1
|
Alfalki AM. Using Machine Learning and Artificial Intelligence to Predict Diabetes Mellitus among Women Population. Curr Diabetes Rev 2025; 21:35-46. [PMID: 37282643 DOI: 10.2174/1573399820666230605160212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Accepted: 05/03/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Diabetes Mellitus is a chronic health condition (long-lasting) due to inadequate control of blood levels of glucose. This study presents a prediction of Type 2 Diabetes Mellitus among women using various Machine Learning Algorithms deployed to predict the diabetic condition. A University of California Irvine Diabetes Mellitus Dataset posted in Kaggle was used for analysis. METHODS The dataset included eight risk factors for Type 2 Diabetes Mellitus prediction, including Age, Systolic Blood Pressure, Glucose, Body Mass Index, Insulin, Skin Thickness, Diabetic Pedigree Function, and Pregnancy. R language was used for the data visualization, while the algorithms considered for the study are Logistic Regression, Support Vector Machines, Decision Trees and Extreme Gradient Boost. The performance analysis of these algorithms on various classification metrics is also presented here, considering the Area Under the Curve and Receiver Operating Characteristics score is the best for Extreme Gradient Boost with 85%, followed by Support Vector Machines and Decision Trees. RESULTS The Logistic Regression is showing low performance. But the Decision Trees and Extreme Gradient Boost show promising performance against all the classification metrics. But the Support Vector Machines offers a lower support value; hence it cannot be claimed to be a good classifier. The model showed that the most significant predictors of Type 2 Diabetes Mellitus were strongly correlated with Glucose Levels and mediumly correlated with Body Mass Index, whereas Age, Skin Thickness, Systolic Blood Pressure, Insulin, Pregnancy, and Pedigree Function were less significant. This type of real-time analysis has proved that the symptoms of Type 2 Diabetes Mellitus in women fall entirely different compared to men, which highlights the importance of Glucose Levels and Body Mass Index in women. CONCLUSION The prediction of Type 2 Diabetes Mellitus helps public health professionals to help people by suggesting proper food intake and adjusting lifestyle activities with good fitness management in women to make glucose levels and body mass index controlled. Therefore, the healthcare systems should give special attention to diabetic conditions in women to reduce exacerbations of the disease and other associated symptoms. This work attempts to predict the occurrence of Type 2 Diabetes Mellitus among women on their behavioral and biological conditions.
Collapse
Affiliation(s)
- Ali Mamoon Alfalki
- College of Health Professions, University of New England, Biddeford, ME 04005, USA
| |
Collapse
|
2
|
Nemat H, Khadem H, Elliott J, Benaissa M. Data-driven blood glucose level prediction in type 1 diabetes: a comprehensive comparative analysis. Sci Rep 2024; 14:21863. [PMID: 39300118 DOI: 10.1038/s41598-024-70277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/14/2024] [Indexed: 09/22/2024] Open
Abstract
Accurate prediction of blood glucose level (BGL) has proven to be an effective way to help in type 1 diabetes management. The choice of input, along with the fundamental choice of model structure, is an existing challenge in BGL prediction. Investigating the performance of different data-driven time series forecasting approaches with different inputs for BGL prediction is beneficial in advancing BGL prediction performance. Limited work has been made in this regard, which has resulted in different conclusions. This paper performs a comprehensive investigation of different data-driven time series forecasting approaches using different inputs. To do so, BGL prediction is comparatively investigated from two perspectives; the model's approach and the model's input. First, we compare the performance of BGL prediction using different data-driven time series forecasting approaches, including classical time series forecasting, traditional machine learning, and deep neural networks. Secondly, for each prediction approach, univariate input, using BGL data only, is compared to a multivariate input, using data on carbohydrate intake, injected bolus insulin, and physical activity in addition to BGL data. The investigation is performed on two publicly available Ohio datasets. Regression-based and clinical-based metrics along with statistical analyses are performed for evaluation and comparison purposes. The outcomes show that the traditional machine learning model is the fastest model to train and has the best BGL prediction performance especially when using multivariate input. Also, results show that simply adding extra variables does not necessarily improve BGL prediction performance significantly, and data fusion approaches may be required to effectively leverage other variables' information.
