1
|
Chervet A, Nehme R, Defois-Fraysse C, Decombat C, Blavignac C, Auxenfans C, Evrard B, Michel S, Filaire E, Berthon JY, Dreux-Zigha A, Delort L, Caldefie-Chézet F. Development and characterization of a chicory extract fermented by Akkermansia muciniphila: An in vitro study on its potential to modulate obesity-related inflammation. Curr Res Food Sci 2025; 10:100974. [PMID: 39906505 PMCID: PMC11791162 DOI: 10.1016/j.crfs.2025.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Obesity, the fifth leading cause of death globally and linked to chronic low-grade inflammation and development of numerous severe pathologies, is a major public health problem. Fermented foods, probiotics, and postbiotics emerge as promising avenues for combating obesity and inflammation. The aim of our study was to develop and characterize phyto-postbiotics corresponding to prebiotic compounds fermented by gut bacteria, which could act on obesity and related-inflammation. Chicory extract fermented by Akkermansia muciniphila (C-Akm) was selected as the most antioxidant of 20 fermented extracts. The identification of metabolites derived from C-Akm extract has enabled us to detect mostly amino acids, acids, and some polyphenols (daidzein and genistein). The anti-inflammatory and anti-obesity activities of C-Akm extract were studied by testing the extract (50 μg/mL) on the polarization of THP-1 into macrophages, the secretion of pro-inflammatory cytokines in LPS-stimulated PBMCs, and the secretion of leptin and adiponectin in adipospheroids derived from human adipose stem cells. Finally, the extract was examined in 3D co-culture model mimicking inflamed obese adipose tissue. We found that C-Akm extract decreased ROS generation, TNF-α and Il-6 gene expression in polarized macrophages, INFγ and IL-17A secretion in LPS-stimulated PBMCs stimulated with LPS. It also decreased leptin expression while increasing adiponectin and HSL expression levels in both adipocytes and co-cultures. In addition, C-Akm extract stimulated adiponectin secretion in the co-culture model. Finally, our in vitro investigations demonstrated the potential benefits of C-Akm extract in the prevention and treatment of obesity-related inflammation.
Collapse
Affiliation(s)
- A. Chervet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - R. Nehme
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | | | - C. Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - C. Blavignac
- Université Clermont-Auvergne, Centre d’Imagerie Cellulaire Santé (CCIS), Clermont-Ferrand, France
| | - C. Auxenfans
- Banque de Tissus et de Cellules, Hôpital Edouard-Herriot, 69000, Lyon, France
| | - B. Evrard
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - S. Michel
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - E. Filaire
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - J.-Y. Berthon
- Greentech, Biopôle Clermont-Limagne, 63360, Saint-Beauzire, France
| | - A. Dreux-Zigha
- Greencell, Biopôle Clermont-Limagne, 63360, Saint-Beauzire, France
| | - L. Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| | - F. Caldefie-Chézet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
2
|
Chen SY, Chiang IC, Chen YY, Hsu YH, Yen GC. Recent advances in the potential of Phyllanthus emblica L. and its related foods for combating metabolic diseases through methylglyoxal trapping. Food Res Int 2024; 194:114907. [PMID: 39232532 DOI: 10.1016/j.foodres.2024.114907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Methylglyoxal (MG) serves as the primary precursor for the nonenzymatic glycation of proteins and DNA, leading to advanced glycation end products (AGEs). Regular intake of dietary MG is strongly correlated with low-grade inflammation, potentially accelerating the pathogenesis of metabolic diseases, including obesity, diabetes, cancers, liver diseases, Alzheimer's disease, cardiovascular diseases, aging, and bone loss. Although pharmaceutical agents (pimagedine and candesartan) have been developed to inhibit MG formation, they often come with serious side effects (nausea, diarrhea, headache, gastrointestinal disturbance, symptomatic hypotension, abnormal renal and liver function tests, development of antinuclear antibody, pernicious-like anemia, and hyperkalemia), highlighting the need for an efficient and safe approach to scavenging MG. Phyllanthus emblica Linn fruit, a nutritious edible fruit, and medicinal plant contains over 300 bioactive compounds. Among twenty-three herbals, 100 μg/mL of the aqueous extract of Phyllanthus emblica fruit (APF) exhibits the highest potency in trapping MG, achieving an 87.3 % reduction under d-fructose induced BSA-AGEs formation. However, there are few reports detailing APF and its related foods' specific impact on disease prevention through MG trapping. This review summarizes the mechanisms through which MG is linked to the development of metabolic diseases and provides several strategies for reducing MG levels using APF and its bioactive compounds. The potential antiglycation properties of APF may offer new applications in the food industry and pharmacological research.
