1
|
Agatonovic-Kustrin S, Wong S, Dolzhenko AV, Gegechkori V, Morton DW. HPTLC-guided flash chromatographic isolation and spectroscopic identification of bioactive compounds from olive flowers. J Chromatogr A 2024; 1735:465310. [PMID: 39232418 DOI: 10.1016/j.chroma.2024.465310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
The goal of preparative chromatography is to isolate suitable amounts of compound(s) at the required purity in the most cost-effective way. This study analyses the power of High-performance thin-layer chromatography (HPTLC) guided preparative flash chromatography to separate and isolate bioactive compounds from an olive flower extract for their further characterisation via spectroscopy. The structure and purity of isolated bioactive compounds were assessed using Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. Flash chromatography of the olive flower extract successfully isolated pure oleanolic and maslinic acids. Moreover, the flash chromatography of the extract allowed isolation and phytochemical analysis of the most lipophilic fraction of the extract, which was found to contain n-eicosane and n-(Z)-eicos-5-ene, that has not been isolated previously with preparative TLC.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Department of Rural Clinical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| | - Sheryn Wong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Anton V Dolzhenko
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987 Perth, Western Australia 6845, Australia
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - David W Morton
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; Department of Rural Clinical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| |
Collapse
|
2
|
Vasarri M, Bergonzi MC, Ivanova Stojcheva E, Bilia AR, Degl’Innocenti D. Olea europaea L. Leaves as a Source of Anti-Glycation Compounds. Molecules 2024; 29:4368. [PMID: 39339362 PMCID: PMC11434099 DOI: 10.3390/molecules29184368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
High concentrations of advanced glycation end products (AGEs) have been linked to diseases, including diabetic complications. The pathophysiological effects of AGEs are mainly due to oxidative stress and inflammatory processes. Among the proteins most affected by glycation are albumin, the most abundant circulating protein, and collagen, which has a long biological half-life and is abundant in the extracellular matrix. The potential cellular damage caused by AGEs underscores the importance of identifying and developing natural AGE inhibitors. Indeed, despite initial promise, many synthetic inhibitors have been withdrawn from clinical trials due to issues such as cytotoxicity and poor pharmacokinetics. In contrast, natural products have shown significant potential in inhibiting AGE formation. Olea europaea L. leaves, rich in bioactive compounds like oleuropein and triterpenoids, have attracted scientific interest, emphasizing the potential of olive leaf extracts in health applications. This study investigates the anti-glycation properties of two polyphenol-rich extracts (OPA40 and OPA70) and a triterpene-enriched extract (TTP70) from olive leaves. Using in vitro protein glycation methods with bovine serum albumin (BSA)-glucose and gelatin-glucose systems, this study assesses AGE formation inhibition by these extracts through native polyacrylamide gel electrophoresis (N-PAGE) and autofluorescence detection. OPA40 and OPA70 exhibited strong, dose-dependent anti-glycation effects. These effects were corroborated by electrophoresis and further supported by similar results in a gelatin-glucose system. Additionally, TTP70 showed moderate anti-glycation activity, with a synergistic effect of its components. The results support the real possibility of using olive leaf bioproducts in ameliorating diabetic complications, contributing to sustainable bio-economy practices.
Collapse
Affiliation(s)
- Marzia Vasarri
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
| | | | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| |
Collapse
|
3
|
Sylla B, Jost G, Lavoie S, Legault J, Gauthier C, Pichette A. Synthesis and cytotoxicity evaluation of d- and l-sugar-containing mono- and bidesmosidic ursane-type saponins. Bioorg Med Chem 2024; 106:117737. [PMID: 38718553 DOI: 10.1016/j.bmc.2024.117737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/23/2024]
Abstract
Ursolic acid and uvaol are naturally occurring triterpenoids that exhibit a broad spectrum of pharmacological activities, including cytotoxicity. However, a primary challenge in the development of ursane-type pentacyclic triterpenoids for pharmacological use is their poor aqueous solubility, which can impede their effectiveness as therapeutics agents. In this study, we present the facile synthesis of ursolic acid monodesmosides and uvaol bidesmosides, incorporating naturally occurring and water-soluble pentoses and deoxyhexose sugar moieties of opposite d- and l-configurations at the C3 or C3/C28 positions of the ursane core. The twenty synthetic saponins were evaluated in vitro for their cytotoxicity against lung carcinoma (A549) and colorectal adenocarcinoma (DLD-1) cell lines. Notably, all the bidesmosidic uvaol saponins were shown to be cytotoxic as compared to their non-cytotoxic parent triterpenoid. For each series of ursane-type saponins, the most active compounds were 3-O-α-l-arabinopyranosyl ursolic acid (3h) and 3,28-di-O-α-l-rhamnopyranosyl uvaol (4f), showing IC50 values in the low micromolar range against A549 and DLD-1 cancer lines.
