1
|
Popescu M, Radivojevic K, Trasca DM, Varut RM, Enache I, Osman A. Natural Antidiabetic Agents: Insights into Ericaceae-Derived Phenolics and Their Role in Metabolic and Oxidative Modulation in Diabetes. Pharmaceuticals (Basel) 2025; 18:682. [PMID: 40430501 PMCID: PMC12115297 DOI: 10.3390/ph18050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/01/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic disease with a growing prevalence worldwide, leading to severe health complications. Current treatment relies on antidiabetic medications, which may have adverse effects, highlighting the need for alternative approaches. Natural compounds, such as phenolic compounds, have shown promise in glucose modulation. The Ericaceae family includes several plants with potential antidiabetic properties. This review examines the pathophysiology of diabetes, chemical composition, and specific Ericaceae species that have demonstrated antidiabetic effects. Studies indicate that Vaccinium species and other Ericaceae plants can lower blood glucose levels and improve insulin sensitivity through mechanisms such as enzyme inhibition. These findings suggest that Ericaceae plants may serve as complementary strategies for diabetes management.
Collapse
Affiliation(s)
- Mihaela Popescu
- Department of Endocrinology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Kristina Radivojevic
- Research Methodology Department, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Diana-Maria Trasca
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Renata Maria Varut
- Research Methodology Department, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Irina Enache
- Discipline of Anatomy, Department of Anatomy, University of Medicine and Pharmacy, 200349 Craiova, Romania; (I.E.); (A.O.)
| | - Andrei Osman
- Discipline of Anatomy, Department of Anatomy, University of Medicine and Pharmacy, 200349 Craiova, Romania; (I.E.); (A.O.)
| |
Collapse
|
2
|
Novi S, Caponigro V, Miranda MR, Aquino G, Carri MD, Salviati E, Franceschelli S, Sardo C, Basilicata MG, Vestuto V, Tecce MF, Marini F, Pepe G, Campiglia P, Manfra M. Metabolomics insights into the protective molecular mechanism of Vaccinium myrtillus against oxidative stress in intestinal cells. Sci Rep 2025; 15:8643. [PMID: 40082563 PMCID: PMC11906781 DOI: 10.1038/s41598-025-93722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025] Open
Abstract
Blueberry (Vaccinium myrtillus L.) is a rich source of secondary metabolites known for their potent antioxidant, anti-inflammatory, and cytoprotective properties. These compounds are essential in neutralizing reactive oxygen species (ROS), which are implicated in oxidative stress-related diseases. In this study, we induced oxidative stress in IEC-6 small intestine cells using hydrogen peroxide (H2O2), creating a cellular model to investigate the biochemical response. The obtained results showed that a blueberry extract (BLUBE) significantly exhibited strong antioxidant capacity, as evidenced by DPPH, FRAP and ABTS in vitro tests. Additionally, BLUBE effectively inhibited the release of reactive species in cells and enhanced cytoprotective response, as indicated by improved wound healing and clonogenic potential reduction of stress fibers rearrangement and apoptosis. Metabolomic analysis, specifically High-Resolution Mass Spectrometry (HR-MS), was employed to elucidate the metabolic alterations associated with the protective activity of BLUBE against oxidative stress in IEC-6 cells. Chemometric approaches were applied to preprocess the data, explore variability, and identify systematic biases, ensuring the removal of batch effects and other experimental artifacts. A Partial Least Squares Discriminant Analysis classification model confirmed clear group stratifications with high accuracy (98.75 ± 2.31%), sensitivity, and specificity, aiding in the identification of significant metabolites for pathway enrichment analysis. Key metabolic pathways, including sphingolipid metabolism, taurine and hypotaurine metabolism, glycerophospholipid metabolism, and cysteine and methionine metabolism, were significantly modulated, supporting the biochemical basis of BLUBE's protective effects. In fact, BLUBE was able to partially reverse the downregulation of these pathways, effectively reducing oxidative stress and promoting cell survival. This study highlights the power of HR-MS-based metabolomics in uncovering the mechanisms of nutraceuticals and emphasizes the potential of BLUBE as a protective agent for oxidative stress-related diseases. It also underscores the growing significance of metabolomics in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Sara Novi
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
| | - Vicky Caponigro
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
- Drug Discovery and Development, University of Salerno, 84084, Fisciano, Salerno, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Giovanna Aquino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
- Drug Discovery and Development, University of Salerno, 84084, Fisciano, Salerno, Italy
| | - Matteo Delli Carri
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
- Drug Discovery and Development, University of Salerno, 84084, Fisciano, Salerno, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
| | - Silvia Franceschelli
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
| | - Carla Sardo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy.
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
| | - Federico Marini
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084, Fisciano, Salerno, Italy
| | - Michele Manfra
- Department Health Science, University of Basilicata, Viale dell'Ateneo Lucano, 85100, Potenza, Italy
| |
Collapse
|
3
|
Carpio AR, Talubo ND, Tsai PW, Chen BY, Tayo LL. Berries as Nature's Therapeutics: Exploring the Potential of Vaccinium Metabolites in Gastric Cancer Treatment Through Computational Insights. Life (Basel) 2025; 15:406. [PMID: 40141751 PMCID: PMC11944152 DOI: 10.3390/life15030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Berries from the Vaccinium genus, known for their rich array of bioactive metabolites, are recognized for their antioxidant, anti-inflammatory, and anticancer properties. These compounds, including anthocyanins, flavonoids, and phenolic acids, have attracted significant attention for their potential health benefits, particularly in cancer prevention and treatment. Gastric cancer (GC), a leading cause of cancer-related deaths worldwide, remains challenging to treat, especially in its advanced stages. This study investigates the therapeutic potential of Vaccinium species in GC treatment using computational methods. RNA sequencing revealed upregulated genes associated with GC, while network pharmacology and molecular docking approaches identified strong interactions between cyanidin 3-O-glucoside (C3G), a key bioactive metabolite. Furthermore, molecular dynamics simulations of the HSP90AA1-C3G complex demonstrated stable binding and structural integrity, suggesting that C3G may inhibit HSP90AA1, a protein involved in cancer progression. These findings highlight the therapeutic potential of Vaccinium metabolites, offering a novel approach to GC treatment by targeting key molecular pathways. This research provides valuable insights into the role of berries as natural therapeutics, supporting their integration into future gastric cancer treatment strategies.
