1
|
Saqib M, Kremmer K, Opitz J, Schneider M, Beshchasna N. Evaluation of the Degradation Properties of Plasma Electrolytically Oxidized Mg Alloy AZ31 Using Fluid Dynamic Accelerated Tests for Biodegradable Implants. J Funct Biomater 2024; 15:366. [PMID: 39728166 DOI: 10.3390/jfb15120366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Magnesium alloys are promising biodegradable implant materials due to their excellent biocompatibility and non-toxicity. However, their poor corrosion resistance limits their application in vivo. Plasma electrolytic oxidation (PEO) is a powerful technique to improve the corrosion resistance of magnesium alloys. In this study, we present the accelerated degradation of PEO-treated AZ31 samples using a fluid dynamic test. The samples were prepared using different concentrations of KOH as an electrolyte along with NaSiO3. The anodizing time and the biasing time were optimized to obtain the increased corrosion resistance. The analysis of the degraded samples using microscopy, SEM EDX measurements, and by calculating mass loss and corrosion rates showed a significant increase in the corrosion resistance after the polymer (Resomer© LG 855 S) coating was applied to the anodized samples. The results confirm (or convince) that PEO treatment is an effective way to improve the corrosion resistance of AZ31 magnesium alloy. The fluid dynamic test can be used as an accelerated degradation test for biodegradable alloys in simulated body fluids at a physiological temperature. The polymer coating further improves the corrosion resistance of the PEO-treated AZ31 samples.
Collapse
Affiliation(s)
- Muhammad Saqib
- Department of Bio and Nanotechnology, Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Strasse 2, 01109 Dresden, Germany
| | - Kerstin Kremmer
- Department of Electrochemistry, Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstrasse 28, 01277 Dresden, Germany
| | - Joerg Opitz
- Department of Bio and Nanotechnology, Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Strasse 2, 01109 Dresden, Germany
| | - Michael Schneider
- Department of Electrochemistry, Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstrasse 28, 01277 Dresden, Germany
| | - Natalia Beshchasna
- Department of Bio and Nanotechnology, Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Strasse 2, 01109 Dresden, Germany
| |
Collapse
|
2
|
Kang M, Lee DM, Hyun I, Rubab N, Kim SH, Kim SW. Advances in Bioresorbable Triboelectric Nanogenerators. Chem Rev 2023; 123:11559-11618. [PMID: 37756249 PMCID: PMC10571046 DOI: 10.1021/acs.chemrev.3c00301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 09/29/2023]
Abstract
With the growing demand for next-generation health care, the integration of electronic components into implantable medical devices (IMDs) has become a vital factor in achieving sophisticated healthcare functionalities such as electrophysiological monitoring and electroceuticals worldwide. However, these devices confront technological challenges concerning a noninvasive power supply and biosafe device removal. Addressing these challenges is crucial to ensure continuous operation and patient comfort and minimize the physical and economic burden on the patient and the healthcare system. This Review highlights the promising capabilities of bioresorbable triboelectric nanogenerators (B-TENGs) as temporary self-clearing power sources and self-powered IMDs. First, we present an overview of and progress in bioresorbable triboelectric energy harvesting devices, focusing on their working principles, materials development, and biodegradation mechanisms. Next, we examine the current state of on-demand transient implants and their biomedical applications. Finally, we address the current challenges and future perspectives of B-TENGs, aimed at expanding their technological scope and developing innovative solutions. This Review discusses advancements in materials science, chemistry, and microfabrication that can advance the scope of energy solutions available for IMDs. These innovations can potentially change the current health paradigm, contribute to enhanced longevity, and reshape the healthcare landscape soon.