Collapse
Affiliation(s)
- Hoda Nemat
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| | - Heydar Khadem
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Jackie Elliott
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
- Diabetes and Endocrine Centre, Northern General Hospital, Sheffield Teaching Hospitals, Sheffield, S5 7AU, UK
| | - Mohammed Benaissa
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| |
Collapse
|
3
|
Du Q, Wang D, Zhang Y. The role of artificial intelligence in disease prediction: using ensemble model to predict disease mellitus. Front Med (Lausanne) 2024; 11:1425305. [PMID: 39170045 PMCID: PMC11335546 DOI: 10.3389/fmed.2024.1425305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024] Open
Abstract
The traditional complications of diabetes are well known and continue to pose a considerable burden to millions of people with diabetes mellitus (DM). With the continuous accumulation of medical data and technological advances, artificial intelligence has shown great potential and advantages in the prediction, diagnosis, and treatment of DM. When DM is diagnosed, some subjective factors and diagnostic methods of doctors will have an impact on the diagnostic results, so the use of artificial intelligence for fast and effective early prediction of DM patients can provide decision-making support to doctors and give more accurate treatment services to patients in time, which is of great clinical medical significance and practical significance. In this paper, an adaptive Stacking ensemble model is proposed based on the theory of "error-ambiguity decomposition," which can adaptively select the base classifiers from the pre-selected models. The adaptive Stacking ensemble model proposed in this paper is compared with KNN, SVM, RF, LR, DT, GBDT, XGBoost, LightGBM, CatBoost, MLP and traditional Stacking ensemble models. The results showed that the adaptive Stacking ensemble model achieved the best performance in five evaluation metrics: accuracy, precision, recall, F1 value and AUC value, which were 0.7559, 0.7286, 0.8132, 0.7686 and 0.8436. The model can effectively predict DM patients and provide a reference value for the screening and diagnosis of clinical DM.
Collapse
Affiliation(s)
| | | | - Yimin Zhang
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Liu K, Li L, Ma Y, Jiang J, Liu Z, Ye Z, Liu S, Pu C, Chen C, Wan Y. Machine Learning Models for Blood Glucose Level Prediction in Patients With Diabetes Mellitus: Systematic Review and Network Meta-Analysis. JMIR Med Inform 2023; 11:e47833. [PMID: 37983072 PMCID: PMC10696506 DOI: 10.2196/47833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/21/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Machine learning (ML) models provide more choices to patients with diabetes mellitus (DM) to more properly manage blood glucose (BG) levels. However, because of numerous types of ML algorithms, choosing an appropriate model is vitally important. OBJECTIVE In a systematic review and network meta-analysis, this study aimed to comprehensively assess the performance of ML models in predicting BG levels. In addition, we assessed ML models used to detect and predict adverse BG (hypoglycemia) events by calculating pooled estimates of sensitivity and specificity. METHODS PubMed, Embase, Web of Science, and Institute of Electrical and Electronics Engineers Explore databases were systematically searched for studies on predicting BG levels and predicting or detecting adverse BG events using ML models, from inception to November 2022. Studies that assessed the performance of different ML models in predicting or detecting BG levels or adverse BG events of patients with DM were included. Studies with no derivation or performance metrics of ML models were excluded. The Quality Assessment of Diagnostic Accuracy Studies tool was applied to assess the quality of included studies. Primary outcomes were the relative ranking of ML models for predicting BG levels in different prediction horizons (PHs) and pooled estimates of the sensitivity and specificity of ML models in detecting or predicting adverse BG events. RESULTS In total, 46 eligible studies were included for meta-analysis. Regarding ML models for predicting BG levels, the means of the absolute root mean square error (RMSE) in a PH of 15, 30, 45, and 60 minutes were 18.88 (SD 19.71), 21.40 (SD 12.56), 21.27 (SD 5.17), and 30.01 (SD 7.23) mg/dL, respectively. The neural network model (NNM) showed the highest relative performance in different PHs. Furthermore, the pooled estimates of the positive likelihood ratio and the negative likelihood ratio of ML models were 8.3 (95% CI 5.7-12.0) and 0.31 (95% CI 0.22-0.44), respectively, for predicting hypoglycemia and 2.4 (95% CI 1.6-3.7) and 0.37 (95% CI 0.29-0.46), respectively, for detecting hypoglycemia. CONCLUSIONS Statistically significant high heterogeneity was detected in all subgroups, with different sources of heterogeneity. For predicting precise BG levels, the RMSE increases with a rise in the PH, and the NNM shows the highest relative performance among all the ML models. Meanwhile, current ML models have sufficient ability to predict adverse BG events, while their ability to detect adverse BG events needs to be enhanced. TRIAL REGISTRATION PROSPERO CRD42022375250; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=375250.
