1
|
Han L, Dong N, Yang J, Hu B. Health benefits and digestive properties of Ca 2+-regulated sodium alginate from an endogenous method in buckwheat noodles. Int J Biol Macromol 2025:144451. [PMID: 40403807 DOI: 10.1016/j.ijbiomac.2025.144451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 05/08/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
The present study investigated the impact of Ca2+ regulated sodium alginate gelation on buckwheat noodle digestion, as well as its physiological and biochemical effects on rat. An endogenous method was employed for noodle preparation, and the rate of starch hydrolysis was evaluated. Buckwheat noodles prepared using this approach exhibited significantly reduced rates of starch digestion compared to conventional methods. Increased concentrations of sodium alginate and Ca2+ led to the formation of dense gel networks that promoted weight gain in diabetic rats while simultaneously lowering postprandial blood glucose levels and improving glucose intolerance and abnormal insulin tolerance. Moreover, these gel networks enhanced liver glycogen synthesis by increasing SOD and CAT activities while reducing the levels of ALT and MDA, thereby mitigating morphological damage in the liver. Buckwheat noodles prepared using this endogenous method were found to potentially exhibit hypoglycemic effects and mitigate complications associated with type 2 diabetes.
Collapse
Affiliation(s)
- Lingyu Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Nuo Dong
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Jixin Yang
- Faculty of Social and Life Sciences, Wrexham University, Plas Coch, Mold Road, Wrexham LL11 2AW, United Kingdom
| | - Bing Hu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China.
| |
Collapse
|
2
|
Pei J, Kanwal S, Sivaramakrishnan R, Katelakha K. Therapeutic potential of microalgae-derived natural compounds in diabetic wound healing: A comprehensive review. Heliyon 2025; 11:e42723. [PMID: 40040991 PMCID: PMC11876918 DOI: 10.1016/j.heliyon.2025.e42723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/06/2025] Open
Abstract
A variety of cell types and chemical systems are known to interact throughout the complex process of wound healing. In addition to being very uncomfortable for patients, wounds that do not heal properly or become chronic can place a heavy burden on society. The creation of novel treatment approaches can expedite the healing process, reduce the societal burden, and improve patient outcomes. Due to advancements in the field of biomedical science, microalgae have significant potential for use in diabetic wound healing and other wound healing applications. This review delves into the physiological process of wound healing, the use of microalgae in wound healing, and a detailed explanation of the wound healing roles of various microalgal originated bioactive compounds including alginate, pigments, fatty acids, proteins, polysaccharides, flavonoids and phenols. The study discusses the efficacy of photosynthetic hydrogels in drugs and oxygen delivery to the wounded area that is crucial for promoting a good healing process, as well as highlights the drawbacks and challenges involved in using microalgae for wound healing. Given the current state of the art in utilizing microalgae for wound care, this review provides new perspectives for further research, along with insightful advice and innovative suggestions for academics engaged in this area.
Collapse
Affiliation(s)
- Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Simab Kanwal
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Kasinee Katelakha
- The Halal Science Center, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Akhter MH, Al-Keridis LA, Saeed M, Khalilullah H, Rab SO, Aljadaan AM, Rahman MA, Jaremko M, Emwas AH, Ahmad S, Alam N, Ali MS, Khan G, Afzal O. Enhanced drug delivery and wound healing potential of berberine-loaded chitosan-alginate nanocomposite gel: characterization and in vivo assessment. Front Public Health 2023; 11:1238961. [PMID: 38229669 PMCID: PMC10790630 DOI: 10.3389/fpubh.2023.1238961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024] Open
Abstract
Berberine-encapsulated polyelectrolyte nanocomposite (BR-PolyET-NC) gel was developed as a long-acting improved wound healing therapy. BR-PolyET-NC was developed using an ionic gelation/complexation method and thereafter loaded into Carbopol gel. Formulation was optimized using Design-Expert® software implementing a three-level, three-factor Box Behnken design (BBD). The concentrations of polymers, namely, chitosan and alginate, and calcium chloride were investigated based on particle size and %EE. Moreover, formulation characterized in vitro for biopharmaceutical performances and their wound healing potency was evaluated in vivo in adult BALB/c mice. The particle distribution analysis showed a nanocomposite size of 71 ± 3.5 nm, polydispersity index (PDI) of 0.45, ζ-potential of +22 mV, BR entrapment of 91 ± 1.6%, and loading efficiency of 12.5 ± 0.91%. Percentage drug release was recorded as 89.50 ± 6.9% with pH 6.8, thereby simulating the wound microenvironment. The in vitro investigation of the nanocomposite gel revealed uniform consistency, well spreadability, and extrudability, which are ideal for topical wound use. The analytical estimation executed using FT-IR, DSC, and X-ray diffraction (XRD) indicated successful formulation with no drug excipients and without the amorphous state. The colony count of microbes was greatly reduced in the BR-PolyET-NC treated group on the 15th day from up to 6 CFU compared to 20 CFU observed in the BR gel treated group. The numbers of monocytes and lymphocytes counts were significantly reduced following healing progression, which reached to a peak level and vanished on the 15th day. The observed experimental characterization and in vivo study indicated the effectiveness of the developed BR-PolyET-NC gel toward wound closure and healing process, and it was found that >99% of the wound closed by 15th day, stimulated via various anti-inflammatory and angiogenic factors.
