1
|
Çolak A, Peral Eyduran S, Tas A, Altun O, Gundogdu M, Ozturk B. The Role of Spermidine in Postharvest Fruit Physiology: Effects on Quality Characteristics and Metabolite Content of Sweet Cherry Fruit during Cold Storage. ACS OMEGA 2025; 10:10567-10578. [PMID: 40124068 PMCID: PMC11923685 DOI: 10.1021/acsomega.4c11222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 03/25/2025]
Abstract
In this study, 0.5, 1.0, and 1.5 mM spermidine were applied to sweet cherry fruit before storage and the fruit were stored for 30 days. In addition, the fruit were stored for 30 days as a control without any treatment. Weight loss, decay rate, soluble solids content (SSC), titratable acidity (TA), pH, respiration rate, phenolic compounds, organic acids, and vitamin C parameters were assessed in fruit during storage. As a result of the study, according to different spermidine treatments, increases in weight loss, SSC, pH, respiration, and decay rates and decreases in titratable acidity were detected in control fruit at different storage periods (10, 20, and 30 days). Among the different spermidine doses applied, it was determined that the highest dose of spermidine applications was 1.5 mM, which prevented the degradation of phenolic compounds, organic acids, and vitamin C contents in sweet cherry fruit. Succinic acid was the dominant organic acid in sweet cherry fruit, with the highest value recorded at 10.30 g kg-1 during the harvest period and the lowest value measured at 6.89 g kg-1 in the control group at the end of storage (30 days). After succinic acid, malic and citric acids were found to have the highest concentrations, both of which showed a decrease during storage. It was determined that the 1.5 mM dose was the most effective in preventing this decrease. It was also found that gallic acid (30 days: 68.36 mg 100 g-1) was the most abundant phenolic compound in the fruit, followed by quercetin (30 days: 9.81 mg 100 g-1) and rutin (30 days: 10.09 mg 100 g-1), respectively. As a result, it was concluded that exogenous application of spermidine can be used as a postharvest tool in preserving the quality and storage life of sweet cherry fruit.
Collapse
Affiliation(s)
- Ayşen
Melda Çolak
- Department
of Horticulture, Faculty of Agriculture, Uşak University, Uşak 64000, Turkey
| | - Sadiye Peral Eyduran
- Department
of Horticulture, Fethiye Faculty of Agriculture, Muğla Sıtkı Kocman University, Muğla 48000, Turkey
| | - Akgul Tas
- Department
of Plant and Animal Production, Seben İzzet Baysal Vocational
School, Bolu Abant Izzet Baysal University, Seben Bolu 14750, Turkey
| | - Oktay Altun
- Republic
of Türkiye Ministry of Agriculture and Forestry, Erzincan Horticultural Research Institute, Erzincan 24000, Turkey
| | - Muttalip Gundogdu
- Department
of Horticulture, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey
| | - Burhan Ozturk
- Department
of Horticulture, Faculty of Agriculture, Ordu University, Ordu 52000, Turkey
| |
Collapse
|
2
|
Rana JN, Mumtaz S. Prunin: An Emerging Anticancer Flavonoid. Int J Mol Sci 2025; 26:2678. [PMID: 40141319 PMCID: PMC11942023 DOI: 10.3390/ijms26062678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Despite the substantial advances in cancer therapies, developing safe and effective treatment methodologies is critical. Natural (plant-derived compounds), such as flavonoids, might be crucial in developing a safe treatment methodology without toxicity toward healthy tissues. Prunin is a flavonoid with the potential to be used in biomedical applications. Prunin has yet to undergo thorough scientific research, and its precise molecular mechanisms of action remain largely unexplored. This review summarizes the therapeutic potential of prunin for the first time, focusing on its underlying mechanisms as an anticancer compound. Prunin has gained significant attention due to its antioxidant, anti-inflammatory, and anticancer effects. This review aims to unlock how prunin functions at the molecular level to exert its anticancer effects, primarily modulating key cellular pathways. Furthermore, we have discussed the prunin's potential as an adjunctive therapy with conventional treatments, highlighting its ability to strengthen treatment responses while decreasing drug resistance. Moreover, the discussion probes into innovative delivery methods, particularly nanoformulations, that might address prunin's bioavailability, solubility, and stability limitations and optimize its therapeutic application. By providing a comprehensive analysis of prunin's properties, this review aims to stimulate further exploration of using prunin as an anticancer agent, thereby progressing the development of targeted, selective, safe, and effective therapeutic methods.