Collapse
Affiliation(s)
- Kui Liu
- Department of Health Service, Air Force Medical University, Xi'an, Shaanxi, China
| | - Linyi Li
- Department of Health Service, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yifei Ma
- Department of Health Service, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jun Jiang
- Department of Health Service, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhenhua Liu
- Department of Health Service, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zichen Ye
- Department of Health Service, Air Force Medical University, Xi'an, Shaanxi, China
| | - Shuang Liu
- Department of Health Service, Air Force Medical University, Xi'an, Shaanxi, China
| | - Chen Pu
- Department of Health Service, Air Force Medical University, Xi'an, Shaanxi, China
| | - Changsheng Chen
- Department of Health Statistics, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yi Wan
- Department of Health Service, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Jaloli M, Cescon M. Long-Term Prediction of Blood Glucose Levels in Type 1 Diabetes Using a CNN-LSTM-Based Deep Neural Network. J Diabetes Sci Technol 2023; 17:1590-1601. [PMID: 35466701 PMCID: PMC10658677 DOI: 10.1177/19322968221092785] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In this work, we leverage state-of-the-art deep learning-based algorithms for blood glucose (BG) forecasting in people with type 1 diabetes. METHODS We propose stacks of convolutional neural network and long short-term memory units to predict BG level for 30-, 60-, and 90-minute prediction horizon (PH), given historical glucose measurements, meal information, and insulin intakes. The evaluation was performed on two data sets, Replace-BG and DIAdvisor, representative of free-living conditions and in-hospital setting, respectively. RESULTS For 90-minute PH, our model obtained mean absolute error of 17.30 ± 2.07 and 18.23 ± 2.97 mg/dL, root mean square error of 23.45 ± 3.18 and 25.12 ± 4.65 mg/dL, coefficient of determination of 84.13 ± 4.22% and 82.34 ± 4.54%, and in terms of the continuous glucose-error grid analysis 94.71 ± 3.89% and 91.71 ± 4.32% accurate predictions, 1.81 ± 1.06% and 2.51 ± 0.86% benign errors, and 3.47 ± 1.12% and 5.78 ± 1.72% erroneous predictions, for Replace-BG and DIAdvisor data sets, respectively. CONCLUSION Our investigation demonstrated that our method achieved superior glucose forecasting compared with existing approaches in the literature, and thanks to its generalizability showed potential for real-life applications.
Collapse
Affiliation(s)
- Mehrad Jaloli
- Department of Mechanical Engineering, University of Houston, Houston, TX, USA
| | - Marzia Cescon
- Department of Mechanical Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
6
|
Rodríguez-Rodríguez I, Campo-Valera M, Rodríguez JV, Frisa-Rubio A. Constrained IoT-Based Machine Learning for Accurate Glycemia Forecasting in Type 1 Diabetes Patients. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23073665. [PMID: 37050725 PMCID: PMC10099355 DOI: 10.3390/s23073665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 06/12/2023]
Abstract
Individuals with diabetes mellitus type 1 (DM1) tend to check their blood sugar levels multiple times daily and utilize this information to predict their future glycemic levels. Based on these predictions, patients decide on the best approach to regulate their glucose levels with considerations such as insulin dosage and other related factors. Nevertheless, modern developments in Internet of Things (IoT) technology and innovative biomedical sensors have enabled the constant gathering of glucose level data using continuous glucose monitoring (CGM) in addition to other biomedical signals. With the use of machine learning (ML) algorithms, glycemic level patterns can be modeled, enabling accurate forecasting of this variable. Constrained devices have limited computational power, making it challenging to run complex machine learning algorithms directly on these devices. However, by leveraging edge computing, using lightweight machine learning algorithms, and performing preprocessing and feature extraction, it is possible to run machine learning algorithms on constrained devices despite these limitations. In this paper we test the burdens of some constrained IoT devices, probing that it is feasible to locally predict glycemia using a smartphone, up to 45 min in advance and with acceptable accuracy using random forest.
Collapse
Affiliation(s)
| | - María Campo-Valera
- Departamento de Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain
| | - José-Víctor Rodríguez
- Departamento de Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain
| | - Alberto Frisa-Rubio
- CIRCE—Centro Tecnológico (Research Centre for Energy Resources and Consumption), Av. Ranillas, Edf. Dinamiza 3D, 50018 Zaragoza, Spain
| |
Collapse
|
7
|
Afsaneh E, Sharifdini A, Ghazzaghi H, Ghobadi MZ. Recent applications of machine learning and deep learning models in the prediction, diagnosis, and management of diabetes: a comprehensive review. Diabetol Metab Syndr 2022; 14:196. [PMID: 36572938 PMCID: PMC9793536 DOI: 10.1186/s13098-022-00969-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Diabetes as a metabolic illness can be characterized by increased amounts of blood glucose. This abnormal increase can lead to critical detriment to the other organs such as the kidneys, eyes, heart, nerves, and blood vessels. Therefore, its prediction, prognosis, and management are essential to prevent harmful effects and also recommend more useful treatments. For these goals, machine learning algorithms have found considerable attention and have been developed successfully. This review surveys the recently proposed machine learning (ML) and deep learning (DL) models for the objectives mentioned earlier. The reported results disclose that the ML and DL algorithms are promising approaches for controlling blood glucose and diabetes. However, they should be improved and employed in large datasets to affirm their applicability.