Collapse
Affiliation(s)
- Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - I-Chen Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Ying-Ying Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Yi-Hsien Hsu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan; Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
3
|
Avinash PG, Hamid, Shams R, Dash KK, Shaikh AM, Ungai D, Harsányi E, Suthar T, Kovács B. Recent Insights into the Morphological, Nutritional and Phytochemical Properties of Indian Gooseberry ( Phyllanthus emblica) for the Development of Functional Foods. PLANTS (BASEL, SWITZERLAND) 2024; 13:574. [PMID: 38475421 DOI: 10.3390/plants13050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Aonla, commonly known as Indian gooseberry (Phyllanthus emblica), is a plant native to India with various therapeutic and dietary benefits. This review covers the taxonomical, morphological, and species-level classifications of aonla fruit, including its flower biology, maturation, harvesting, and yield metrics. It also discusses the nutritional, physico-chemical, and phytochemical characteristics and the total antioxidant and antimicrobial activities and mineral compositions of several aonla fruit cultivars. Additionally, the health benefits of aonla are reviewed, including its analgesic, antipyretic, antioxidative, anti-inflammatory, anti-aging, ulcerogenic, chemo-protective, neuroprotective, free radical scavenging, hypoglycaemic, and immunogenic properties, which make it beneficial in the treatment and prevention of various illnesses. Further various forms of fruit extract are also considered to be beneficial for the improvement of plant and animal health. Overall, aonla is a valuable fruit with significant potential for use in improving human health.
Collapse
Affiliation(s)
- Pawar Gayatri Avinash
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144001, India
| | - Hamid
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144001, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144001, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology Malda, Malda 732141, India
| | - Ayaz Mukarram Shaikh
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Diána Ungai
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Endre Harsányi
- Agricultural Research Institutes and Academic Farming (AKIT), Faculty of Agriculture, Food Science and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | | | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Belahcene S, Kebsa W, Akingbade TV, Umar HI, Omoboyowa DA, Alshihri AA, Abo Mansour A, Alhasaniah AH, Oraig MA, Bakkour Y, Leghouchi E. Chemical Composition Antioxidant and Anti-Inflammatory Activities of Myrtus communis L. Leaf Extract: Forecasting ADMET Profiling and Anti-Inflammatory Targets Using Molecular Docking Tools. Molecules 2024; 29:849. [PMID: 38398601 PMCID: PMC10893115 DOI: 10.3390/molecules29040849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Compounds derived from natural sources continue to serve as chemical scaffolds for designing prophylactic/therapeutic options for human healthcare. In this study, we aimed to systematically unravel the chemical profile and antioxidant and anti-inflammatory activities of myrtle methanolic extract (MMEx) using in vitro, in vivo, and in silico approaches. High levels of TPC (415.85 ± 15.52 mg GAE/g) and TFC (285.80 ± 1.64 mg QE/g) were observed. Mass spectrophotometry (GC-MS) analysis revealed the presence of 1,8-cineole (33.80%), α-pinene (10.06%), linalool (4.83%), p-dimethylaminobenzophenone (4.21%), thunbergol (4%), terpineol (3.60%), cis-geranyl acetate (3.25%), and totarol (3.30%) as major compounds. MMEx induced pronounced dose-dependent inhibition in all assays, and the best antioxidant activity was found with H2O2, with an IC50 of 17.81 ± 3.67 µg.mL-1. MMEx showed a good anti-inflammatory effect in vivo by limiting the development of carrageenan-induced paw edema. The pharmacokinetic profiles of the active molecules were determined using the SwissADME website, followed by virtual screening against anti-inflammatory targets including phospholipase A2 (PLA-2), cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and NF-κB. A pharmacokinetic study revealed that the molecules have good absorption, distribution, and metabolism profiles, with negative organ toxicity. Among the compounds identified by GC-MS analysis, pinostrobin chalcone, cinnamyl cinnamate, hedycaryol, totarol, and p-dimethylaminobenzophenone were observed to have good binding scores, thus appreciable anti-inflammatory potential. Our study reveals that MMEx from Algerian Myrtus communis L. can be considered to be a promising candidate for alleviating many health complaints associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Samia Belahcene
- Laboratory of Biotechnology, Environment and Health, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria
| | - Widad Kebsa
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria;
| | - Tomilola Victor Akingbade
- Computer-Aided Therapeutic Discovery and Design Platform, Federal University of Technology, PMB 704 Akure, Gaga 340110, Nigeria; (T.V.A.); (H.I.U.)
