1
|
Pavez-Orrego C, Pastén D. Defining the Scale to Build Complex Networks with a 40-Year Norwegian Intraplate Seismicity Dataset. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1284. [PMID: 37761583 PMCID: PMC10528423 DOI: 10.3390/e25091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
We present a new complex network-based study focused on intraplate earthquakes recorded in southern Norway during the period 1980-2020. One of the most recognized limitations of spatial complex network procedures and analyses concerns the definition of adequate cell size, which is the focus of this approach. In the present study, we analyze the influence of observational errors of hypocentral and epicentral locations of seismic events in the construction of a complex network, looking for the best cell size to build it and to develop a basis for interpreting the results in terms of the structure of the complex network in this seismic region. We focus the analysis on the degree distribution of the complex networks. We observed a strong result of the cell size for the slope of the degree distribution of the nodes, called the critical exponent γ. Based on the Abe-Suzuki method, the slope (γ) showed a negligible variation between the construction of 3- and 2-dimensional complex networks. The results were also very similar for a complex network built with subsets of seismic events. These results suggest a weak influence of observational errors measured for the coordinates latitude, longitude, and depth in the outcomes obtained with this particular methodology and for this high-quality dataset. These results imply stable behavior of the complex network, which shows a structure of hubs for small values of the cell size and a more homogeneous degree distribution when the cell size increases. In all the analyses, the γ parameter showed smaller values of the error bars for greater values of the cell size. To keep the structure of hubs and small error bars, a better range of the side sizes was determined to be between 8 to 16 km. From now on, these values can be used as the most stable cell sizes to perform any kind of study concerning complex network studies in southern Norway.
Collapse
Affiliation(s)
| | - Denisse Pastén
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| |
Collapse
|
2
|
Chelidze T, Matcharashvili T, Mepharidze E, Dovgal N. Complexity in Geophysical Time Series of Strain/Fracture at Laboratory and Large Dam Scales: Review. ENTROPY (BASEL, SWITZERLAND) 2023; 25:467. [PMID: 36981355 PMCID: PMC10048261 DOI: 10.3390/e25030467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
One of the interesting directions of complexity theory is the investigation of the synchronization of mechanical behavior of large-scale systems by weak forcing, which is one of manifestations of nonlinearity/complexity of a system. The effect of periodic weak mechanical or electromagnetic forcing leading to synchronization was studied on the laboratory load-spring system as well as on a big dam's strain data. Due to synchronization, the phase space structure of the forced system strongly depends on the weak forcing intensity-determinism show itself in the recurrence of definite states of the forced system. The nonlinear dynamics of tilts/strains/seismicity near grand dams reflect both the complexity of the mentioned time series, connected with the natural agents (regional and local geodynamics), which were presented even before dam erection, as well as the effects of the water level (WL) variation in the reservoir, which is a quasi-periodic forcing superimposed on the natural geodynamic background. Both these effects are documented by the almost half-century of observations at the large Enguri Dam. The obtained data on the dynamics of strain/seismicity near a large dam can be used for the assessment of the possible risks, connected with the abrupt change of routine dynamics of construction.
Collapse
|
3
|
Chouliaras G, Skordas ES, Sarlis NV. Earthquake Nowcasting: Retrospective Testing in Greece. ENTROPY (BASEL, SWITZERLAND) 2023; 25:379. [PMID: 36832745 PMCID: PMC9955490 DOI: 10.3390/e25020379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/01/2023]
Abstract
Earthquake nowcasting (EN) is a modern method of estimating seismic risk by evaluating the progress of the earthquake (EQ) cycle in fault systems. EN evaluation is based on a new concept of time, termed 'natural time'. EN employs natural time, and uniquely estimates seismic risk by means of the earthquake potential score (EPS), which has been found to have useful applications both regionally and globally. Amongst these applications, here we focused on Greece since 2019, for the estimation of the EPS for the largest-magnitude events, MW(USGS) ≥ 6, that occurred during our study period: for example, the MW= 6.0 WNW-of-Kissamos EQ on 27 November 2019, the MW= 6.5 off-shore Southern Crete EQ on 2 May 2020, the MW= 7.0 Samos EQ on 30 October 2020, the MW= 6.3 Tyrnavos EQ on 3 March 2021, the MW= 6.0 Arkalohorion Crete EQ on 27 September 2021, and the MW= 6.4 Sitia Crete EQ on 12 October 2021. The results are promising, and reveal that the EPS provides useful information on impending seismicity.