Collapse
Affiliation(s)
- Angelica Rachel Carpio
- School of Chemical, Biological, and Materials Engineering and Sciences, School of Graduate Studies, Mapúa University, Manila 1002, Philippines; (A.R.C.); (N.D.T.)
| | - Nicholas Dale Talubo
- School of Chemical, Biological, and Materials Engineering and Sciences, School of Graduate Studies, Mapúa University, Manila 1002, Philippines; (A.R.C.); (N.D.T.)
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan;
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Lemmuel L. Tayo
- Department of Biology, School of Health Sciences, Mapúa University, Makati 1200, Philippines
| |
Collapse
|
4
|
Barbosa Júnior MR, Santos RGD, Sales LDA, Vargas RBS, Deltsidis A, Oliveira LPD. Image-based and ML-driven analysis for assessing blueberry fruit quality. Heliyon 2025; 11:e42288. [PMID: 39968138 PMCID: PMC11834081 DOI: 10.1016/j.heliyon.2025.e42288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
The assessment of blueberry fruit quality is traditionally conducted through laboratory equipment. Despite its high accuracy, this method remains destructive, labor-intensive, time-consuming, and costly. Consequently, there is a pressing need for innovative solutions such as image-based and artificial intelligence (AI)-driven analysis. To address these limitations, this study aimed to analyze whether an approach based on mobile image-based analysis combined with machine learning (ML) algorithms could develop a non-destructive framework for evaluating blueberry fruit quality, specifically focusing on total soluble solids (TSS) and firmness. Firstly, we collected numerous blueberry samples during the maturity stage to construct a comprehensive dataset. These samples were meticulously analyzed in a laboratory for diameter, TSS, firmness, and color. Simultaneously, RGB images were captured using a mobile device. These images were processed to extract spectral bands (red, green, and blue). Eight ML algorithms were employed to develop predictive models capable of predicting the qualitative parameters of the blueberries. Initially, correlation analysis demonstrated that RGB images suggestively contribute to fruit quality assessment (r < 0.41). However, the integration of ML algorithms significantly enhanced the predictive accuracy of these models (R2 = 0.71-0.99, MAE = 0.003-0.28, and RMSE = 0.004-0.31). This innovative approach differs from existing methods by providing a non-destructive, cost-effective, and efficient alternative to assess blueberry fruit quality. Our findings, therefore, confirm the applicability of mobile images for supporting high-quality blueberry harvesting. These advancements can potentially reduce labor costs, increase yield quality, and support advancements in precision agriculture.
Collapse
Affiliation(s)
| | | | | | | | - Angelos Deltsidis
- Department of Horticulture, University of Georgia, Tifton, GA, 31793, USA
| | | |
Collapse
|
5
|
Mercado MI, Lizarraga E, Rubis RA, Genta SB, Habib NC. Contribution to the knowledge of the anatomy, histochemistry, and phenolic composition of leaf and stems of bilberry (Vaccinium myrtillus L.) cultivated in Tucumán, Argentina. PROTOPLASMA 2025; 262:117-131. [PMID: 39223345 DOI: 10.1007/s00709-024-01981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The Vaccinium genus, with over 200 species, is prized for its fruits and traditional medicinal uses. Introduced to South America in the 1980s, it has become a significant crop, particularly in Tucumán, Argentina. Southern highbush blueberries are the most cultivated. Recent research suggests that the leaves and stems of these species contain higher levels of beneficial compounds compared to fruits. This study explores the potential of V. myrtillus L. leaves and stems, typically discarded as agricultural waste, as sources of bioactive compounds. It provides the first detailed analysis of their anatomy and chemical composition, revealing high levels of phenolic compounds with antioxidant properties. Leaf extracts show stronger antioxidant activity compared to stems. Toxicity tests on Artemia salina indicate their safety for further exploration. These findings suggest that V. myrtillus L. waste by-products could be valuable as sources of bioactive compounds, promoting their application in pharmaceuticals, food, or cosmetics industries.