| | - Haruna Isiyaku Umar
- Computer-Aided Therapeutic Discovery and Design Platform, Federal University of Technology, PMB 704 Akure, Gaga 340110, Nigeria; (T.V.A.); (H.I.U.)
| | - Damilola Alex Omoboyowa
- Phyto-Medicine and Computational Biology Laboratory, Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko 57257, Nigeria
| | - Abdulaziz A. Alshihri
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia;
| | - Adel Abo Mansour
- Department of Clinical Laboratory Sciences, College of Applied Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Sciences, Najran University, Najran 1988, Saudi Arabia
| | - Mohammed A. Oraig
- Radiology Department, Khamis Mushayt General Hospital, Khamis Mushayt 62433, Saudi Arabia;
| | - Youssef Bakkour
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia;
| | - Essaid Leghouchi
- Laboratory of Biotechnology, Environment and Health, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria
| |
Collapse
|
5
|
Nasution R, Quranayati Q, Saidi N, Nurliana N, Idroes R. Antidiabetic activities of Phyllanthus emblica: An updated review. AIP CONFERENCE PROCEEDINGS 2024; 3082:040043. [DOI: 10.1063/5.0202638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
The Potential Role of Apigenin in Cancer Prevention and Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186051. [PMID: 36144783 PMCID: PMC9505045 DOI: 10.3390/molecules27186051] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Cancer is the leading cause of death worldwide. In spite of advances in the treatment of cancer, currently used treatment modules including chemotherapy, hormone therapy, radiation therapy and targeted therapy causes adverse effects and kills the normal cells. Therefore, the goal of more effective and less side effects-based cancer treatment approaches is still at the primary position of present research. Medicinal plants or their bioactive ingredients act as dynamic sources of drugs due to their having less side effects and also shows the role in reduction of resistance against cancer therapy. Apigenin is an edible plant-derived flavonoid that has received significant scientific consideration for its health-promoting potential through modulation of inflammation, oxidative stress and various other biological activities. Moreover, the anti-cancer potential of apigenin is confirmed through its ability to modulate various cell signalling pathways, including tumor suppressor genes, angiogenesis, apoptosis, cell cycle, inflammation, apoptosis, PI3K/AKT, NF-κB, MAPK/ERK and STAT3 pathways. The current review mainly emphases the potential role of apigenin in different types of cancer through the modulation of various cell signaling pathways. Further studies based on clinical trials are needed to explore the role of apigenin in cancer management and explain the possible potential mechanisms of action in this vista.
Collapse
|
7
|
Therapeutic Potential of Ajwa Dates (Phoenix dactylifera) Extract in Prevention of Benzo(a)pyrene-Induced Lung Injury through the Modulation of Oxidative Stress, Inflammation, and Cell Signalling Molecules. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic respiratory diseases are a leading cause of lung-related death worldwide. The vital factors causing lung pathogenesis include consistent exposure to tobacco smoke, air pollution, and occupational risks. Regarding the significant morbidity and mortality linked to lung pathogenesis, there are neither conclusive treatments nor wholly preventive strategies. In the present study, the protective mechanism of Ajwa date extract (ADE), on Benzopyrene [B(a)P]-induced lung injury in animal models was investigated using antioxidant, lipid peroxidation, anti-inflammatory activities, angiogenesis, histopathological studies, and apoptosis assays. B(a)P treatment significantly decreased the level of antioxidant enzymes such as catalase (Cat) (13.4 vs. 24.7 U/mg protein), Superoxide dismutase (SOD) (38.5 vs. 65.7 U/mg protein), Glutathione peroxidase (GPx) (42.4 vs. 57.3 U/mg protein) and total antioxidant capacity (TAC) (49.8 vs. 98.7 nM) as compared to the treatment group (p < 0.05). B(a)P treatment led to increased expression of pro-inflammatory markers such as TNF-α (88.5 vs. 72.6 pg/mL), IFN-γ (4.86 vs. 3.56 pg/mL), interleukin-6 (IL-6) (109.6 vs. 85.4 pg/mL) and CRP (1.84 vs. 0.94 ng/mL) as compared to the treatment group (p < 0.05). The data shows a significant increase in lipid peroxidation and angiogenesis factors such as vascular endothelial growth factor (VEGF) by B(a)P treatment (p < 0.05). However, ADE treatment showed an improvement of these factors. In addition, ADE treatment significantly ameliorated histopathological changes, collagen fiber deposition, and expression pattern of VEGF and Bax proteins. Furthermore, the flow cytometry data demonstrated that B(a)P intoxication enhanced the apoptosis ratio, which was significantly improved with ADE treatment. Finally, we may infer that Phyto-constituents of ADE have the potential to protect against B(a)P-induced lung pathogenesis. Therefore, Ajwa dates might be used to develop a possible potent alternative therapy for lung pathogenesis.