Collapse
Affiliation(s)
- Balla Sylla
- Centre de Recherche sur La Boréalie (CREB), Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada
| | - Gilles Jost
- Centre de Recherche sur La Boréalie (CREB), Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada
| | - Serge Lavoie
- Centre de Recherche sur La Boréalie (CREB), Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada
| | - Jean Legault
- Centre de Recherche sur La Boréalie (CREB), Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada; Unité Mixte de Recherche (UMR) INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Chicoutimi & Laval, Québec G7H 2B1, Canada
| | - Charles Gauthier
- Centre de Recherche sur La Boréalie (CREB), Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada; Unité Mixte de Recherche (UMR) INRS-UQAC, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Chicoutimi & Laval, Québec G7H 2B1, Canada.
| | - André Pichette
- Centre de Recherche sur La Boréalie (CREB), Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555, boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada.
| |
Collapse
|
4
|
Farva K, Sattar H, Ullah H, Raziq A, Mehmood MD, Tareen AK, Sultan IN, Zohra Q, Khan MW. Phenotypic Analysis, Molecular Characterization, and Antibiogram of Caries-Causing Bacteria Isolated from Dental Patients. Microorganisms 2023; 11:1952. [PMID: 37630520 PMCID: PMC10457851 DOI: 10.3390/microorganisms11081952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Dental caries is a biofilm-mediated, sugar-driven, multifactorial, dynamic disease that results in the phasic demineralization and remineralization of dental hard tissues. Despite scientific advances in cariology, dental caries remains a severe global concern. The aim of this study was to determine the optimization of microbial and molecular techniques for the detection of cariogenic pathogens in dental caries patients, the prevalence of cariogenic bacteria on the basis of socioeconomic, climatological, and hygienic factors, and in vitro evaluation of the antimicrobial activity of selected synthetic antibiotics and herbal extracts. In this study, oral samples were collected from 900 patients for bacterial strain screening on a biochemical and molecular basis. Plant extracts, such as ginger, garlic, neem, tulsi, amla, and aloe vera, were used to check the antimicrobial activity against the isolated strains. Synthetic antimicrobial agents, such as penicillin, amoxicillin, erythromycin, clindamycin, metronidazole, doxycycline, ceftazidime, levofloxacin, and ciprofloxacin, were also used to access the antimicrobial activity. Among 900 patients, 63% were males and 37% were females, patients aged between 36 and 58 (45.7%) years were prone to disease, and the most common symptom was toothache (61%). For oral diseases, 21% used herbs, 36% used antibiotics, and 48% were self-medicated, owing to sweets consumption (60.66%) and fizzy drinks and fast food (51.56%). Staphylococcus mutans (29.11%) and Streptococcus sobrinus (28.11%) were found as the most abundant strains. Seven bacterial strains were successfully screened and predicted to be closely related to genera S. sobrinus, S. mutans, Actinomyces naeslundii, Lactobacillus acidophilus, Eubacterium nodatum, Propionibacterium acidifaciens, and Treponema Pallidum. Among plant extracts, the maximum zone of inhibition was recorded by ginger (22.36 mm) and amla (20.01 mm), while among synthetic antibiotics, ciprofloxacin and levofloxacin were most effective against all microbes. This study concluded that phyto extracts of ginger and amla were considered suitable alternatives to synthetic antibiotics to treat dental diseases.