Collapse
Affiliation(s)
- Juie Nahushkumar Rana
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Sohail Mumtaz
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
3
|
Vinchira-Villarraga D, Dhaouadi S, Milenkovic V, Wei J, Grace ER, Hinton KG, Webster AJ, Vadillo-Dieguez A, Powell SE, Korotania N, Castellanos L, Ramos FA, Harrison RJ, Rabiey M, Jackson RW. Metabolic profiling and antibacterial activity of tree wood extracts obtained under variable extraction conditions. Metabolomics 2024; 21:13. [PMID: 39729149 PMCID: PMC11680671 DOI: 10.1007/s11306-024-02215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Tree bacterial diseases are a threat in forestry due to their increasing incidence and severity. Understanding tree defence mechanisms requires evaluating metabolic changes arising during infection. Metabolite extraction affects the chemical diversity of the samples and, therefore, the biological relevance of the data. Metabolite extraction has been standardized for several biological models. However, little information is available regarding how it influences wood extract's chemical diversity. OBJECTIVES This study aimed to develop a methodological approach to obtain extracts from different tree species with the highest reproducibility and chemical diversity possible, to ensure proper coverage of the trees' metabolome. METHODS A full factorial design was used to evaluate the effect of solvent type, extraction temperature and number of extraction cycles on the metabolic profile, chemical diversity and antibacterial activity of four tree species. RESULTS Solvent, temperature and their interaction significantly affected the extracts' chemical diversity, while the number of extraction cycles positively correlated with yield and antibacterial activity. Although 60% of the features were recovered in all the tested conditions, differences in the presence and abundance of specific chemical classes per tree were observed, including organooxygen compounds, prenol lipids, carboxylic acids, and flavonoids. CONCLUSIONS Each tree species has a unique metabolic profile, which means that no single protocol is universally effective. Extraction at 50 °C for three cycles using 80% methanol or chloroform/methanol/water showed the best results and is suggested for studying wood metabolome. These observations highlight the need to tailor extraction protocols to each tree species to ensure comprehensive metabolome coverage for metabolic profiling.
Collapse
Affiliation(s)
- Diana Vinchira-Villarraga
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Sabrine Dhaouadi
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Vanja Milenkovic
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jiaqi Wei
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Emily R Grace
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Katherine G Hinton
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Amy J Webster
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Andrea Vadillo-Dieguez
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sophie E Powell
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Naina Korotania
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Leonardo Castellanos
- Facultad de Ciencias, Departamento de Química, Universidad Nacional de Colombia - Sede Bogotá, Carrera 30# 45-03, Bogotá, D.C, 111321, Colombia
| | - Freddy A Ramos
- Facultad de Ciencias, Departamento de Química, Universidad Nacional de Colombia - Sede Bogotá, Carrera 30# 45-03, Bogotá, D.C, 111321, Colombia
| | - Richard J Harrison
- Plant Sciences Group, Wageningen University & Research, Wageningen, 6700AA, The Netherlands
| | - Mojgan Rabiey
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK.
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK.
| | - Robert W Jackson
- School of Biosciences and the Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
4
|
Afonso S, Oliveira I, Guedes F, Meyer AS, Gonçalves B. GLYCINE betaine and seaweed-based biostimulants improved leaf water status and enhanced photosynthetic activity in sweet cherry trees. FRONTIERS IN PLANT SCIENCE 2024; 15:1467376. [PMID: 39759231 PMCID: PMC11695132 DOI: 10.3389/fpls.2024.1467376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/07/2024] [Indexed: 01/07/2025]
Abstract
Sweet cherry is a high-value crop, and strategies to enhance production and sustainability are at the forefront of research linked to this crop. The improvement of plant status is key to achieving optimum yield. Biostimulants, such as glycine betaine (GB) or seaweed-based biostimulants [e.g., Ecklonia maxima (EM)], can represent a sustainable approach to improving plant conditions, even under adverse environmental circumstances. Despite their potential, few studies have focused on the effects of GB or EM exogenous application on sweet cherry tree physiology. To address this lack of research, a study was conducted in a Portuguese sweet cherry commercial orchard, using Lapins and Early Bigi cultivars. Trees were treated with products based on GB and EM at two different concentrations [GB 0.25% (v/v) and GB 0.40% (v/v); EM 0.30% (v/v) and EM 0.15% (v/v)], a combination of the lowest concentrations of both biostimulants (Mix -GB 0.25% and EM 0.15%), and a control group (C) treated with water. Applications were performed over three consecutive years (2019, 2020, and 2021) at three different phenological stages, according to the BBCH scale: 77, 81, and 86 BBCH. Results showed, in general, that the application of biostimulants led to improvements in water status as well as significantly lower values of electrolyte leakage and thiobarbituric acid reactive substances compared to C samples. Additionally, biostimulants reduced pigment loss in the leaves and enhanced their biosynthesis. The Chlorophylla/Chlorophyllb ratio, ranging from 2 to 4, indicated a greater capacity for light absorption and lower stress levels in treated leaves. Soluble sugar and starch content decreased during fruit development in both cultivars and years; however, biostimulants increased these contents, with increments of approximately 15% to 30% in leaves treated with EM. Soluble protein content also showed the same pattern for treated leaves. Biostimulants, especially EM, demonstrated a significant positive effect (p ≤ 0.001) on total phenolic content, with increases of approximately 25% to 50% in treated leaves. In conclusion, the application of biostimulants, especially algae-based, significantly improved tree performance by enhancing physiological parameters and stress resilience and could represent a novel approach in fruit production systems.