Collapse
|
8
|
Biophysical, Biochemical, and Molecular Docking Investigations of Anti-Glycating, Antioxidant, and Protein Structural Stability Potential of Garlic. Molecules 2022; 27:molecules27061868. [PMID: 35335232 PMCID: PMC8950752 DOI: 10.3390/molecules27061868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Garlic has been reported to inhibit protein glycation, a process that underlies several disease processes, including chronic complications of diabetes mellitus. Biophysical, biochemical, and molecular docking investigations were conducted to assess anti-glycating, antioxidant, and protein structural protection activities of garlic. Results from spectral (UV and fluorescence) and circular dichroism (CD) analysis helped ascertain protein conformation and secondary structure protection against glycation to a significant extent. Further, garlic showed heat-induced protein denaturation inhibition activity (52.17%). It also inhibited glycation, advanced glycation end products (AGEs) formation as well as lent human serum albumin (HSA) protein structural stability, as revealed by reduction in browning intensity (65.23%), decrease in protein aggregation index (67.77%), and overall reduction in cross amyloid structure formation (33.26%) compared with positive controls (100%). The significant antioxidant nature of garlic was revealed by FRAP assay (58.23%) and DPPH assay (66.18%). Using molecular docking analysis, some of the important garlic metabolites were investigated for their interactions with the HSA molecule. Molecular docking analysis showed quercetin, a phenolic compound present in garlic, appears to be the most promising inhibitor of glucose interaction with the HSA molecule. Our findings show that garlic can prevent oxidative stress and glycation-induced biomolecular damage and that it can potentially be used in the treatment of several health conditions, including diabetes and other inflammatory diseases.
Collapse
|
9
|
Sirichai P, Kittibunchakul S, Thangsiri S, On-Nom N, Chupeerach C, Temviriyanukul P, Inthachat W, Nuchuchua O, Aursalung A, Sahasakul Y, Charoenkiatkul S, Suttisansanee U. Impact of Drying Processes on Phenolics and In Vitro Health-Related Activities of Indigenous Plants in Thailand. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030294. [PMID: 35161275 PMCID: PMC8838347 DOI: 10.3390/plants11030294] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 06/01/2023]
Abstract
Thailand has vast areas of tropical forests with many indigenous plants, but limited information is available on their phytochemical profile and in vitro inhibitions of enzymatic and nonenzymatic reactions. This study investigated phenolic profiles using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), antioxidant activities, and in vitro inhibitory activities of 10 indigenous plants on key enzymes related to obesity (lipase), diabetes (α-amylase and α-glucosidase), and Alzheimer's disease (cholinesterases and β-secretase). The nonenzymatic anti-glycation reaction was also investigated. The 10 indigenous plants were Albizia lebbeck (L.) Benth, Alpinia malaccensis (Burm.) Roscoe, Careya arborea Roxb., Diplazium esculentum (Retz.) Swartz, Kaempferia roscoeana Wall., Millettia brandisiana Kurz., Momordica charantia, Phyllanthusemblica L., Zingiber cassumunar Roxb, and Zingiber citriodorum J. Mood & T. Theleide. Preparations were made by either freeze-drying or oven-drying processes. Results suggested that the drying processes had a minor impact on in vitro inhibitions of enzymatic and nonenzymatic reactions (<4-fold difference). P. emblica was the most potent antioxidant provider with high anti-glycation activity (>80% inhibition using the extract concentration of ≤6 mg/mL), while D. esculentum effectively inhibited β-secretase activity (>80% inhibition using the extract concentration of 10 mg/mL). C. arborea exhibited the highest inhibitory activities against lipase (47-51% inhibition using the extract concentration of 1 mg/mL) and cholinesterases (>60% inhibition using the extract concentration of 2 mg/mL), while Mi. brandisiana dominantly provided α-amylase and α-glucosidase inhibitors (>80% inhibition using the extract concentration of ≤2 mg/mL). Information obtained from this research may support usage of the oven-drying method due to its lower cost and easier preparation step for these studied plant species and plant parts. Furthermore, the information on in vitro inhibitions of enzymatic and nonenzymatic reactions could be used as fundamental knowledge for further investigations into other biological activities such as cell culture or in vivo experiments of these health-beneficial plants.