Collapse
Affiliation(s)
- Khushbu Farva
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Huma Sattar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Hayat Ullah
- Metabolic Engineering Lab, Department of Biological Engineering, Utah State University, Logan, UT 84322, USA
| | - Abdur Raziq
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Muhammad Danish Mehmood
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Afrasiab Khan Tareen
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Imrana Niaz Sultan
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Quratulaain Zohra
- Department of Biotechnology, Project of Sahara for Life Trust, The Sahara College Narowal, Punjab 51601, Pakistan
| | - Muhammad Waseem Khan
- Department of Biotechnology, Balochistan University of Information Technology Engineering and Management Sciences, Quetta 87300, Pakistan
| |
Collapse
|
5
|
Vasarri M, Degl’Innocenti D, Albonetti L, Bilia AR, Bergonzi MC. Pentacyclic Triterpenes from Olive Leaves Formulated in Microemulsion: Characterization and Role in De Novo Lipogenesis in HepG2 Cells. Int J Mol Sci 2023; 24:12113. [PMID: 37569488 PMCID: PMC10419275 DOI: 10.3390/ijms241512113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Olea europaea L. leaves contain a wide variety of pentacyclic triterpenes (TTPs). TTPs exhibit many pharmacological activities, including antihyperlipidemic effects. Metabolic alterations, such as dyslipidemia, are an established risk factor for hepatocellular carcinoma (HCC). Therefore, the use of TTPs in the adjunctive treatment of HCC has been proposed as a possible method for the management of HCC. However, TTPs are characterized by poor water solubility, permeability, and bioavailability. In this work, a microemulsion (ME) loading a TTP-enriched extract (EXT) was developed, to overcome these limits and obtain a formulation for oral administration. The extract-loaded microemulsion (ME-EXT) was fully characterized, assessing its chemical and physical parameters and release characteristics, and the stability was evaluated for two months of storage at 4 °C and 25 °C. PAMPA (parallel artificial membrane permeability assay) was used to evaluate the influence of the formulation on the intestinal passive permeability of the TTPs across an artificial membrane. Furthermore, human hepatocarcinoma (HepG2) cells were used as a cellular model to evaluate the effect of EXT and ME-EXT on de novo lipogenesis induced by elevated glucose levels. The effect was evaluated by detecting fatty acid synthase expression levels and intracellular lipid accumulation. ME-EXT resulted as homogeneous dispersed-phase droplets, with significantly increased EXT aqueous solubility. Physical and chemical analyses showed the high stability of the formulation over 2 months. The formulation realized a prolonged release of TTPs, and permeation studies demonstrated that the formulation improved their passive permeability. Furthermore, the EXT reduced the lipid accumulation in HepG2 cells by inhibiting de novo lipogenesis, and the ME-EXT formulation enhanced the inhibitory activity of EXT on intracellular lipid accumulation.
Collapse
Affiliation(s)
- Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (D.D.)
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy; (L.A.); (A.R.B.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (D.D.)
| | - Laura Albonetti
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy; (L.A.); (A.R.B.)
| | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy; (L.A.); (A.R.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy; (L.A.); (A.R.B.)
| |
Collapse
|
6
|
Avcı CB, Sogutlu F, Pinar Ozates N, Shademan B, Gunduz C. Enhanced Anti-cancer Potency Using a Combination of Oleanolic Acid and Maslinic Acid to Control Treatment Resistance in Breast Cancer. Adv Pharm Bull 2023; 13:611-620. [PMID: 37646060 PMCID: PMC10460813 DOI: 10.34172/apb.2023.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/11/2022] [Accepted: 09/09/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/ mTOR) pathway is a complex intracellular metabolic pathway that leads to cell growth and tumor proliferation and plays a key role in drug resistance in breast cancer. Therefore, the anti-cancer effects of oleanolic acid (OA), maslinic acid (MA), and their combination were investigated to improve the performance of the treatment strategy. Methods We investigated the effect of OA and MA on cell viability using the WST-1 method. The synergistic effect of the combination was analyzed by isobologram analysis. In addition, the effects of the two compounds, individually and in combination, on apoptosis, autophagy, and the cell cycle were investigated in MCF7 cells. In addition, changes in the expression of PI3K/AKT/mTOR genes involved in apoptosis, cell cycle and metabolism were determined by quantitative RT-PCR. Results MA, OA, and a combination of both caused G0/G1 arrest. Apoptosis also increased in all treated groups. The autophagosomal LC3-II formation was induced 1.74-fold in the MA-treated group and 3.25-fold in the MA-OA-treated group. The combination treatment resulted in increased expression of genes such as GSK3B, PTEN, CDKN1B and FOXO3 and decreased expression of IGF1, PRKCB and AKT3 genes. Conclusion The results showed that the combination of these two substances showed the highest synergistic effect at the lowest dose and using MA-OA caused cancer cells to undergo apoptosis. The use of combination drugs may reduce the resistance of cancer cells to treatment.
Collapse
Affiliation(s)
- Cigir Biray Avcı
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | | | | | | |
Collapse
|
7
|
Pirutin SK, Jia S, Yusipovich AI, Shank MA, Parshina EY, Rubin AB. Vibrational Spectroscopy as a Tool for Bioanalytical and Biomonitoring Studies. Int J Mol Sci 2023; 24:ijms24086947. [PMID: 37108111 PMCID: PMC10138916 DOI: 10.3390/ijms24086947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The review briefly describes various types of infrared (IR) and Raman spectroscopy methods. At the beginning of the review, the basic concepts of biological methods of environmental monitoring, namely bioanalytical and biomonitoring methods, are briefly considered. The main part of the review describes the basic principles and concepts of vibration spectroscopy and microspectrophotometry, in particular IR spectroscopy, mid- and near-IR spectroscopy, IR microspectroscopy, Raman spectroscopy, resonance Raman spectroscopy, Surface-enhanced Raman spectroscopy, and Raman microscopy. Examples of the use of various methods of vibration spectroscopy for the study of biological samples, especially in the context of environmental monitoring, are given. Based on the described results, the authors conclude that the near-IR spectroscopy-based methods are the most convenient for environmental studies, and the relevance of the use of IR and Raman spectroscopy in environmental monitoring will increase with time.