Collapse
Affiliation(s)
- Minki Kang
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Inah Hyun
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Najaf Rubab
- Department
of Materials Science and Engineering, Gachon
University, Seongnam 13120, Republic
of Korea
| | - So-Hee Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Aboutalebianaraki N, Zeblisky P, Sarker MD, Jeyaranjan A, Sakthivel TS, Fu Y, Lucchi J, Baudelet M, Seal S, Kean TJ, Razavi M. An osteogenic magnesium alloy with improved corrosion resistance, antibacterial, and mechanical properties for orthopedic applications. J Biomed Mater Res A 2023; 111:556-574. [PMID: 36494895 DOI: 10.1002/jbm.a.37476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/08/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
The aim of this study was to develop a novel biodegradable magnesium (Mg) alloy for bone implant applications. We used scandium (Sc; 2 wt %) and strontium (Sr; 2 wt %) as alloying elements due to their high biocompatibility, antibacterial efficacy, osteogenesis, and protective effects against corrosion. In the present work, we also examined the effect of a heat treatment process on the properties of the Mg-Sc-Sr alloy. Alloys were manufactured using a metal casting process followed by heat treatment. The microstructure, corrosion, mechanical properties, antibacterial activity, and osteogenic activity of the alloy were assessed in vitro. The results showed that the incorporation of Sc and Sr elements controlled the corrosion, reduced the hydrogen generation, and enhanced mechanical properties. Furthermore, alloying with Sc and Sr demonstrated a significantly enhanced antibacterial activity and decreased biofilm formation compared to control Mg. Also, culturing Mg-Sc-Sr alloy with human bone marrow-derived mesenchymal stromal cells showed a high degree of biocompatibility (>90% live cells) and a significant increase in osteoblastic differentiation in vitro shown by Alizarin red staining and alkaline phosphatase activity. Based on these results, the Mg-Sc-Sr alloy heat-treated at 400°C displayed optimal mechanical properties, corrosion rate, antibacterial efficacy, and osteoinductivity. These characteristics make the Mg-Sc-Sr alloy a promising candidate for biodegradable orthopedic implants in the fixation of bone fractures such as bone plate-screws or intramedullary nails.
Collapse
Affiliation(s)
- Nadia Aboutalebianaraki
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA.,Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Peter Zeblisky
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - M D Sarker
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Aadithya Jeyaranjan
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Tamil S Sakthivel
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Yifei Fu
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - John Lucchi
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA.,National Center for Forensic Science, University of Central Florida, Orlando, Florida, USA
| | - Matthieu Baudelet
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA.,National Center for Forensic Science, University of Central Florida, Orlando, Florida, USA.,CREOL - The College of Optics and Photonics, University of Central Florida, Orlando, Florida, USA
| | - Sudipta Seal
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA.,Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Thomas J Kean
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Mehdi Razavi
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA.,Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
4
|
van Gaalen K, Quinn C, Weiler M, Gremse F, Benn F, McHugh PE, Vaughan TJ, Kopp A. Predicting localised corrosion and mechanical performance of a PEO surface modified rare earth magnesium alloy for implant use through in-silico modelling. Bioact Mater 2023; 26:437-451. [PMID: 36993789 PMCID: PMC10040519 DOI: 10.1016/j.bioactmat.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 03/28/2023] Open
Abstract
In this study, the influence of a plasma electrolytic oxidation (PEO) surface treatment on a medical-grade WE43-based magnesium alloy is examined through an experimental and computational framework that considers the effects of localised corrosion features and mechanical properties throughout the corrosion process. First, a comprehensive in-vitro immersion study was performed on WE43-based tensile specimens with and without PEO surface modification, which included fully automated spatial reconstruction of the phenomenological features of corrosion through micro-CT scanning, followed by uniaxial tensile testing. Then the experimental data of both unmodified and PEO-modified groups were used to calibrate parameters of a finite element-based surface corrosion model. In-vitro, it was found that the WE43-PEO modified group had a significantly lower corrosion rate and maintained significantly higher mechanical properties than the unmodified. While corrosion rates were ∼50% lower in the WE43-PEO modified specimens, the local geometric features of corroding surfaces remained similar to the unmodified WE43 group, however evolving after almost the double amount of time. We were also able to quantitatively demonstrate that the PEO surface treatment on magnesium continued to protect samples from corrosion throughout the entire period tested, and not just in the early stages of corrosion. Using the results from the testing framework, the model parameters of the surface-based corrosion model were identified for both groups. This enabled, for the first time, in-silico prediction of the physical features of corrosion and the mechanical performance of both unmodified and PEO modified magnesium specimens. This simulation framework can enable future in-silico design and optimisation of bioabsorbable magnesium devices for load-bearing medical applications. Examination of corrosion morphology and mechanics of PEO modified WE43. Automated phenomenological tracking of corrosion features by PitScan. Corrosion model of unmodified WE43 and WE43 PEO modified. Calibration through geometrical features and mechanical parameters followed. PEO treatment does not influence the severity of localised corrosion.