Collapse
Affiliation(s)
| | - Efthimios S. Skordas
- Section of Condensed Matter Physics and Solid Earth Physics Institute, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 157 84 Athens, Greece
| | - Nicholas V. Sarlis
- Section of Condensed Matter Physics and Solid Earth Physics Institute, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 157 84 Athens, Greece
| |
Collapse
|
4
|
Natural Time Analysis of Global Seismicity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Natural time analysis enables the introduction of an order parameter for seismicity, which is just the variance of natural time χ, κ1=⟨χ2⟩−⟨χ⟩2. During the last years, there has been significant progress in the natural time analysis of seismicity. Milestones in this progress are the identification of clearly distiguishable minima of the fluctuations of the order parameter κ1 of seismicity both in the regional and global scale, the emergence of an interrelation between the time correlations of the earthquake (EQ) magnitude time series and these minima, and the introduction by Turcotte, Rundle and coworkers of EQ nowcasting. Here, we apply all these recent advances in the global seismicity by employing the Global Centroid Moment Tensor (GCMT) catalog. We show that the combination of the above three milestones may provide useful precursory information for the time of occurrence and epicenter location of strong EQs with M≥8.5 in GCMT. This can be achieved with high statistical significance (p-values of the order of 10−5), while the epicentral areas lie within a region covering only 4% of that investigated.
Collapse
|
5
|
Ramírez-Rojas A, Flores-Márquez EL. Nonlinear Statistical Features of the Seismicity in the Subduction Zone of Tehuantepec Isthmus, Southern México. ENTROPY 2022; 24:e24040480. [PMID: 35455143 PMCID: PMC9028209 DOI: 10.3390/e24040480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/10/2022]
Abstract
After the M8.2 main-shock occurred on 7 September 2017 at the Isthmus of Tehuantepec, Mexico, the spatial distribution of seismicity has showed a clear clusterization of earthquakes along the collision region of the Tehuantepec Transform/Ridge with the Middle America Trench off Chiapas. Furthermore, nowadays, the temporal rate of occurrence in the number of earthquakes has also showed a pronounced increase. On the basis of this behavior, we studied the sequence of magnitudes of the earthquakes which occurred within the Isthmus of Tehuantepec in southern Mexico from 2010 to 2020. Since big earthquakes are considered as a phase transition, after the M8.2 main-shock, one must expect changes in the Tehuantepec ridge dynamics, which can be observed considering that the b-value in the Gutenberg–Richter law, has also showed changes in time. The goal of this paper is to characterize the behavior of the seismic activity by using the Gutenberg–Richter law, multifractal detrended fluctuation analysis, visibility graph and nowcasting method. Those methods have showed important parameters in order to assess risk, the multifractality and connectivity. Our findings indicate, first that b-value shows a dependency on time, which is clearly described by our analyses based on nowcasting method, multifractality and visibility graph.
Collapse
Affiliation(s)
- Alejandro Ramírez-Rojas
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana, Azcapotzalco, Mexico City 02200, Mexico
- Correspondence:
| | - Elsa Leticia Flores-Márquez
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Circuito Institutos s/n, C.U., Coyoacán 04510, Mexico
| |
Collapse
|
6
|
Perez-Oregon J, Varotsos PK, Skordas ES, Sarlis NV. Estimating the Epicenter of a Future Strong Earthquake in Southern California, Mexico, and Central America by Means of Natural Time Analysis and Earthquake Nowcasting. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1658. [PMID: 34945964 PMCID: PMC8700728 DOI: 10.3390/e23121658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
It has recently been shown in the Eastern Mediterranean that by combining natural time analysis of seismicity with earthquake networks based on similar activity patterns and earthquake nowcasting, an estimate of the epicenter location of a future strong earthquake can be obtained. This is based on the construction of average earthquake potential score maps. Here, we propose a method of obtaining such estimates for a highly seismically active area that includes Southern California, Mexico and part of Central America, i.e., the area N1035W80120. The study includes 28 strong earthquakes of magnitude M ≥7.0 that occurred during the time period from 1989 to 2020. The results indicate that there is a strong correlation between the epicenter of a future strong earthquake and the average earthquake potential score maps. Moreover, the method is also applied to the very recent 7 September 2021 Guerrero, Mexico, M7 earthquake as well as to the 22 September 2021 Jiquilillo, Nicaragua, M6.5 earthquake with successful results. We also show that in 28 out of the 29 strong M ≥7.0 EQs studied, their epicenters lie close to an estimated zone covering only 8.5% of the total area.
Collapse
Affiliation(s)
- Jennifer Perez-Oregon
- Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, UP Zacatenco C.P., Mexico City 07738, Mexico;
- Solid Earth Physics Institute, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 157 84 Athens, Greece;
| | - Panayiotis K. Varotsos
- Section of Geophysics and Geothermy, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 157 84 Athens, Greece;
| | - Efthimios S. Skordas
- Solid Earth Physics Institute, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 157 84 Athens, Greece;
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 157 84 Athens, Greece
| | - Nicholas V. Sarlis
- Solid Earth Physics Institute, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 157 84 Athens, Greece;
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 157 84 Athens, Greece
| |
Collapse
|