Collapse
Affiliation(s)
- Sílvia Afonso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Francisco Guedes
- Cermouros-Cerejas de São Martinho de Mouros, Lda., Resende, Portugal
| | - Anne S. Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
5
|
Kubes J, Hnilicka F, Vachova P, Kudrna J, Tunklova B, Mrkacek M, Rygl T. Changes in Secondary Metabolites Content and Antioxidant Enzymes Activity in Leaves of Two Prunus avium L. Genotypes During Various Phenological Phases. Life (Basel) 2024; 14:1567. [PMID: 39768275 PMCID: PMC11678347 DOI: 10.3390/life14121567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
In addition to its fruit, the sweet cherry (Prunus avium L.) has other parts that can be used as a source of compounds with beneficial biological activity. The content of these metabolites is affected by different inner and outer factors, often as a response to plant defense against various stresses. Leaves of two P. avium. genotypes, Kordia and Regina, grafted on the same rootstock, were analyzed from trees grown in orchards in six different phenological phases for two years. The content of several groups of phenolic compounds, lipid peroxidation, antioxidant activity of the extracts, and enzyme activity were observed via colorimetric methods on a UV/Vis spectrophotometer. The obtained data showed that the content of metabolites and other parameters in these two genotypes are dependent on the term of harvest, as well as environmental conditions, mainly temperature, but sunshine duration and rainfall also had a certain effect on the compounds in the leaves of Kordia and Regina. Even though the differences between these genotypes were not always significant, it is important to consider the right time to harvest the leaves of the sweet cherry, as their content could vary as a result of the reaction to various other conditions and could reflect the resistance of the chosen genotype.
Collapse
Affiliation(s)
- Jan Kubes
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic; (F.H.); (P.V.); (J.K.); (B.T.); (T.R.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Nelson VK, Nuli MV, Ausali S, Gupta S, Sanga V, Mishra R, Jaini PK, Madhuri Kallam SD, Sudhan HH, Mayasa V, Abomughaid MM, Almutary AG, Pullaiah CP, Mitta R, Jha NK. Dietary anti-inflammatory and anti-bacterial medicinal plants and its compounds in bovine mastitis associated impact on human life. Microb Pathog 2024; 192:106687. [PMID: 38750773 DOI: 10.1016/j.micpath.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Center for global health research, saveetha medical college, saveetha institute of medical and technical sciences, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saijyothi Ausali
- College of Pharmacy, MNR higher education and research academy campus, MNR Nagar, Sangareddy, 502294, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vaishnavi Sanga
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, 391760, Gujrat, India
| | - Pavan Kumar Jaini
- Department of Pharmaceutics, Raffles University, Neemrana, Rajasthan, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Vadlamudi, Andhra Pradesh, 522213, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box, 59911, United Arab Emirates
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | - Raghavendra Mitta
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering & Technology (SSET), Sharda University, Greater Noida, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| |
Collapse
|
7
|
Zeiner M, Juranović Cindrić I, Nemet I, Šola I, Fiedler H. Chemometric evaluation of inorganic and organic parameters found in Rosaceae plants proposed as food supplements. Food Chem X 2024; 22:101248. [PMID: 38444555 PMCID: PMC10912348 DOI: 10.1016/j.fochx.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
This study discusses the organic and inorganic composition of young inflorescence tissues of seven medical plants from the Prunus, Malus, and Chaenomeles families. These plants contain bioactive compounds with antioxidant and cytotoxic properties, and the study determined 29 elements, including essential and potentially harmful ones, established correlations with inorganic and organic compounds, as well as antioxidative and cytotoxic effects. The elemental patterns show that the plants contribute beneficial essential elements to the human diet. The levels of toxic elements in the plants are within safe limits set by the World Health Organization for medicinal herbs. The results confirmed genus- and species-specific uptake and accumulation. Positive correlations between d-block metals and alkaline earth metals in the inflorescences were found alongside statistically significant differences between analyte categories regarding macro-, micro- and trace elements and bioactive compounds. These correlations need to be considered when giving dietary recommendations or advice for uses as home-remedies.
