitro, the innovative microcapsules showed 85% higher biostability and two to ten times better bioavailability, compared to natural bee products.
Collapse
|
9
|
Rezić I, Somogyi Škoc M, Majdak M, Jurić S, Stracenski KS, Vinceković M. Functionalization of Polymer Surface with Antimicrobial Microcapsules. Polymers (Basel) 2022; 14:1961. [PMID: 35631845 PMCID: PMC9145794 DOI: 10.3390/polym14101961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
The development of antimicrobial polymers is a priority for engineers fighting microbial resistant strains. Silver ions and silver nanoparticles can assist in enhancing the antimicrobial properties of microcapsules that release such substances in time which prolongs the efficiency of antimicrobial effects. Therefore, this study aimed to functionalize different polymer surfaces with antimicrobial core/shell microcapsules. Microcapsules were made of sodium alginate in shell and filled with antimicrobial silver in their core prior to application on the surface of polymer materials by dip-coating methodology. Characterization of polymers after functionalization was performed by several spectroscopic and microscopic techniques. After the characterization of polymers before and after the functionalization, the release of the active substances was monitored in time. The obtained test results can help with the calculation on the minimal concentration of antimicrobial silver that is encapsulated to achieve the desired amounts of release over time.
Collapse
Affiliation(s)
- Iva Rezić
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Maja Somogyi Škoc
- Department of Materials, Fibers and Textile Testing, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Mislav Majdak
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Slaven Jurić
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (S.J.); (K.S.S.); (M.V.)
| | | | - Marko Vinceković
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (S.J.); (K.S.S.); (M.V.)
| |
Collapse
|