Collapse
Affiliation(s)
- Kerstin van Gaalen
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Meotec GmbH, Aachen, Germany
| | - Conall Quinn
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Marek Weiler
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
- Gremse-IT GmbH, Aachen, Germany
| | - Felix Benn
- Meotec GmbH, Aachen, Germany
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, United Kingdom
| | - Peter E. McHugh
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Ted J. Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Corresponding author. Biomechanics Research Centre (BioMEC), Biomedical Engineering, University of Galway, Galway, Ireland.
| | | |
Collapse
|
5
|
Kopp A, Fischer H, Soares AP, Schmidt-Bleek K, Leber C, Kreiker H, Duda G, Kröger N, van Gaalen K, Hanken H, Jung O, Smeets R, Heiland M, Rendenbach C. Long-term in vivo observations show biocompatibility and performance of ZX00 magnesium screws surface-modified by plasma-electrolytic oxidation in Göttingen miniature pigs. Acta Biomater 2023; 157:720-733. [PMID: 36460289 DOI: 10.1016/j.actbio.2022.11.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
Bioabsorbable magnesium implants for orthopedic fixation of bone have recently become available for different fields of indication. While general questions of biocompatibility have been answered, tailoring suitable degradation kinetics for specific applications as well as long-term tissue integration remain the focus of current research. The aim of this study was the evaluation of the long-term degradation behavior and osseointegration of Mg-Ca-Zn (ZX00MEO) based magnesium implants with plasma-electrolytic oxidation (PEO) surface modification (ZX00MEO-PEO) in comparison to non-surface modified implants in vivo and in vitro. Besides a general evaluation of the biological performance of the alloy over a prolonged period, the main hypothesis was that PEO surface modification significantly reduces implant degradation rate and improves tissue interaction. In vitro, the microstructure and surface of the bioabsorbable screws were characterized by SEM/EDS, cytocompatibility and degradation testing facilitating hydrogen gas evolution, carried out following ISO 10993-5/-12 and ASTM F3268-18a/ASTM G1-03 (E1:2017). In vivo, screws were implanted in the frontal bone of Minipigs for 6, 12, and 18 months, following radiological and histomorphometric analysis. A slower and more uniform degradation and improved cytocompatibility could be shown for the ZX00MEO-PEO group in vitro. A significant reduction of degradation rate and enhanced bone formation around the ZX00MEO-PEO screws in vivo was confirmed. Proficient biocompatibility and tissue integration could generally be shown in vivo regardless of surface state. The tested magnesium alloy shows generally beneficial properties as an implant material, while PEO-surface modification further improves the bioabsorption behavior both in vitro and in vivo. STATEMENT OF SIGNIFICANCE: Devices from bioabsorbable Magnesium have recently been introduced to orthopedic applications. However, the vast degradation of Magnesium within the human body still gives limitations. While reliable in-vivo data on most promising surface treatments such as Plasma-electrolytic-Oxidation is generally scarce, long-time results in large animals are to this date completely missing. To overcome this lack of evidence, we studied a Magnesium-Calzium-Zinc-alloy with surface enhancement by PEO for the first time ever over a period of 18 months in a large animal model. In-vitro, surface-modified screws showed significantly improved cytocompatibility and reduction of degradation confirmed by hydrogen gas evolution testing, while in-vivo radiological and histological evaluation generally showed good biocompatibility and bioabsorption as well as significantly enhanced reduction of degradation and faster bone regeneration in the PEO-surface-modified group.