Collapse
Affiliation(s)
- María Inés Mercado
- Instituto de Morfología Vegetal, Área Botánica, Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, T4000JFE, Argentina
| | - Emilio Lizarraga
- Instituto de Fisiología Animal, Fundación Miguel Lillo and Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán, T4000JFE, Argentina
| | - Roxana Alejandra Rubis
- Instituto de Biología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chacabuco 461, (T4000INI) San Miguel de Tucumán, Tucumán, Argentina
| | - Susana Beatriz Genta
- Instituto de Biología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chacabuco 461, (T4000INI) San Miguel de Tucumán, Tucumán, Argentina
| | - Natalia Cecilia Habib
- Instituto de Biología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chacabuco 461, (T4000INI) San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
6
|
Lee DH, Sim WH, Park CY, Kim DH, Kim JH, Kim HM, Che SH, Park WG, Na CS, Shim S. The complete mitochondrial genome of Vaccinium oldhamii Miquel, a plant of the Ericaceae family. Mitochondrial DNA B Resour 2024; 9:1683-1687. [PMID: 39687442 PMCID: PMC11648146 DOI: 10.1080/23802359.2024.2438293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Vaccinium oldhamii Miquel 1866 is a deciduous shrub native to Northeast Asia, including Korea, China, and Japan. Its polyphenol-rich edible berries may aid in managing chronic diseases. Despite its importance, the mitogenome of this species remains understudied. This study assembled the complete mitogenome, consisting of 626,941 bp with 45.34% GC content, using NOVOPlasty and Illumina sequencing. The genome includes 38 protein-coding genes, 24 tRNA genes, and three rRNA genes. Phylogenetic analysis revealed a close relationship with V. macrocarpon. This mitogenome provides a valuable resource for phylogenomic studies and insights into evolutionary relationships within the Vaccinium genus and the Ericales order. Vaccinium oldhamii Miquel 1866 is a deciduous shrub in the Ericales and the Ericaceae and is native to Northeast Asia including Korea, China, and Japan. Particular emphasis has been placed on the edible berries of Vaccinium species and their use as dietary supplements. Specifically, the edible berries of V. oldhamii contain high levels of polyphenols, which may aid in preventing and managing chronic diseases. However, the mitogenome sequence of this species, a valuable resource for studying evolutionary relationships and genetic diversity within the Vaccinium genus, has not been thoroughly investigated. In this study, the complete mitochondrial genome sequence of V. oldhamii was assembled into 626,941 bp circular nucleotides with a GC content of 45.34% using NOVOPlasty and Illumina sequencing data. The comprehensive annotation for mitogenome of V. oldhamii revealed that the mitogenome comprises 38 known protein-coding genes, 24 tRNA genes, and three rRNA genes. Phylogenetic analysis using ML method showed that this species is closely related to the V. macrocarpon. This newly sequenced mitochondrial genome offers a valuable resource for phylogenomic analysis and will enhance our understanding of evolutionary relationships within the Ericales order and/or the Vaccinium genus.
Collapse
Affiliation(s)
- Da Hyun Lee
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
- Forest Bioresource Deparment, Baekdudaegan National Arboretum, Bonghwa-gun, Republic of Korea
| | - Woo Hyun Sim
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Chung Youl Park
- Rural Development Administration, National Institute of Horticultural and Herbal Science, Wanju, Republic of Korea
| | - Do Hyun Kim
- Forest Bioresource Deparment, Baekdudaegan National Arboretum, Bonghwa-gun, Republic of Korea
| | - Jun Hyeok Kim
- Forest Bioresource Deparment, Baekdudaegan National Arboretum, Bonghwa-gun, Republic of Korea
| | - Hyeon Min Kim
- Forest Bioresource Deparment, Baekdudaegan National Arboretum, Bonghwa-gun, Republic of Korea
| | - Sang Hoon Che
- Forest Bioresource Deparment, Baekdudaegan National Arboretum, Bonghwa-gun, Republic of Korea
| | - Wan Geun Park
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Chae Sun Na
- Forest Bioresource Deparment, Baekdudaegan National Arboretum, Bonghwa-gun, Republic of Korea
| | - Sangrea Shim
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
7
|
Faleva AV, Ulyanovskii NV, Onuchina AA, Kosyakov DS. Polyphenolic Antioxidants in Bilberry Stems and Leaves: A Non-Targeted Analysis by Two-Dimensional NMR Spectroscopy and Liquid Chromatography-High-Resolution Mass Spectrometry. Antioxidants (Basel) 2024; 13:1409. [PMID: 39594551 PMCID: PMC11591115 DOI: 10.3390/antiox13111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Compared with those of berries, the stems and leaves of the genus Vaccinium are important and underestimated sources of polyphenols with high antioxidant activity. In the course of this work, aqueous methanol extracts of the aerial parts of common bilberry (Vaccinium myrtillus L.) and bog bilberry (Vaccinium uliginosum L.) were studied to analyze the component compositions of their biologically active polyphenolic compounds. The aqueous methanol fractions of the stems and leaves of the studied samples contained 8.7 and 4.6% extractives, respectively, and were comparable in total polyphenol content, but presented significant differences in antioxidant activity. The identification of polyphenolic compounds was carried out via the following two-stage analytical procedure: (1) non-targeted screening of dominant structures via the 2D NMR method and (2) analysis of HPLC-HRMS data via the scanning of precursor ions for a specific ion. A total of 56 phenolic compounds were identified, including the glycosides quercetin, proanthocyanidins, and catechins, as well as various conjugates of caffeic and p-coumaric acids, including iridoids. Some of the latter, such as caffeoyl and p-coumaroyl hydroxydihydromonotropein, as well as a number of lignan glycosides, were described for the first time in V. uliginósum and V. myrtillus.
Collapse
Affiliation(s)
- Anna V. Faleva
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia; (N.V.U.); (A.A.O.); (D.S.K.)
| | | | | | | |
Collapse
|
8
|
Zhou P, Li F, Zhang Q, Zhang M. Complete Mitogenome Assembly and Comparative Analysis of Vaccinium bracteatum (Ericaceae), a Rich Source of Health-Promoting Molecules. Int J Mol Sci 2024; 25:12027. [PMID: 39596097 PMCID: PMC11593731 DOI: 10.3390/ijms252212027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Vaccinium bracteatum is a valuable plant used both as food and medicine in China, but low production limits the development of its industry. As such, it is important to develop genetic resources for the high-value species for preservation of wild populations and utilization. The complete chloroplast and nuclear genomes have already been available; however, its mitogenome has not yet been characterized. Here, the V. bracteatum mitogenome was assembled using HiFi reads, and a comparative analysis was conducted. The mitogenome was a circular sequence of 708,384 bp with a GC content of 45.28%, in which 67 genes were annotated, including 36 protein-coding genes, 26 tRNA genes, 3 rRNA genes, and 2 pseudogenes. Overall, 370 dispersed repeats, 161 simple repeats, and 42 tandem repeats were identified, and 360 RNA editing sites were predicted. There was extensive DNA migration among the three genomes. In addition, most of the protein-coding genes underwent purifying selection throughout evolution, and the nucleotide diversity was highly variable. In addition, comparative analysis indicated that the sizes, structures, and gene contents of the mitogenomes differed significantly, but the GC contents and functional genes were relatively conserved among the Ericales species. Mitogenome-based phylogenetic analysis indicated the precise. evolutionary and taxonomic status of V. bracteatum. The complete mitogenome represents the last link of the reference genome of V. bracteatum and lays the foundation for effective utilization and molecular breeding of this plant.