Collapse
Affiliation(s)
- Michaela Zeiner
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan, 1 70182 Örebro, Sweden
| | - Iva Juranović Cindrić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ivan Nemet
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Heidelore Fiedler
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan, 1 70182 Örebro, Sweden
| |
Collapse
|
8
|
Munir H, Yaqoob S, Awan KA, Imtiaz A, Naveed H, Ahmad N, Naeem M, Sultan W, Ma Y. Unveiling the Chemistry of Citrus Peel: Insights into Nutraceutical Potential and Therapeutic Applications. Foods 2024; 13:1681. [PMID: 38890908 PMCID: PMC11172398 DOI: 10.3390/foods13111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The recent millennium has witnessed a notable shift in consumer focus towards natural products for addressing lifestyle-related disorders, driven by their safety and cost-effectiveness. Nutraceuticals and functional foods play an imperative role by meeting nutritional needs and offering medicinal benefits. With increased scientific knowledge and awareness, the significance of a healthy lifestyle, including diet, in reducing disease risk is widely acknowledged, facilitating access to a diverse and safer diet for longevity. Plant-based foods rich in phytochemicals are increasingly popular and effectively utilized in disease management. Agricultural waste from plant-based foods is being recognized as a valuable source of nutraceuticals for dietary interventions. Citrus peels, known for their diverse flavonoids, are emerging as a promising health-promoting ingredient. Globally, citrus production yields approximately 15 million tons of by-products annually, highlighting the substantial potential for utilizing citrus waste in phyto-therapeutic and nutraceutical applications. Citrus peels are a rich source of flavonoids, with concentrations ranging from 2.5 to 5.5 g/100 g dry weight, depending on the citrus variety. The most abundant flavonoids in citrus peel include hesperidin and naringin, as well as essential oils rich in monoterpenes like limonene. The peel extracts exhibit high antioxidant capacity, with DPPH radical scavenging activities ranging from 70 to 90%, comparable to synthetic antioxidants like BHA and BHT. Additionally, the flavonoids present in citrus peel have been found to have antioxidant properties, which can help reduce oxidative stress by 30% and cardiovascular disease by 25%. Potent anti-inflammatory effects have also been demonstrated, reducing inflammatory markers such as IL-6 and TNF-α by up to 40% in cell culture studies. These findings highlight the potential of citrus peel as a valuable source of nutraceuticals in diet-based therapies.
Collapse
Affiliation(s)
- Hussan Munir
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
- University Institute of Food Science and Technology, University of Lahore, Lahore 54590, Pakistan
| | - Sanabil Yaqoob
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Kanza Aziz Awan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Aysha Imtiaz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 03802, Pakistan;
| | - Hiba Naveed
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Waleed Sultan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore 54000, Pakistan; (K.A.A.); (H.N.); (W.S.)
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.M.); (S.Y.)
| |
Collapse
|
9
|
García-Villegas A, Fernández-Ochoa Á, Alañón ME, Rojas-García A, Arráez-Román D, Cádiz-Gurrea MDLL, Segura-Carretero A. Bioactive Compounds and Potential Health Benefits through Cosmetic Applications of Cherry Stem Extract. Int J Mol Sci 2024; 25:3723. [PMID: 38612532 PMCID: PMC11011441 DOI: 10.3390/ijms25073723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Cherry stems, prized in traditional medicine for their potent antioxidant and anti-inflammatory properties, derive their efficacy from abundant polyphenols and anthocyanins. This makes them an ideal option for addressing skin aging and diseases. This study aimed to assess the antioxidant and anti-inflammatory effects of cherry stem extract for potential skincare use. To this end, the extract was first comprehensively characterized by HPLC-ESI-qTOF-MS. The extract's total phenolic content (TPC), antioxidant capacity, radical scavenging efficiency, and its ability to inhibit enzymes related to skin aging were determined. A total of 146 compounds were annotated in the cherry stem extract. The extract effectively fought against NO· and HOCl radicals with IC50 values of 2.32 and 5.4 mg/L. Additionally, it inhibited HYALase, collagenase, and XOD enzymes with IC50 values of 7.39, 111.92, and 10 mg/L, respectively. Based on the promising results that were obtained, the extract was subsequently gently integrated into a cosmetic gel at different concentrations and subjected to further stability evaluations. The accelerated stability was assessed through temperature ramping, heating-cooling cycles, and centrifugation, while the long-term stability was evaluated by storing the formulations under light and dark conditions for three months. The gel formulation enriched with cherry stem extract exhibited good stability and compatibility for topical application. Cherry stem extract may be a valuable ingredient for creating beneficial skincare cosmeceuticals.