Collapse
Affiliation(s)
| | - Heilwig Fischer
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, Berlin 10178, Germany; Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Ana Prates Soares
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany; Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Christoph Leber
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Henri Kreiker
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Georg Duda
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, Cologne 50937, Germany
| | | | - Henning Hanken
- Department of Oral and Maxillofacial Surgery, Asklepios Hospital North, Faculty of Medicine, Semmelweis University Campus Hamburg, Hamburg 20099, Germany; Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock 18057, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Carsten Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| |
Collapse
|
6
|
Espiritu J, Berangi M, Yiannakou C, Silva E, Francischello R, Kuehne A, Niendorf T, Könneker S, Willumeit-Römer R, Seitz JM. Evaluating metallic artefact of biodegradable magnesium-based implants in magnetic resonance imaging. Bioact Mater 2022; 15:382-391. [PMID: 35386351 PMCID: PMC8958470 DOI: 10.1016/j.bioactmat.2021.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/12/2021] [Accepted: 11/28/2021] [Indexed: 11/13/2022] Open
Abstract
Magnesium (Mg) implants have shown to cause image artefacts or distortions in magnetic resonance imaging (MRI). Yet, there is a lack of information on how the degradation of Mg-based implants influences the image quality of MRI examinations. In this study, Mg-based implants are analysed in vitro, ex vivo, and in the clinical setting for various magnetic field strengths with the aim to quantify metallic artefact behaviour. In vitro corroded Mg-based screws and a titanium (Ti) equivalent were imaged according to the ASTM F2119. Mg-based and Ti pins were also implanted into rat femurs for different time points and scanned to provide insights on the influence of soft and hard tissue on metallic artefact. Additionally, MRI data of patients with scaphoid fractures treated with CE-approved Mg-based compression screws (MAGNEZIX®) were analysed at various time points post-surgery. The artefact production of the Mg-based material decreased as implant material degraded in all settings. The worst-case imaging scenario was determined to be when the imaging plane was selected to be perpendicular to the implant axis. Moreover, the Mg-based implant outperformed the Ti equivalent in all experiments by producing lower metallic artefact (p < 0.05). This investigation demonstrates that Mg-based implants generate significantly lower metallic distortion in MRI when compared to Ti. Our positive findings suggest and support further research into the application of Mg-based implants including post-operative care facilitated by MRI monitoring of degradation kinetics and bone/tissue healing processes. Mg-based implants produce lower metallic artefact than Ti in MRI. Metallic artefact production of Mg reduces as degradation increases. Mg implants provide sufficient visualisation in MRI for better postoperative care.
Collapse
Affiliation(s)
| | - Mostafa Berangi
- MRI.TOOLS GmbH, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.,Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Eduarda Silva
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Roberto Francischello
- Chemistry and Industrial Chemistry Department, Università di Pisa, Via Moruzzi 13, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Via Moruzzi 1, Pisa, Italy
| | | | - Thoralf Niendorf
- MRI.TOOLS GmbH, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.,Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sören Könneker
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | | | | |
Collapse
|
7
|
Guan Z, Linsley CS, Pan S, Yao G, Wu BM, Levi DS, Li X. Zn-Mg-WC Nanocomposites for Bioresorbable Cardiovascular Stents: Microstructure, Mechanical Properties, Fatigue, Shelf Life, and Corrosion. ACS Biomater Sci Eng 2021; 8:328-339. [PMID: 34964351 DOI: 10.1021/acsbiomaterials.1c01358] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Zinc (Zn) and Zn alloys have been studied as potential materials for bioresorbable stents (BRSs) in the last decade due to their favorable biodegradability and biocompatibility. However, most Zn alloys lack the necessary combination of strength, ductility, fatigue resistance, corrosion rate (CR), and thermal stability needed for such applications. In this study, nanoparticles made of tungsten carbide (WC) were successfully incorporated into Zn alloyed with 0.5 wt % magnesium (Mg) and evaluated for their suitability for BRS applications. Specifically, the resulting Zn-0.5Mg-WC nanocomposite's microstructure, mechanical properties, in vitro CR, and thermal stability were evaluated. The Zn-0.5Mg-WC nanocomposite had excellent mechanical strength [ultimate tensile strength (UTS) > 250 MPa], elongation to failure (>30%), and a suitable in vitro CR (∼0.02 mm/y) for this clinical application. Moreover, the Zn-0.5Mg-WC nanocomposite survived 10 million cycles of tensile loading (stress ratio, R = 0.053) when the maximum stress was 80% of the yield stress. Its ductility was also retained during a 90-day thermal stability study, indicating an excellent shelf life. Stent prototypes were fabricated using this composition and were successfully deployed during bench testing without fracture. These results show that the Zn-0.5Mg-WC nanocomposite is a promising material for BRS applications. In vivo studies are underway to validate both biocompatibility, stent function, and degradation.