Collapse
Affiliation(s)
- Peng Zhou
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing 211153, China; (P.Z.); (F.L.)
| | - Fei Li
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing 211153, China; (P.Z.); (F.L.)
| | - Qiang Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Min Zhang
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing 211153, China; (P.Z.); (F.L.)
| |
Collapse
|
9
|
Książek E, Goluch Z, Bochniak M. Vaccinium spp. Berries in the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease: A Comprehensive Update of Preclinical and Clinical Research. Nutrients 2024; 16:2940. [PMID: 39275255 PMCID: PMC11396909 DOI: 10.3390/nu16172940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disorder marked by the buildup of triacylglycerols (TGs) in the liver. It includes a range of conditions, from simple steatosis to more severe forms like non-alcoholic steatohepatitis (NASH), which can advance to fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD's prevalence is rising globally, estimated between 10% and 50%. The disease is linked to comorbidities such as obesity, type 2 diabetes, insulin resistance, and cardiovascular diseases and currently lacks effective treatment options. Therefore, researchers are focusing on evaluating the impact of adjunctive herbal therapies in individuals with NAFLD. One herbal therapy showing positive results in animal models and clinical studies is fruits from the Vaccinium spp. genus. This review presents an overview of the association between consuming fruits, juices, and extracts from Vaccinium spp. and NAFLD. The search used the following keywords: ((Vaccinium OR blueberry OR bilberry OR cranberry) AND ("non-alcoholic fatty liver disease" OR "non-alcoholic steatohepatitis")). Exclusion criteria included reviews, research notes, book chapters, case studies, and grants. The review included 20 studies: 2 clinical trials and 18 studies on animals and cell lines. The findings indicate that juices and extracts from Vaccinium fruits and leaves have significant potential in addressing NAFLD by improving lipid and glucose metabolism and boosting antioxidant and anti-inflammatory responses. In conclusion, blueberries appear to have the potential to alleviate NAFLD, but more clinical trials are needed to confirm these benefits.
Collapse
Affiliation(s)
- Ewelina Książek
- Department of Agroenginieering and Quality Analysis, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118-120, 53-345 Wrocław, Poland
| | - Zuzanna Goluch
- Department of Food Technology and Nutrition, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118-120, 53-345 Wrocław, Poland
| | - Marta Bochniak
- Department of Agroenginieering and Quality Analysis, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118-120, 53-345 Wrocław, Poland
| |
Collapse
|
10
|
Shareef SM, Khaleel RA, Maryoosh TM. Nephroprotective effect of cranberry ( Vaccinium oxycoccos) in streptozocin-induced diabetic nephropathy in mice. Drug Metab Pers Ther 2024; 39:35-45. [PMID: 38469711 DOI: 10.1515/dmpt-2023-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVES Diabetic nephropathy is a chief reason of mortality particularly in individuals with renal dysfunction. The current research was aimed to assess the nephroprotective portion of Vaccinium oxycoccos toward mice diabetic nephropathy induced by streptozotocin (STZ). V. oxycoccos was purchased and used for hydroalcoholic extraction. METHODS Sixty male mice were subjected to STZ-intraperitoneal injection (45 mg/kg). After diabetes induction, mice were divided into five groups of diabetic control (received only STZ), non-diabetic control (received only citrate buffer), two V. oxycoccos treatment (received V. oxycoccos extract (200 and 400 mg/kg) oral daily by gavage), and metformin treatment (received metformin (500 mg/kg) oral daily by gavage). Glucose and weight of mice were checked weekly. RESULTS After 28 days, the effect of V. oxycoccos extract on serum and urine parameters were assessed. STZ caused significant decreased in the mice body weight. Mice treated with the V. oxycoccos (400 mg/kg) harbored the lowest weight loss at day 28 (70.2±1.38 g). STZ caused significant increase in the mice FBS. Mice treated with the V. oxycoccos (400 mg/kg) harbored the lowest FBS at day 28 (189.2±1.20 mg/dL). Treatment of mice with V. oxycoccos (400 mg/kg) caused the lowest increase in the levels of cholesterol, HbA1c and triglycerides compared to the diabetic control mice. Compared to the diabetic control group, mice treated with V. oxycoccos (400 mg/kg) had the highest HDL, insulin, SOD, and GSH (p<0.05). The lowest serum BUN, CR, and UR were found in mice treated with V. oxycoccos (400 mg/kg). Anti-inflammatory effects of V. oxycoccos (400 mg/kg) was shown by the lowest TNF-α, IL-6, and TGF-β1 concentration in mice treated with V. oxycoccos (400 mg/kg). CONCLUSIONS The current study disclosed that treatment with V. oxycoccos resulted in substantial development in the serum and urine parameters and also antioxidant and anti-inflammatory response of STZ-induced diabetic mice.