Collapse
Affiliation(s)
- Md Habban Akhter
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun, India
| | - Lamya Ahmad Al-Keridis
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy Qassim University, Unaizah, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Adel M. Aljadaan
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
- University of Nottingham Graduate Entry Medicine, Royal Derby Hospital, Nottingham, United Kingdom
| | - Mohammad Akhlaquer Rahman
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sarfaraz Ahmad
- Department of Clinical Pharmacy Practice, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Nawazish Alam
- Department of Clinical Pharmacy Practice, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Gyas Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
4
|
Devi G.V Y, Nagendra AH, Shenoy P S, Chatterjee K, Venkatesan J. Isolation and purification of fucoidan from Sargassum ilicifolium: Osteogenic differentiation potential in mesenchymal stem cells for bone tissue engineering. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
5
|
PATRICK MELONNEY, WAN MOHD ZOHDI WANNAJWA, ABD MUID SUHAILA, OMAR EFFAT. ALPHA-MANGOSTIN (Garcinia mangostana Linn.) AND ITS POTENTIAL APPLICATION IN MITIGATING CHRONIC WOUND HEALING. MALAYSIAN APPLIED BIOLOGY 2022; 51:1-8. [DOI: 10.55230/mabjournal.v51i2.2227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Wound healing is a complex and dynamic cellular process to restore tissue function. Current treatments for chronic wounds especially diabetic ulcers are expensive, with adverse effects. Recently, numerous researchers have focused on the potential effect of natural products on wound healing. One of them is mangosteen (Garcinia mangostana Linn). It is a well-known tropical fruit that is native to Southeast Asia. The active ingredient of mangosteen pericarp contains xanthones that exhibit a wide range of pharmacological activities, including anti-inflammatory and anti-bacterial properties which are the core elements needed in wound healing. Firstly, this review discusses the concepts of abnormal and normal wound healing mechanisms. Then an in depth observation of the pharmacological activities of mangosteen and its derivatives was presented to study their potentially beneficial applications in the treatment of chronic wound healing which is a contemporary medical issue.
Collapse
|
6
|
Aulanni’am A, Raissa R, Riawan W, Wuragil DK, Permata FS, Beltran MAG. Epidermal Stem Cell in Wound Healing of Gliricidia sepium Leaves from Indonesia and the Philippines in Rats (Rattus norvegicus). Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM: This study intended to investigate the regenerate wound, due to the ointment therapy containing Gliricidia sepium leaves that has potential-induced epidermal stem cells producing. It determined its effect on the expression of transforming growth factor-β1 (TGF-β1), Smad-3, β-catenin, LGR-6.
MATERIALS AND METHODS: About 16 Wistar male rats aged approximately 2 months (150–200g) were used and were divided into four treatment groups (T1, positive control; T2, negative control; T3, wounds treated with G. sepium from Indonesia; and T4, wounds treated with G. sepium from the Philippines). The treatment of ointment was applied to the wound for 3 days. The expression of TGF-β1, Smad-3, β-catenin, and LGR-6 was observed by immunohistochemistry staining.
RESULTS: G. sepium leaves significantly (p < 0.05) upregulated the expression of TGF-β1, Smad-3, β-catenin, and LGR-6 in the group treated with Indonesian G. sepium leaves were higher than that in the group treated with G. sepium leaves from the Philippines.
CONCLUSIONS: Both leaves Varian contain flavonoids, saponins, and tannins, which act as producing epidermal stem cell agents to enhance the wound healing process. It can be concluded that both Gl. sepium Varian Indonesia and the Philippines have a potential effect on wound healing.
Collapse
|
7
|
Winarni D, Husna FN, Syadzha MF, Susilo RJK, Hayaza S, Ansori ANM, Alamsjah MA, Amin MNG, Wulandari PAC, Pudjiastuti P, Awang K. Topical Administration Effect of Sargassum duplicatum and Garcinia mangostana Extracts Combination on Open Wound Healing Process in Diabetic Mice. SCIENTIFICA 2022; 2022:9700794. [PMID: 35186344 PMCID: PMC8850046 DOI: 10.1155/2022/9700794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/20/2021] [Accepted: 01/13/2022] [Indexed: 05/14/2023]
Abstract
This research aimed to determine the topical administration effect of the combination of Sargassum duplicatum and Garcinia mangostana extracts to ameliorate diabetic open wound healing. The study used 24 adult males of Mus musculus (BALB/c strain, 3-4 months, 30-40 g). They were divided into normal control groups (KN) and diabetic groups. The diabetic group was streptozotocin-induced and divided further into three treatment groups: the diabetic control group (KD), the S. duplicatum treatment group (PA), and the combination of S. duplicatum and G. mangostana treatment group (PAM). The dose of treatment was 50 mg/kg of body weight. Each group was divided into three treatment durations, which were 3 days, 7 days, and 14 days. The wound healing process was determined by wound width, the number of neutrophils, macrophages, fibroblasts, fibrocytes, and collagen density. Histological observation showed that the topical administration of combination extracts increased the re-epithelialization of the wounded area, fibroblasts, fibrocytes, and collagen synthesis. The topical administration of combination extracts also decreased the number of neutrophils and macrophages. This study concluded that the topical administration of the combination of S. duplicatum and G. mangostana extracts improved the open wound healing process in diabetic mice.
Collapse
Affiliation(s)
- Dwi Winarni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Fitria Nikmatul Husna
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Muhammad Farraz Syadzha
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Suhailah Hayaza
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Arif Nur Muhammad Ansori
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mochammad Amin Alamsjah
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Muhamad Nur Ghoyatul Amin
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Pratiwi Pudjiastuti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Khalijah Awang
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|