Collapse
Affiliation(s)
- Abigail García-Villegas
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - María Elena Alañón
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain;
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
10
|
Ghasemi S, Dabirian S, Kariminejad F, Koohi DE, Nemattalab M, Majidimoghadam S, Zamani E, Yousefbeyk F. Process optimization for green synthesis of silver nanoparticles using Rubus discolor leaves extract and its biological activities against multi-drug resistant bacteria and cancer cells. Sci Rep 2024; 14:4130. [PMID: 38374139 PMCID: PMC10876668 DOI: 10.1038/s41598-024-54702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/15/2024] [Indexed: 02/21/2024] Open
Abstract
Multi-drug resistant (MDR) bacteria are considered a serious public health threat. Also, increasing rate of resistance to anticancer drugs, as well as their toxicity, is another point of concern. Therefore, the new antibacterial and anticancer agents are always needed. The synthesizing silver nanoparticles (AgNPs) using medicinal plants, is an effective approach for developing novel antibacterial and anticancer agents. Rubus discolor, a native species of the Caucasus region, produces leaves that are typically discarded as a by-product of raspberry production. The present study has focused on optimizing the green synthesis of AgNPs using R. discolor leaves extract through response surface methodology. The optimal values for AgNPs synthesis were an AgNO3 concentration of 7.11 mM, a time of 17.83 h, a temperature of 56.51 °C, and an extract percentage of 29.22. The production of AgNPs was confirmed using UV-visible spectroscopy (λmax at 456.01 nm). TEM analysis revealed well-dispersed AgNPs (an average size of 37 nm). The XRD analysis confirmed the crystalline structure. The EDX detected a strong peak at 3 keV corresponded to Ag. The zeta potential value (- 44.2 mV) indicated the stability of nanoparticles. FT-IR spectra showed the presence of various functional groups from plant compounds, which play an important role in the capping and bio-reduction processes. The AgNPs revealed impressive antibacterial activities against MDR Escherichia coli and Pseudomonas aeruginosa (MIC ranging from 0.93 to 3.75 mg ml-1). The phytochemical analysis indicated the presence of phenolics, tannins, and flavonoids on the surface of AgNPs. They also showed significant cytotoxic effects on A431, MCF-7, and HepG2 cells (IC50 values ranging from 11 to 49.1 µg ml-l).
Collapse
Affiliation(s)
- Saeed Ghasemi
- Department of Medicinal Chemistry, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Dabirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Faezeh Kariminejad
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Diba Eghbali Koohi
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehran Nemattalab
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Sina Majidimoghadam
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Yousefbeyk
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
11
|
Kim GM, Ko CH, Chung JM, Kwon HC, Rhie YH, Lee SY. Seed Dormancy Class and Germination Characteristics of Prunus spachiana (Lavallée ex Ed.Otto) Kitam. f. ascendens (Makino) Kitam Native to the Korean Peninsula. PLANTS (BASEL, SWITZERLAND) 2024; 13:502. [PMID: 38498410 PMCID: PMC10891651 DOI: 10.3390/plants13040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
Prunus spachiana (Lavallée ex Ed.Otto) Kitam. f. ascendens (Makino) Kitam leaves exert natural anti-inflammatory effects by inhibiting nitric oxide formation. P. spachiana flowers bloom earlier than other Prunus spp. and thus could serve as a valuable resource for the horticulture and pharmaceutical industries. However, its seed dormancy class and germination traits remain uncharacterized. Thus, this study aimed to characterize the seed dormancy and germination of P. spachiana. Imbibition, phenological, and move-along experiments were performed, and the effects of H2SO4 treatment, hormone soaking, warm/cold stratification, and endocarp removal on germination were explored. Observation revealed that ripe seeds of P. spachiana contain developed embryos and are water permeable. Radicle and shoot emergence began in March and April, respectively, under natural conditions in the year following production. No seed germination was observed after 30 days of incubation at 4, 15/6, 20/10, or 25/15 °C under light/dark conditions, indicating the physiological dormancy of the seeds. Germination increased with prolonged stratification and was affected by incubation temperature. Seed scarification by H2SO4 and soaking with gibberellic acid (GA3) and fluridone were ineffective in breaking dormancy. However, GA3 soaking of the seeds after endocarp removal effectively induced germination (100%). These results indicate that P. spachiana seeds exhibit intermediate physiological dormancy.
Collapse
Affiliation(s)
- Gun Mo Kim
- Department of Horticulture and Breeding, Graduate of Andong National University, Andong 36792, Republic of Korea;
- Division of Wild Plant Seed Research, Baekdudaegan National Arboretum, Bonghwa 36209, Republic of Korea
| | - Chung Ho Ko
- Garden and Plant Resources Division, Korea National Arboretum, Yangpyeong 12519, Republic of Korea; (C.H.K.); (J.M.C.)
| | - Jae Min Chung
- Garden and Plant Resources Division, Korea National Arboretum, Yangpyeong 12519, Republic of Korea; (C.H.K.); (J.M.C.)