Collapse
Affiliation(s)
- Saja Majeed Shareef
- Department of Pharmacology and Toxicology, Collage of Pharmacy, 554706 Al-Esraa University , Baghdad, Iraq
| | | | - Taif M Maryoosh
- Department of Pharmacy, Al-Kut University Collage, Wasit, Iraq
| |
Collapse
|
11
|
Prada-Muñoz J, Coy-Barrera E. Targeted Anthocyanin Profiling of Fruits from Three Southern Highbush Blueberry Cultivars Propagated in Colombia. Molecules 2024; 29:691. [PMID: 38338435 PMCID: PMC10855998 DOI: 10.3390/molecules29030691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The blueberry, a deciduous shrub in the Ericaceae family, is celebrated for its delightful flavor, sweetness, and abundance of anthocyanins and antioxidants, qualities that have garnered significant attention for their potential health benefits. Blueberries grown in diverse environments and exhibit varied anthocyanin profiles, often influenced by factors such as altitude and climate. Varietal groups worldwide have been bred and categorized based on their growth habits and specific cold requirements, particularly with southern highbush cultivars thriving in temperate climates, demonstrating tolerance to higher altitudes or cooler climates-a result of hybridizations involving various Vaccinium species. In the Colombian Andes, southern highbush blueberries thrive in unique high-altitude conditions, leading to exceptional quality due to the region's cool climate and specific soil characteristics. In this context, this study aimed to chemically characterize and differentiate three southern highbush blueberry cultivars (i.e., 'Biloxi,' 'Legacy' and 'Sharpblue') cultivated in a Colombian Andean plateau and compare them to three commercially available highbush blueberries. This comprehensive evaluation involved examining total phenols, flavonoids, anthocyanin content, and DPPH· free-radical scavenging capacity, as well as conducting anthocyanin-targeted profiling via HPLC-DAD-HRMS. Through supervised multivariate analyses such as sPLS-DA, this study delved into the pattern recognition of those anthocyanins that could potentially serve as markers for quality and cultivar-related chemical trait determination. These findings locate blueberry-derived anthocyanins in a metabolic context and afford some insights into southern highbush blueberry cultivar differentiation to be used for further purposes.
Collapse
Affiliation(s)
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| |
Collapse
|
12
|
Studzińska-Sroka E, Paczkowska-Walendowska M, Erdem C, Paluszczak J, Kleszcz R, Hoszman-Kulisz M, Cielecka-Piontek J. Anti-Aging Properties of Chitosan-Based Hydrogels Rich in Bilberry Fruit Extract. Antioxidants (Basel) 2024; 13:105. [PMID: 38247529 PMCID: PMC10812676 DOI: 10.3390/antiox13010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Photoaging is a process related to an increased level of reactive oxygen species (ROS). Polyphenols can scavenge free radicals in the body, which can delay skin aging. Therefore, our work aimed to prepare a biologically active extract from dry fruits of Vaccinium myrtillus or Vaccinium corymbosum and use it for the preparation of hydrogels for topical application. Therefore, eight different extracts (using V. myrtillus and V. corymbosum and different extraction mixtures: methanol, methanol-water 1:1, water, acetone-water 1:1) were prepared and their phytochemical (total polyphenolic content, total flavonoid content, total anthocyanin content) and biological properties (antioxidant, anti-hyaluronidase, and anti-tyrosinase activity) were assessed. Cytotoxicity towards HaCaT keratinocytes was also determined. Based on the results, the acetone-water extract from V. myrtillus was selected for further study. Using the Design of Experiments approach, chitosan-based hydrogels with bilberry fruit extract were prepared. The content of extract and chitosan were selected as independent factors. The activity of hydrogels depended on the extract content; however, the enzyme-inhibiting (anti-hyaluronidase and anti-tyrosinase) activity resulted from the presence of both the extract and chitosan. Increased concentration of chitosan in the hydrogel base led to increased viscosity of the hydrogel and, consequently, a slower release of active compounds. To get optimal hydrogel characteristics, 1% extract and 2.5% MMW chitosan were utilized. The research suggests the validity of using bilberry fruit extracts in topical preparations with anti-aging properties.
Collapse
Affiliation(s)
- Elżbieta Studzińska-Sroka
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str, 60-806 Poznań, Poland; (E.S.-S.); (M.H.-K.); (J.C.-P.)
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str, 60-806 Poznań, Poland; (E.S.-S.); (M.H.-K.); (J.C.-P.)
| | - Cansu Erdem
- Department Pharmaceutical Chemistry, Ege Üniversitesi, 35040 İzmir, Turkey;
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3 Str, 60-806 Poznań, Poland; (J.P.); (R.K.)
| | - Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3 Str, 60-806 Poznań, Poland; (J.P.); (R.K.)
| | - Marta Hoszman-Kulisz
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str, 60-806 Poznań, Poland; (E.S.-S.); (M.H.-K.); (J.C.-P.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str, 60-806 Poznań, Poland; (E.S.-S.); (M.H.-K.); (J.C.-P.)
| |
Collapse
|
13
|
Alsharairi NA. Experimental Studies on the Therapeutic Potential of Vaccinium Berries in Breast Cancer-A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:153. [PMID: 38256707 PMCID: PMC10818444 DOI: 10.3390/plants13020153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Breast cancer (BC) is the largest contributor to cancer deaths in women worldwide. Various parts of plants, including fruits, are known for their therapeutic properties and are used in traditional medicine. Fruit species exhibit anticancer activities due to the presence of bioactive natural compounds such as flavonoids and carotenoids. The Vaccinium spp. are fleshy berry-like drupes and are rich in bioactive compounds, with flavonols, flavanols, chalcones, and phenolic acids as the major groups of compounds. While there is clear evidence linking Vaccinium berries with a decreased risk of BC both in in vivo and in vitro experiments, the exact mechanisms involved in the protective effects of Vaccinium spp. rich extracts on BC cells are not fully understood. Thus, the purpose of this review is to highlight the mechanisms of action involved in the therapeutic potential of Vaccinium berries against BC in experimental models.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind and Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
14
|
Matías-Reyes AE, Alvarado-Noguez ML, Pérez-González M, Carbajal-Tinoco MD, Estrada-Muñiz E, Fuentes-García JA, Vega-Loyo L, Tomás SA, Goya GF, Santoyo-Salazar J. Direct Polyphenol Attachment on the Surfaces of Magnetite Nanoparticles, Using Vitis vinifera, Vaccinium corymbosum, or Punica granatum. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2450. [PMID: 37686958 PMCID: PMC10490419 DOI: 10.3390/nano13172450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
This study presents an alternative approach to directly synthesizing magnetite nanoparticles (MNPs) in the presence of Vitis vinifera, Vaccinium corymbosum, and Punica granatum derived from natural sources (grapes, blueberries, and pomegranates, respectively). A modified co-precipitation method that combines phytochemical techniques was developed to produce semispherical MNPs that range in size from 7.7 to 8.8 nm and are coated with a ~1.5 nm thick layer of polyphenols. The observed structure, composition, and surface properties of the MNPs@polyphenols demonstrated the dual functionality of the phenolic groups as both reducing agents and capping molecules that are bonding with Fe ions on the surfaces of the MNPs via -OH groups. Magnetic force microscopy images revealed the uniaxial orientation of single magnetic domains (SMDs) associated with the inverse spinel structure of the magnetite (Fe3O4). The samples' inductive heating (H0 = 28.9 kA/m, f = 764 kHz), measured via the specific loss power (SLP) of the samples, yielded values of up to 187.2 W/g and showed the influence of the average particle size. A cell viability assessment was conducted via the MTT and NRu tests to estimate the metabolic and lysosomal activities of the MNPs@polyphenols in K562 (chronic myelogenous leukemia, ATCC) cells.