Collapse
|
8
|
Aljihmani L, Kerdjidj O, Petrovski G, Erraguntla M, Sasangohar F, Mehta RK, Qaraqe K. Hand tremor-based hypoglycemia detection and prediction in adolescents with type 1 diabetes. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Kalia S, Saarela O, Chen T, O'Neill B, Meaney C, Gronsbell J, Sejdic E, Escobar M, Aliarzadeh B, Moineddin R, Pow C, Sullivan F, Greiver M. Marginal structural models using calibrated weights with SuperLearner: application to type II diabetes cohort. IEEE J Biomed Health Inform 2022; 26:4197-4206. [PMID: 35588417 DOI: 10.1109/jbhi.2022.3175862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As different scientific disciplines begin to converge on machine learning for causal inference, we demonstrate the application of machine learning algorithms in the context of longitudinal causal estimation using electronic health records. Our aim is to formulate a marginal structural model for estimating diabetes care provisions in which we envisioned hypothetical (i.e. counterfactual) dynamic treatment regimes using a combination of drug therapies to manage diabetes: metformin, sulfonylurea and SGLT-2i. The binary outcome of diabetes care provisions was defined using a composite measure of chronic disease prevention and screening elements [27] including (i) primary care visit, (ii) blood pressure, (iii) weight, (iv) hemoglobin A1c, (v) lipid, (vi) ACR, (vii) eGFR and (viii) statin medication. We used several statistical learning algorithms to describe causal relationships between the prescription of three common classes of diabetes medications and quality of diabetes care using the electronic health records contained in National Diabetes Repository. In particular, we generated an ensemble of statistical learning algorithms using the SuperLearner framework based on the following base learners: (i) least absolute shrinkage and selection operator, (ii) ridge regression, (iii) elastic net, (iv) random forest, (v) gradient boosting machines, and (vi) neural network. Each statistical learning algorithm was fitted using the pseudo-population generated from the marginalization of the time-dependent confounding process. Covariate balance was assessed using the longitudinal (i.e. cumulative-time product) stabilized weights with calibrated restrictions. Our results indicated that the treatment drop-in cohorts (with respect to metformin, sulfonylurea and SGLT-2i) may have improved diabetes care provisions in relation to treatment naive (i.e. no treatment) cohort. As a clinical utility, we hope that this article will facilitate discussions around the prevention of adverse chronic outcomes associated with type II diabetes through the improvement of diabetes care provisions in primary care.
Collapse
|
10
|
Morgan K, Zhou SM, Hill R, Lyons RA, Paranjothy S, Brophy ST. Identifying Prenatal and Postnatal Determinants of Infant Growth: A Structural Equation Modelling Based Cohort Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910265. [PMID: 34639581 PMCID: PMC8507693 DOI: 10.3390/ijerph181910265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022]
Abstract
Background: The growth and maturation of infants reflect their overall health and nutritional status. The purpose of this study is to examine the associations of prenatal and early postnatal factors with infant growth (IG). Methods: A data-driven model was constructed by structural equation modelling to examine the relationships between pre- and early postnatal environmental factors and IG at age 12 months. The IG was a latent variable created from infant weight and waist circumference. Data were obtained on 274 mother–child pairs during pregnancy and the postnatal periods. Results: Maternal pre-pregnancy BMI emerged as an important predictor of IG with both direct and indirect (mediated through infant birth weight) effects. Infants who gained more weight from birth to 6 months and consumed starchy foods daily at age 12 months, were more likely to be larger by age 12 months. Infant physical activity (PA) levels also emerged as a determinant. The constructed model provided a reasonable fit (χ2 (11) = 21.5, p < 0.05; RMSEA = 0.07; CFI = 0.94; SRMR = 0.05) to the data with significant pathways for all examined variables. Conclusion: Promoting healthy weight amongst women of child bearing age is important in preventing childhood obesity, and increasing daily infant PA is as important as a healthy infant diet.