| | - Hak Cheol Kwon
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
| | - Yong Ha Rhie
- Department of Horticulture and Forestry, Pai Chai University, Daejeon 35345, Republic of Korea;
| | - Seung Youn Lee
- Department of Horticulture and Breeding, Graduate of Andong National University, Andong 36792, Republic of Korea;
- Department of Smart Horticultural Science, Andong National University, Andong 36792, Republic of Korea
| |
Collapse
|
12
|
Barreto-Peixoto JA, Silva C, Costa ASG, Álvarez-Rivera G, Cifuentes A, Ibáñez E, Oliveira MBPP, Alves RC, Martel F, Andrade N. A Prunus avium L. Infusion Inhibits Sugar Uptake and Counteracts Oxidative Stress-Induced Stimulation of Glucose Uptake by Intestinal Epithelial (Caco-2) Cells. Antioxidants (Basel) 2023; 13:59. [PMID: 38247483 PMCID: PMC10812648 DOI: 10.3390/antiox13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Sweet cherry (Prunus avium L.) is among the most valued fruits due to its organoleptic properties and nutritional worth. Cherry stems are rich in bioactive compounds, known for their anti-inflammatory and antioxidant properties. Innumerable studies have indicated that some bioactive compounds can modulate sugar absorption in the small intestine. In this study, the phenolic profile of a cherry stem infusion was investigated, as well as its capacity to modulate intestinal glucose and fructose transport in Caco-2 cells. Long-term (24 h) exposure to cherry stem infusion (25%, v/v) significantly reduced glucose (3H-DG) and fructose (14C-FRU) apical uptake, reduced the apical-to-basolateral Papp to 3H-DG, and decreased mRNA expression levels of the sugar transporters SGLT1, GLUT2 and GLUT5. Oxidative stress (induced by tert-butyl hydroperoxide) caused an increase in 3H-DG uptake, which was abolished by the cherry stem infusion. These findings suggest that cherry stem infusion can reduce the intestinal absorption of both glucose and fructose by decreasing the gene expression of their membrane transporters. Moreover, this infusion also appears to be able to counteract the stimulatory effect of oxidative stress upon glucose intestinal uptake. Therefore, it can be a potentially useful compound for controlling hyperglycemia, especially in the presence of increased intestinal oxidative stress levels.
Collapse
Affiliation(s)
- Juliana A. Barreto-Peixoto
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Cláudia Silva
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Anabela S. G. Costa
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Gerardo Álvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain; (G.Á.-R.); (A.C.); (E.I.)
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain; (G.Á.-R.); (A.C.); (E.I.)
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain; (G.Á.-R.); (A.C.); (E.I.)
| | - M. Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, 4200-135 Porto, Portugal
| | - Nelson Andrade
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
13
|
Nunes AR, Costa EC, Alves G, Silva LR. Nanoformulations for the Delivery of Dietary Anthocyanins for the Prevention and Treatment of Diabetes Mellitus and Its Complications. Pharmaceuticals (Basel) 2023; 16:ph16050736. [PMID: 37242519 DOI: 10.3390/ph16050736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by abnormal blood glucose levels-hyperglycemia, caused by a lack of insulin secretion, impaired insulin action, or a combination of both. The incidence of DM is increasing, resulting in billions of dollars in annual healthcare costs worldwide. Current therapeutics aim to control hyperglycemia and reduce blood glucose levels to normal. However, most modern drugs have numerous side effects, some of which cause severe kidney and liver problems. On the other hand, natural compounds rich in anthocyanidins (cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin) have also been used for the prevention and treatment of DM. However, lack of standardization, poor stability, unpleasant taste, and decreased absorption leading to low bioavailability have hindered the application of anthocyanins as therapeutics. Therefore, nanotechnology has been used for more successful delivery of these bioactive compounds. This review summarizes the potential of anthocyanins for the prevention and treatment of DM and its complications, as well as the strategies and advances in the delivery of anthocyanins using nanoformulations.
Collapse
Affiliation(s)
- Ana R Nunes
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CNC-Centre for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Elisabete C Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Luís R Silva
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CPIRN-UDI-IPG-Research Unit for Inland Development, Center for Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-554 Guarda, Portugal
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II-Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| |
Collapse
|
14
|
An Equilibrium State Diagram for Storage Stability and Conservation of Active Ingredients in a Functional Food Based on Polysaccharides Blends. Polymers (Basel) 2023; 15:polym15020367. [PMID: 36679251 PMCID: PMC9860543 DOI: 10.3390/polym15020367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
A functional food as a matrix based on a blend of carbohydrate polymers (25% maltodextrin and 75% inulin) with quercetin and Bacillus claussi to supply antioxidant and probiotic properties was prepared by spray drying. The powders were characterized physiochemically, including by moisture adsorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM), and modulated differential scanning calorimetry (MDSC). The type III adsorption isotherm developed at 35 °C presented a monolayer content of 2.79 g of water for every 100 g of dry sample. The microstructure determined by XRD presented three regions identified as amorphous, semicrystalline, and crystalline-rubbery states. SEM micrographs showed variations in the morphology according to the microstructural regions as (i) spherical particles with smooth surfaces, (ii) a mixture of spherical particles and irregular particles with heterogeneous surfaces, and (iii) agglomerated irregular-shape particles. The blend's functional performance demonstrated antioxidant activities of approximately 50% of DPPH scavenging capacity and viability values of 6.5 Log10 CFU/g. These results demonstrated that the blend displayed functional food behavior over the complete interval of water activities. The equilibrium state diagram was significant for identifying the storage conditions that promote the preservation of functional food properties and those where the collapse of the microstructure occurs.