Collapse
Affiliation(s)
- Ana E. Matías-Reyes
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Margarita L. Alvarado-Noguez
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Mario Pérez-González
- Área Académica de Matemáticas y Física, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, UAEH, Mineral de la Reforma 42184, Mexico;
| | - Mauricio D. Carbajal-Tinoco
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Elizabeth Estrada-Muñiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico (L.V.-L.)
| | - Jesús A. Fuentes-García
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Libia Vega-Loyo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico (L.V.-L.)
| | - Sergio A. Tomás
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Gerardo F. Goya
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jaime Santoyo-Salazar
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| |
Collapse
|
15
|
Mechikova GY, Fleishman MY, Lebed’ko OA. Estimation In Vivo of the Antioxidant Activity of Axillary-Blueberry ( Vaccinium axillare Nakai) Fruit under Oxidative Stress. CELL AND TISSUE BIOLOGY 2023; 17:306-310. [PMID: 37305102 PMCID: PMC10241116 DOI: 10.1134/s1990519x23030082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 06/13/2023]
Abstract
The intensity of free radical oxidation processes in vivo (a model of induced oxidative stress) was studied after a probe administration of the fruit extract of the axillary blueberry (Vaccinium axillare Nakai). \Four groups (n = 40) of white CBA line male mice weighing 20-25 g were involved in the experiment: (1) intact control; (2) introduction of a 0.9% sodium-chloride solution orally for 10 days, a dose of 10 mL/kg per day; (3) "cisplatin" group (animals received 0.9% sodium-chloride solution similarly to group 2; on the fifth day of the experiment, cisplatin was administered one time by intraperitoneal injection at a dose of 7.5 mg/kg); and (4) "cisplatin + blueberry" group (mice received orally an extract of axillary-blueberry fruits at a dose of 10 mL/kg per day for 10 days; on the fifth day of the experiment, cisplatin was administered one time by intraperitoneal injection at a dose of 7.5 mg/kg). The antioxidant activity of the axillary blueberry was studied by a method of chemiluminescence. The analysis of kinetic parameters of chemiluminescence of mouse-kidney homogenate demonstrated that, against the background of a single intraperitoneal injection of cisplatin, oxidative stress develops in animals, with its severity decreasing under the action of axillary blueberry-fruit extract. The axillary blueberry-fruit extract has pronounced antioxidant properties and can play a role in the treatment and prevention of disease associated with oxidative stress.
Collapse
Affiliation(s)
- G. Ya. Mechikova
- Far Eastern State Medical University, Ministry of Health of the Russian Federation, 680000 Khabarovsk, Russia
| | - M. Yu. Fleishman
- Far Eastern State Medical University, Ministry of Health of the Russian Federation, 680000 Khabarovsk, Russia
| | - O. A. Lebed’ko
- Far Eastern State Medical University, Ministry of Health of the Russian Federation, 680000 Khabarovsk, Russia
| |
Collapse
|
16
|
Huang H, Luo Y, Wang Q, Zhang Y, Li Z, He R, Chen X, Dong Z. Vaccinium as Potential Therapy for Diabetes and Microvascular Complications. Nutrients 2023; 15:2031. [PMID: 37432140 DOI: 10.3390/nu15092031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus is one of the most critical global health concerns, with a fast-growing prevalence. The incidence of diabetic vascular complications is also rapidly increasing, exacerbating the burden on individuals with diabetes and the consumption of public medical resources. Despite the overall improvements in the prevention, diagnosis, and treatment of diabetic microvascular complications in recent years, safe and effective alternative or adjunctive therapies are urgently needed. The mechanisms underlying diabetic vascular complications are complex, with hyperglycemia-induced oxidative stress and inflammation being the leading causes. Therefore, glycemic control, antioxidation, and anti-inflammation are considered the main targets for the treatment of diabetes and its vascular comorbidities. Vaccinium L. (Ericaceae) is a genus of plants enriched with polyphenolic compounds in their leaves and fruits. Vaccinium and its extracts have demonstrated good bioactivity in reducing blood glucose, oxidative stress, and inflammation, making them excellent candidates for the management of diabetes and diabetic vascular complications. Here, we review recent preclinical and clinical studies on the potential effect of Vaccinium on ameliorating diabetes and diabetic complications, particularly diabetic kidney disease and diabetic retinopathy.