Collapse
Affiliation(s)
- Pandaree Sirichai
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Suwapat Kittibunchakul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Sirinapa Thangsiri
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Nattira On-Nom
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Chaowanee Chupeerach
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Woorawee Inthachat
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Onanong Nuchuchua
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand;
| | - Amornrat Aursalung
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Yuraporn Sahasakul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Somsri Charoenkiatkul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (S.K.); (S.T.); (N.O.-N.); (C.C.); (P.T.); (W.I.); (A.A.); (Y.S.); (S.C.)
| |
Collapse
|
10
|
Anwar S, Raut R, Alsahli MA, Almatroudi A, Alfheeaid H, Alzahrani FM, Khan AA, Allemailem KS, Almatroodi SA, Rahmani AH. Role of Ajwa Date Fruit Pulp and Seed in the Management of Diseases through In Vitro and In Silico Analysis. BIOLOGY 2022; 11:78. [PMID: 35053077 PMCID: PMC8773040 DOI: 10.3390/biology11010078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/24/2022]
Abstract
This study investigated the health-promoting activities of methanolic extracts of Ajwa date seed and fruit pulp extracts through in vitro studies. These studies confirmed potential antioxidant, anti-hemolytic, anti-proteolytic, and anti-bacterial activities associated with Ajwa dates. The EC50 values of fruit pulp and seed extracts in methanol were reported to be 1580.35 ± 0.37 and 1272.68 ± 0.27 µg/mL, respectively, in the DPPH test. The maximum percentage of hydrogen peroxide-reducing activity was 71.3 and 65.38% for both extracts at 600 µg/mL. Fruit pulp and seed extracts inhibited heat-induced BSA denaturation by 68.11 and 60.308%, heat-induced hemolysis by 63.84% and 58.10%, and hypersalinity-induced hemolysis by 61.71% and 57.27%, and showed the maximum anti-proteinase potential of 56.8 and 51.31% at 600 μg/mL, respectively. Seed and fruit pulp inhibited heat-induced egg albumin denaturation at the same concentration by 44.31 and 50.84%, respectively. Ajwa seed showed minimum browning intensity by 63.2%, percent aggregation index by 64.2%, and amyloid structure by 63.8% at 600 μg/mL. At 100 mg/mL, Ajwa seed extract exhibited good antibacterial activity. Molecular docking analysis showed that ten active constituents of Ajwa seeds bind with the critical antioxidant enzymes, catalase (1DGH) and superoxide dismutase (5YTU). The functional residues involved in such interactions include Arg72, Ala357, and Leu144 in 1DGH, and Gly37, Pro13, and Asp11 in 5YTU. Hence, Ajwa dates can be used to develop a suitable alternative therapy in various diseases, including diabetes and possibly COVID-19-associated complications.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| | - Ravindra Raut
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India;
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| | - Hani Alfheeaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Faisal M. Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| |
Collapse
|
11
|
Garlic Extract: Inhibition of Biochemical and Biophysical Changes in Glycated HSA. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112211028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycation of various biomolecules contributes to structural changes and formation of several high molecular weight fluorescent and non-fluorescent, advanced glycation end products (AGEs). AGEs and glycation are involved in various health complications. Synthetic medicines, including metformin, have several adverse effects. Natural products and their derivatives are used in the treatment of various diseases due to their significant therapeutic qualities. Allium sativum (garlic) is used in traditional medicines because of its antioxidant, anti-inflammatory, and anti-diabetic properties. This study aimed to determine the anti-glycating and AGEs inhibitory activities of garlic. Biochemical and biophysical analyses were performed for in vitro incubated human serum albumin (HSA) with 0.05 M of glucose for 1, 5, and 10 weeks. Anti-glycating and AGEs inhibitory effect of garlic was investigated in glycated samples. Increased biochemical and biophysical changes were observed in glycated HSA incubated for 10 weeks (G-HSA-10W) as compared to native HSA (N-HSA) as well as glycated HSA incubated for 1 (G-HSA-1W) and 5 weeks (G-HSA-5W). Garlic extract with a concentration of ≥6.25 µg/mL exhibited significant inhibition in biophysical and biochemical changes of G-HSA-10W. Our findings demonstrated that garlic extract has the ability to inhibit biochemical and biophysical changes in HSA that occurred due to glycation. Thus, garlic extract can be used against glycation and AGE-related health complications linked with chronic diseases in diabetic patients due to its broad therapeutic potential.
Collapse
|