Collapse
|
15
|
Boskov D, Milatovic D, Rakonjac V, Zec G, Hudina M, Veberic R, Mikulic-Petkovsek M. The Phenolic Profile of Sweet Cherry Fruits Influenced by Cultivar/Rootstock Combination. PLANTS (BASEL, SWITZERLAND) 2022; 12:103. [PMID: 36616232 PMCID: PMC9823671 DOI: 10.3390/plants12010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
The influence of three cultivars ('Carmen', 'Kordia' and 'Regina') grafted on six rootstocks (Mahaleb, 'Colt', 'Oblacinska', 'M × M 14', 'Gisela 5' and 'Gisela 6') on the phenolic profile of sweet cherry fruits was studied during a two-year period. All the individual phenolic compounds were detected using high-pressure liquid chromatography with diode-array detection coupled with mass spectrometry (HPLC-DAD-MSn). In all the examined samples, 54 compounds were identified and divided into five phenolic classes: anthocyanins (4 compounds), flavonols (7), flavanols (11), flavanones (4), and hydroxycinnamic acids (28). Anthocyanins (58%) and hydroxycinnamic acids (31%) showed the greatest amounts in all the examined fruit samples. PCA analysis revealed that among the cultivars, 'Kordia' showed the highest phenolic content. Regarding rootstocks, the lowest values of the most important phenolic compounds were obtained in fruits from trees grafted onto the seedling rootstock Mahaleb. Among the clonal rootstocks, the vigorous 'Colt' and dwarf 'Gisela 5' promoted the highest values of the evaluated phenolic compounds in the cultivars 'Kordia' and 'Carmen', while the dwarf 'Oblacinska' and semi-vigorous 'M × M 14' induced the highest values in the cultivar 'Regina'. By evaluating the influence of cultivars and rootstocks on the phenolic content in fruit, it has been proven that the cultivar has the most significant influence. However, the rootstock also influences the content of a large number of phenolic compounds. The selection of an adequate cultivar/rootstock combination can also be a powerful tool for improving the phenolic content in fruits, and consequently the nutritional value of sweet cherry fruits.
Collapse
Affiliation(s)
- Djordje Boskov
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Dragan Milatovic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Vera Rakonjac
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Gordan Zec
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Metka Hudina
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Robert Veberic
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Maja Mikulic-Petkovsek
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Optimization of a Green Extraction of Polyphenols from Sweet Cherry (Prunus avium L.) Pulp. Processes (Basel) 2022. [DOI: 10.3390/pr10081657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This work focused on the optimization of the ultrasound (US) extraction of polyphenols from sweet cherry pulp by monitoring cyanidin-3O-rutinoside, quercetin-3O-rutinoside, and trans-3-O-coumaroylquinic acid, representing the main anthocyanin, flavonol, and hydroxycinnamate, respectively, identified in the extracts through chromatographic analyses (HPLC-DAD), as output variables. The optimization was performed following a two-level central composite design and the influence of the selected independent variables (i.e., extraction time and solid to solvent ratio) was checked through the response surface methodology. The maximum recovery of the phenolic compounds was obtained at 3 min and 0.25 g/mL in water/ethanol (1:1, v/v) at a set temperature (25 °C), sonication power (100 W), and sonication frequency (37 kHz). Subsequent validation experiments proved the effectiveness and reliability of the gathered mathematical models in defining the best ultrasound-assisted extraction conditions.
Collapse
|
17
|
Special Issue on Functional Properties in Preharvest and Postharvest Fruit and Vegetables. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fruit and vegetables, which represent an important part of our daily diet, are rich sources of bioactive compounds [...]
Collapse
|
18
|
Gonçalves AC, Nunes AR, Flores-Félix JD, Alves G, Silva LR. Cherries and Blueberries-Based Beverages: Functional Foods with Antidiabetic and Immune Booster Properties. Molecules 2022; 27:3294. [PMID: 35630771 PMCID: PMC9145489 DOI: 10.3390/molecules27103294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Nowadays, it is largely accepted that the daily intake of fruits, vegetables, herbal products and derivatives is an added value in promoting human health, given their capacity to counteract oxidative stress markers and suppress uncontrolled pro-inflammatory responses. Given that, natural-based products seem to be a promising strategy to attenuate, or even mitigate, the development of chronic diseases, such as diabetes, and to boost the immune system. Among fruits, cherries and blueberries are nutrient-dense fruits that have been a target of many studies and interest given their richness in phenolic compounds and notable biological potential. In fact, research has already demonstrated that these fruits can be considered functional foods, and hence, their use in functional beverages, whose popularity is increasing worldwide, is not surprising and seem to be a promising and useful strategy. Therefore, the present review reinforces the idea that cherries and blueberries can be incorporated into new pharmaceutical products, smart foods, functional beverages, and nutraceuticals and be effective in preventing and/or treating diseases mediated by inflammatory mediators, reactive species, and free radicals.