Collapse
Affiliation(s)
- Hui Huang
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yayong Luo
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Wang
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
| | - Yihan Zhang
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Xiangmei Chen
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zheyi Dong
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
| |
Collapse
|
17
|
Vaccinium Species (Ericaceae): Phytochemistry and Biological Properties of Medicinal Plants. Molecules 2023; 28:molecules28041533. [PMID: 36838522 PMCID: PMC9966428 DOI: 10.3390/molecules28041533] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The Vaccinium L. (Ericaceae) genus consists of a globally widespread and diverse genus of around 4250 species, of which the most valuable is the Vaccinioidae subfamily. The current review focuses on the distribution, history, bioactive compounds, and health-related effects of three species: cranberry, blueberry, and huckleberry. Several studies highlight that the consumption of Vaccinium spp. presents numerous beneficial health-related outcomes, including antioxidant, antimicrobial, anti-inflammatory, and protective effects against diabetes, obesity, cancer, neurodegenerative diseases and cardiovascular disorders. These plants' prevalence and commercial value have enhanced in the past several years; thus, the generated by-products have also increased. Consequently, the identified phenolic compounds found in the discarded leaves of these plants are also presented, and their impact on health and economic value is discussed. The main bioactive compounds identified in this genus belong to anthocyanins (cyanidin, malvidin, and delphinidin), flavonoids (quercetin, isoquercetin, and astragalin), phenolic acids (gallic, p-Coumaric, cinnamic, syringic, ferulic, and caffeic acids), and iridoids.
Collapse
|
18
|
Ștefănescu R, Laczkó-Zöld E, Ősz BE, Vari CE. An Updated Systematic Review of Vaccinium myrtillus Leaves: Phytochemistry and Pharmacology. Pharmaceutics 2022; 15:pharmaceutics15010016. [PMID: 36678645 PMCID: PMC9861616 DOI: 10.3390/pharmaceutics15010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Bilberry leaves are used in many countries in traditional medicine for treating a wide variety of diseases. Due to the high therapeutic potential of Vaccinium myrtillus (VM) leaves, this review aims to present the latest knowledge on the phytochemical profile, as well as the therapeutic effects of this herbal drug. The review was conducted according to the Prisma guidelines, and the scientific databases were searched using combinations of the following keywords: "Vaccinium myrtillus", "leaves", "bilberry". Recent research was focused on the influence of abiotic factors on the phytochemical composition, and it seems that there are significant differences between the herbal drugs collected from different countries. The phytochemical composition is correlated with the broad spectrum of pharmacological effects. The paper outlines the potent antimicrobial activity of VM extracts against multidrug-resistant bacterial strains, and also the pathways that are modulated by the unique "cocktail" of phytoconstituents in different metabolic alterations. Reviewing the research articles published in the last 10 years, it seems that bilberry leaves have been slightly forgotten, although their phytochemical and pharmacological characteristics are unique.
Collapse
Affiliation(s)
- Ruxandra Ștefănescu
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Correspondence: or
| | - Eszter Laczkó-Zöld
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Bianca-Eugenia Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Camil-Eugen Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
19
|
Patel A, Rasheed A, Reilly I, Pareek Z, Hansen M, Haque Z, Simon-Fajardo D, Davies C, Tummala A, Reinhardt K, Bustabad A, Shaw M, Robins J, Vera Gomez K, Suphakorn T, Camacho Gemelgo M, Law A, Lin K, Hospedales E, Haley H, Perez Martinez JP, Khan S, DeCanio J, Padgett M, Abramov A, Nanjundan M. Modulation of Cytoskeleton, Protein Trafficking, and Signaling Pathways by Metabolites from Cucurbitaceae, Ericaceae, and Rosaceae Plant Families. Pharmaceuticals (Basel) 2022; 15:1380. [PMID: 36355554 PMCID: PMC9698530 DOI: 10.3390/ph15111380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 10/22/2023] Open
Abstract
One promising frontier within the field of Medical Botany is the study of the bioactivity of plant metabolites on human health. Although plant metabolites are metabolic byproducts that commonly regulate ecological interactions and biochemical processes in plant species, such metabolites also elicit profound effects on the cellular processes of human and other mammalian cells. In this regard, due to their potential as therapeutic agents for a variety of human diseases and induction of toxic cellular responses, further research advances are direly needed to fully understand the molecular mechanisms induced by these agents. Herein, we focus our investigation on metabolites from the Cucurbitaceae, Ericaceae, and Rosaceae plant families, for which several plant species are found within the state of Florida in Hillsborough County. Specifically, we compare the molecular mechanisms by which metabolites and/or plant extracts from these plant families modulate the cytoskeleton, protein trafficking, and cell signaling to mediate functional outcomes, as well as a discussion of current gaps in knowledge. Our efforts to lay the molecular groundwork in this broad manner hold promise in supporting future research efforts in pharmacology and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
20
|
Gonçalves AC, Sánchez-Juanes F, Meirinho S, Silva LR, Alves G, Flores-Félix JD. Insight into the Taxonomic and Functional Diversity of Bacterial Communities Inhabiting Blueberries in Portugal. Microorganisms 2022; 10:2193. [PMID: 36363783 PMCID: PMC9695653 DOI: 10.3390/microorganisms10112193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 10/15/2023] Open
Abstract
Vaccinium myrtillus is a dwarf shrub of the Ericaceae family with a Palearctic distribution, associated with temperate and cold humid climates. It is widespread on the European continent; on the Iberian Peninsula it is located on Atlantic climate mountains and glacial relicts. In Portugal, we find scattered and interesting populations; however, the majority of them are threatened by climate change and wildfires. Given that, the objective of this study is to determine the rhizospheric and root bacterial communities of this plant in the southernmost regions, and, consequently, its potential range and ability to be used as a biofertilizer. In this work, metabarcoding of 16S rRNA gene showed that the endophytic bacterial diversity is dependent on the plant and selected by it according to the observed alpha and beta diversity. Moreover, a culturomic approach allowed 142 different strains to be isolated, some of them being putative new species. Additionally, some strains belonging to the genera Bacillus, Paenibacillus, Pseudomonas, Paraburkholderia, and Caballeronia showed significant potential to be applied as multifunctional biofertilizers since they present good plant growth-promoting (PGP) mechanisms, high colonization capacities, and an increase in vegetative parameters in blueberry and tomato plants.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-540 Coimbra, Portugal