Collapse
Affiliation(s)
- Kelly Morgan
- School of Social Sciences, Cardiff University, Cardiff CF14 4YS, UK;
| | - Shang-Ming Zhou
- Centre for Health Technology, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
- Correspondence:
| | - Rebecca Hill
- WHO Collaborating Centre on Investment for Health and Well-Being, Public Health Wales, Cardiff CF10 4BZ, UK;
| | - Ronan A. Lyons
- Health Data Research UK, Institute of Life Science, Swansea University, Swansea SA2 8PP, UK; (R.A.L.); (S.T.B.)
| | - Shantini Paranjothy
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Sinead T. Brophy
- Health Data Research UK, Institute of Life Science, Swansea University, Swansea SA2 8PP, UK; (R.A.L.); (S.T.B.)
| |
Collapse
|
11
|
Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models. SENSORS 2021; 21:s21134620. [PMID: 34283153 PMCID: PMC8271927 DOI: 10.3390/s21134620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Spatial susceptible landslide prediction is the one of the most challenging research areas which essentially concerns the safety of inhabitants. The novel geographic information web (GIW) application is proposed for dynamically predicting landslide risk in Chiang Rai, Thailand. The automated GIW system is coordinated between machine learning technologies, web technologies, and application programming interfaces (APIs). The new bidirectional long short-term memory (Bi-LSTM) algorithm is presented to forecast landslides. The proposed algorithm consists of 3 major steps, the first of which is the construction of a landslide dataset by using Quantum GIS (QGIS). The second step is to generate the landslide-risk model based on machine learning approaches. Finally, the automated landslide-risk visualization illustrates the likelihood of landslide via Google Maps on the website. Four static factors are considered for landslide-risk prediction, namely, land cover, soil properties, elevation and slope, and a single dynamic factor i.e., precipitation. Data are collected to construct a geospatial landslide database which comprises three historical landslide locations—Phu Chifa at Thoeng District, Ban Pha Duea at Mae Salong Nai, and Mai Salong Nok in Mae Fa Luang District, Chiang Rai, Thailand. Data collection is achieved using QGIS software to interpolate contour, elevation, slope degree and land cover from the Google satellite images, aerial and site survey photographs while the physiographic and rock type are on-site surveyed by experts. The state-of-the-art machine learning models have been trained i.e., linear regression (LR), artificial neural network (ANN), LSTM, and Bi-LSTM. Ablation studies have been conducted to determine the optimal parameters setting for each model. An enhancement method based on two-stage classifications has been presented to improve the landslide prediction of LSTM and Bi-LSTM models. The landslide-risk prediction performances of these models are subsequently evaluated using real-time dataset and it is shown that Bi-LSTM with Random Forest (Bi-LSTM-RF) yields the best prediction performance. Bi-LSTM-RF model has improved the landslide-risk predicting performance over LR, ANNs, LSTM, and Bi-LSTM in terms of the area under the receiver characteristic operator (AUC) scores by 0.42, 0.27, 0.46, and 0.47, respectively. Finally, an automated web GIS has been developed and it consists of software components including the trained models, rainfall API, Google API, and geodatabase. All components have been interfaced together via JavaScript and Node.js tool.
Collapse
|
12
|
Yang B, Gu X, Gao S, Xu D. Classification accuracy and functional difference prediction in different brain regions of drug abuser prefrontal lobe basing on machine-learning. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:5692-5706. [PMID: 34517508 DOI: 10.3934/mbe.2021288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Taking different types of addictive drugs such as methamphetamine, heroin, and mixed drugs causes brain functional Changes. Based on the prefrontal functional near-infrared spectroscopy, this study was designed with an experimental paradigm that included the induction of resting and drug addiction cravings. Hemoglobin concentrations of 30 drug users (10 on methamphetamine, 10 on heroin, and 10 on mixed type) were collected. For these three types of individuals, the convolutional neural networks (CNN) was designed to classify eight Brodmann areas and the entire prefrontal area, and the average accuracy of the three classifications on each functional area was obtained. As a result, the classification accuracy was lower on the left side than on the right in the dorsolateral prefrontal cortex (DLPFC) of the drug users, while it was higher on the left than on the right in the ventrolateral prefrontal cortex (VLPFC), frontopolar prefrontal cortex (FPC), and orbitofrontal cortex (OFC). Then the differences in eight functional areas between the three types of individuals were statistically analyzed, and results showed significant differences in the right VLPFC and right OFC.
Collapse
Affiliation(s)
- Banghua Yang
- School of Mechanical and Electrical Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Xuelin Gu
- School of Mechanical and Electrical Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Shouwei Gao
- School of Mechanical and Electrical Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Ding Xu
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai 200080, China
| |
Collapse
|