Collapse
Affiliation(s)
- Ana C Gonçalves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana R Nunes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CNC-Centre for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - José D Flores-Félix
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Gilberto Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Luís R Silva
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CPIRN-UDI-IPG-Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
19
|
Willig G, Brunissen F, Brunois F, Godon B, Magro C, Monteux C, Peyrot C, Ioannou I. Phenolic Compounds Extracted from Cherry Tree (Prunus avium) Branches: Impact of the Process on Cosmetic Properties. Antioxidants (Basel) 2022; 11:antiox11050813. [PMID: 35624677 PMCID: PMC9138022 DOI: 10.3390/antiox11050813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
Abstract
Cherry tree branches (Prunus avium var burlat Rosaceae) are agricultural by-products that are often neglected, yet they are rich in phenolic compounds and highly appreciated for their numerous biological activities. Extracts of cherry tree branches were evaluated for their use in cosmetics, particularly for their antioxidant, anti-tyrosinase, and antimicrobial activities. Samples were obtained by accelerated solvent extraction (ASE) at different ethanol percentages and different temperatures. Fourteen phenolic compounds were identified in the extracts by mass spectrometry. Three major compounds were identified (catechin, genistin, and prunin) representing 84 wt% of the total phenolic compounds. Optimal operating conditions maximizing the content of phenolic compounds were determined using a one factor at a time (OFAT) approach (70% aqueous ethanol, 70 °C). The extract obtained under these conditions also showed the highest antioxidant and anti-tyrosinase activities, certainly due to a high catechin content. Although the antimicrobial activities of extracts are less versatile than those of synthetic molecules, they are nonetheless interesting. According to these results, the extracts of cherry tree branches could be used in cosmetics for their interesting properties.
Collapse
Affiliation(s)
- Gaëlle Willig
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (G.W.); (F.B.); (F.B.); (B.G.)
| | - Fanny Brunissen
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (G.W.); (F.B.); (F.B.); (B.G.)
| | - Fanny Brunois
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (G.W.); (F.B.); (F.B.); (B.G.)
| | - Blandine Godon
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (G.W.); (F.B.); (F.B.); (B.G.)
| | - Christian Magro
- Chestnut, 26 Rue Barthélémy de Laffemas, 26000 Valence, France; (C.M.); (C.M.)
| | - Charles Monteux
- Chestnut, 26 Rue Barthélémy de Laffemas, 26000 Valence, France; (C.M.); (C.M.)
| | - Cédric Peyrot
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (G.W.); (F.B.); (F.B.); (B.G.)
- Correspondence: (C.P.); (I.I.)
| | - Irina Ioannou
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; (G.W.); (F.B.); (F.B.); (B.G.)
- Correspondence: (C.P.); (I.I.)
| |
Collapse
|
20
|
Mineral Content and Volatile Profiling of Prunus avium L. (Sweet Cherry) By-Products from Fundão Region (Portugal). Foods 2022; 11:foods11050751. [PMID: 35267384 PMCID: PMC8909425 DOI: 10.3390/foods11050751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Large amounts of Prunus avium L. by-products result from sweet cherry production and processing. This work aimed to evaluate the mineral content and volatile profiling of the cherry stems, leaves, and flowers of the Saco cultivar collected from the Fundão region (Portugal). A total of 18 minerals were determined by ICP-MS, namely 8 essential and 10 non-essential elements. Phosphorus (P) was the most abundant mineral, while lithium (Li) was detected in trace amounts. Three different preparations were used in this work to determine volatiles: hydroethanolic extracts, crude extracts, and aqueous infusions. A total of 117 volatile compounds were identified using HS-SPME/GC-MS, distributed among different chemical classes: 31 aldehydes, 14 alcohols, 16 ketones, 30 esters, 4 acids, 4 monoterpenes, 3 norisoprenoids, 4 hydrocarbons, 7 heterocyclics, 1 lactone, 1 phenol, and 2 phenylpropenes. Benzaldehyde, 4-methyl-benzaldehyde, hexanal, lilac aldehyde, and 6-methyl-5-hepten-2-one were the major volatile compounds. Differences in the types of volatiles and their respective amounts in the different extracts were found. This is the first study that describes the mineral and volatile composition of Portuguese sweet cherry by-products, demonstrating that they could have great potential as nutraceutical ingredients and natural flavoring agents to be used in the pharmaceutical, cosmetic, and food industries.
Collapse
|