| | - Fernando Sánchez-Juanes
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Sara Meirinho
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Luís R. Silva
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Gilberto Alves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - José David Flores-Félix
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| |
Collapse
|
21
|
Šedbarė R, Siliņa D, Janulis V. Evaluation of the Phytochemical Composition of Phenolic and Triterpene Compounds in Fruit of Large Cranberries ( Vaccinium macrocarpon Aiton) Grown in Latvia. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202725. [PMID: 36297751 PMCID: PMC9609109 DOI: 10.3390/plants11202725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/12/2023]
Abstract
We carried out a qualitative and quantitative analysis of the phytochemical composition of the fruits of large cranberry cultivars 'Ben Lear', 'Bergman', 'Kalnciema agra', 'Lemunyon', 'Pilgrim', 'Stevens', and 'Tina' grown in Latvian climatic conditions. The following predominant compounds were found in cranberry fruit samples: peonidin-3-O-galactoside, peonidin-3-O-arabinoside, cyanidin-3-O-galactoside, cyanidin-3-O-arabinoside, myricetin-3-galactoside, quercetin-3-galactoside, quercetin-3-α-L-arabinofuranoside, quercetin 3-rhamnoside, ursolic acid, and oleanolic acid. During the berry ripening period (from 16 August until 15 September), a trend of decreasing amounts of compounds was found in the fruit samples of the studied cranberry cultivars: the total amount of proanthocyanidins decreased by 1.3 times, the total amount of the identified flavonols decreased by 1.3 times, the total amount of triterpenoids decreased by 1.2 times, and the total amount of chlorogenic acid decreased by 1.7 times. During the period from 16 August until 15 September, the total amount of anthocyanins in the cranberry fruit samples increased by 2.6 to 17 times. The highest total amount of anthocyanins (5305.80 ± 27 µg/g) was detected in fruit samples of the cranberry cultivar 'Kalnciema agra' collected on 15 September. The amount of biologically active compounds in cranberry fruit samples varies during berry ripening. Thus, the choice of the picking time is one of the factors that determines the phytochemical composition of raw cranberry material.
Collapse
Affiliation(s)
- Rima Šedbarė
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania
| | - Dace Siliņa
- Faculty of Agriculture, Latvia University of Life Sciences and Technologies, 3001 Jelgava, Latvia
| | - Valdimaras Janulis
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania
| |
Collapse
|
22
|
Ockun MA, Baranauskaite J, Uner B, Kan Y, Kırmızıbekmez H. Preparation, characterization and evaluation of liposomal-freeze dried anthocyanin-enriched Vaccinium arctostaphylos L. fruit extract incorporated into fast dissolving oral films. J Drug Deliv Sci Technol 2022; 72:103428. [DOI: 25.https:/doi.org/10.1016/j.jddst.2022.103428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
|
23
|
Ockun MA, Baranauskaite J, Uner B, Kan Y, Kırmızıbekmez H. Preparation, characterization and evaluation of liposomal-freeze dried anthocyanin-enriched Vaccinium arctostaphylos L. fruit extract incorporated into fast dissolving oral films. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103428] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Ștefănescu BE, Nemes SA, Teleky BE, Călinoiu LF, Mitrea L, Martău GA, Szabo K, Mihai M, Vodnar DC, Crișan G. Microencapsulation and Bioaccessibility of Phenolic Compounds of Vaccinium Leaf Extracts. Antioxidants (Basel) 2022; 11:antiox11040674. [PMID: 35453359 PMCID: PMC9030406 DOI: 10.3390/antiox11040674] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, Vaccinium spp. (bilberry-VMT, lingonberry-VVIT, and blueberry-VCS) have sparked particular interest for their prospective health benefits. The latest investigations have place them as important alternative sources of nutraceuticals as their leaves are the main by-products of berry harvesting. The present study is aimed at investigating the bioaccessibility of phenolic compounds from leaves of the Vaccinium species, both as microencapsulated powder and aqueous extracts, following exposure to in vitro simulated digestion. Moreover, the impact of maltodextrin and glucose microencapsulation carriers on the extracts’ phenolic content was assessed. Prior to encapsulation, the viscosity of the emulsions was shown at a shear stress of 50 s−1 dilatant and a Newtonian behaviour above this value with a final viscosity between 1.024 and 1.049 mPa·s. The final microencapsulation yield for the samples ranged between 79 and 81%. Although the microencapsulated forms presented a targeted release at the intestinal level, the phenolic content decreased after gastrointestinal digestion. The bioaccessibility of the microencapsulated extracts showed higher values than their non-encapsulated counterparts, with the highest value of 45.43% in the VVIT sample, followed by VCS with 41.07%. However, the non-encapsulated VCS sample presented high bioaccessibility after in vitro digestion (38.65%). As concluded, further in vivo research should be conducted on the leaves of the Vaccinium species.
Collapse
Affiliation(s)
- Bianca Eugenia Ștefănescu
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (B.E.Ș.); (G.C.)
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Silvia-Amalia Nemes
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
| | - Bernadette-Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Lavinia Florina Călinoiu
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
| | - Laura Mitrea
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
| | - Gheorghe Adrian Martău
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
| | - Katalin Szabo
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
| | - Mihaela Mihai
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
- Correspondence: (M.M.); (D.C.V.); Tel.: +40-747-341-881 (D.C.V.)
| | - Dan Cristian Vodnar
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
- Correspondence: (M.M.); (D.C.V.); Tel.: +40-747-341-881 (D.C.V.)
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (B.E.Ș.); (G.C.)
| |
Collapse
|