Collapse
Affiliation(s)
- Sergey K Pirutin
- Faculty of Biology, Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Institutskaya St. 3, 142290 Pushchino, Russia
| | - Shunchao Jia
- Faculty of Biology, Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Alexander I Yusipovich
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Mikhail A Shank
- Faculty of Biology, Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Evgeniia Yu Parshina
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Andrey B Rubin
- Faculty of Biology, Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
8
|
Vilkickyte G, Petrikaite V, Marksa M, Ivanauskas L, Jakstas V, Raudone L. Fractionation and Characterization of Triterpenoids from Vaccinium vitis-idaea L. Cuticular Waxes and Their Potential as Anticancer Agents. Antioxidants (Basel) 2023; 12:antiox12020465. [PMID: 36830023 PMCID: PMC9952570 DOI: 10.3390/antiox12020465] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Fruit and leaf cuticular waxes are valuable source materials for the isolation of triterpenoids that can be applied as natural antioxidants and anticancer agents. The present study aimed at the semi-preparative fractionation of triterpenoids from cuticular wax extracts of Vaccinium vitis-idaea L. (lingonberry) leaves and fruits and the evaluation of their cytotoxic potential. Qualitative and quantitative characterization of obtained extracts and triterpenoid fractions was performed using HPLC-PDA method, followed by complementary analysis by GC-MS. For each fraction, cytotoxic activities towards the human colon adenocarcinoma cell line (HT-29), malignant melanoma cell line (IGR39), clear renal carcinoma cell line (CaKi-1), and normal endothelial cells (EC) were determined using MTT assay. Furthermore, the effect of the most promising samples on cancer spheroid growth and viability was examined. This study allowed us to confirm that particular triterpenoid mixtures from lingonberry waxes may possess stronger cytotoxic activities than crude unpurified extracts. Fractions containing triterpenoid acids plus fernenol, complexes of oleanolic:ursolic acids, and erythrodiol:uvaol were found to be the most potent therapeutic candidates in the management of cancer diseases. The specificity of cuticular wax extracts of lingonberry leaves and fruits, leading to different purity and anticancer potential of obtained counterpart fractions, was also enclosed. These findings contribute to the profitable utilization of lingonberry cuticular waxes and provide considerable insights into the anticancer effects of particular triterpenoids and pharmacological interactions.
Collapse
Affiliation(s)
- Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Correspondence: (G.V.); (L.R.)
| | - Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Valdas Jakstas
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Correspondence: (G.V.); (L.R.)
| |
Collapse
|
9
|
Agatonovic-Kustrin S, Gegechkori V, Morton DW, Tucci J, Mohammed EUR, Ku H. The bioprofiling of antibacterials in olive leaf extracts via thin layer chromatography-effect directed analysis (TLC-EDA). J Pharm Biomed Anal 2022; 219:114916. [PMID: 35809514 DOI: 10.1016/j.jpba.2022.114916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/18/2022]
Abstract
In this study, effect-directed analysis (EDA) (i.e. TLC hyphenated with an in situ MTT (3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide) antimicrobial assay), was used for screening and identification of antimicrobials in olive leaf extract. EDA detected that the same compounds exhibited significant antimicrobial activity against bacterial species of the genera Enterococcus (E. faecalis), Escherichia (E. coli), Streptococcus (S. mutans) and Staphylococcus (S. aureus). Flash chromatography-fractionation was used to isolate antimicrobial compounds in olive leaf extract. The active compounds were identified as maslinic acid and oleanolic acid by comparing RF values of the detected active bands with the standard reference materials, with identity confirmed with NMR and ATR-FTIR spectroscopy. Maslinic and oleanolic acids were tested on the E. faecalis strain (which displayed the highest sensitivity in the MTT assay) to determine their inhibiting concentration 50% (IC50) and minimum bactericidal concentrations.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; Department of Pharmacy and Biomedical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia.
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - David W Morton
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; Department of Pharmacy and Biomedical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| | - Joseph Tucci
- Department of Pharmacy and Biomedical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| | - Ehtesham U R Mohammed
- Department of Pharmacy and Biomedical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| | - Heng Ku
- Department of Pharmacy and Biomedical Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| |
Collapse
|