Collapse
Affiliation(s)
- Zeyi Guan
- Department of Mechanical & Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, 420 Westwood Plaza, 48-121 Engineering IV, Los Angeles, California 90095, United States
| | - Chase S Linsley
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States
| | - Shuaihang Pan
- Department of Mechanical & Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, 420 Westwood Plaza, 48-121 Engineering IV, Los Angeles, California 90095, United States
| | - Gongcheng Yao
- Department of Materials Science & Engineering, Samueli School of Engineering, University of California, Los Angeles. 410 Westwood Plaza, 3111 Engineering V, Los Angeles, California 90095, United States
| | - Benjamin M Wu
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, California 90095, United States.,Department of Materials Science & Engineering, Samueli School of Engineering, University of California, Los Angeles. 410 Westwood Plaza, 3111 Engineering V, Los Angeles, California 90095, United States.,Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, CHS B3-087, Los Angeles, California 90095, United States.,Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Daniel S Levi
- Department of Pediatrics, Division of Cardiology, Children's Heart Center 330, UCLA Mattel Children's Hospital, Los Angeles. 200 Medical Plaza, Los Angeles, California 90095, United States.,Department of Medicine, Ahmanson Adult Congenital Heart Disease Center, David Geffen School of Medicine at UCLA, 100 Medical Plaza Driveway Suite 630, Los Angeles, California 90095, United States
| | - Xiaochun Li
- Department of Mechanical & Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, 420 Westwood Plaza, 48-121 Engineering IV, Los Angeles, California 90095, United States.,Department of Materials Science & Engineering, Samueli School of Engineering, University of California, Los Angeles. 410 Westwood Plaza, 3111 Engineering V, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
van Gaalen K, Gremse F, Benn F, McHugh PE, Kopp A, Vaughan TJ. Automated ex-situ detection of pitting corrosion and its effect on the mechanical integrity of rare earth magnesium alloy - WE43. Bioact Mater 2021; 8:545-558. [PMID: 34541419 PMCID: PMC8435990 DOI: 10.1016/j.bioactmat.2021.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 01/26/2023] Open
Abstract
This study develops a three-dimensional automated detection framework (PitScan) that systematically evaluates the severity and phenomenology of pitting corrosion. This framework uses a python-based algorithm to analyse microcomputer-tomography scans (μCT) of cylindrical specimens undergoing corrosion. The approach systematically identifies several surface-based corrosion features, enabling full spatial characterisation of pitting parameters, including pit density, pit size, pit depth as well as pitting factor according to ASTM G46-94. Furthermore, it is used to evaluate pitting formation in tensile specimens of a Rare Earth Magnesium alloy undergoing corrosion, and relationships between key pitting parameters and mechanical performance are established. Results demonstrated that several of the parameters described in ASTM G46-94, including pit number, pit density and pitting factor, showed little correlation to mechanical performance. However, this study did identify that other parameters showed strong correlations with the ultimate tensile strength and these tended to be directly linked to the reduction of the cross-sectional area of the specimen. Specifically, our results indicate, that parameters directly linked to the loss of the cross-sectional area (e.g. minimum material width), are parameters that are most suited to provide an indication of a specimen's mechanical performance. The automated detection framework developed in this study has the potential to provide a basis to standardise measurements of pitting corrosion across a range of metals and future prediction of mechanical strength over degradation time. In-vitro immersion study of dog bones manufactured from a WE43 Magnesium alloy. Novel approach characterizing spatial pit formation using micro-CT scans. Comparison of mass loss by hydrogen gas measurement and volume loss by μCT scans. Correlation between mechanical strength and geometrical pit formation features.
Collapse
Affiliation(s)
- Kerstin van Gaalen
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland.,Meotec GmbH, Aachen, Germany
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Felix Benn
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, United Kingdom.,Meotec GmbH, Aachen, Germany
| | - Peter E McHugh
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | | | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
9
|
Kabir H, Munir K, Wen C, Li Y. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioact Mater 2021; 6:836-879. [PMID: 33024903 PMCID: PMC7530311 DOI: 10.1016/j.bioactmat.2020.09.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Biodegradable metals (BMs) gradually degrade in vivo by releasing corrosion products once exposed to the physiological environment in the body. Complete dissolution of biodegradable implants assists tissue healing, with no implant residues in the surrounding tissues. In recent years, three classes of BMs have been extensively investigated, including magnesium (Mg)-based, iron (Fe)-based, and zinc (Zn)-based BMs. Among these three BMs, Mg-based materials have undergone the most clinical trials. However, Mg-based BMs generally exhibit faster degradation rates, which may not match the healing periods for bone tissue, whereas Fe-based BMs exhibit slower and less complete in vivo degradation. Zn-based BMs are now considered a new class of BMs due to their intermediate degradation rates, which fall between those of Mg-based BMs and Fe-based BMs, thus requiring extensive research to validate their suitability for biomedical applications. In the present study, recent research and development on Zn-based BMs are reviewed in conjunction with discussion of their advantages and limitations in relation to existing BMs. The underlying roles of alloy composition, microstructure, and processing technique on the mechanical and corrosion properties of Zn-based BMs are also discussed.
Collapse
Affiliation(s)
- Humayun Kabir
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Khurram Munir
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
10
|
Lanthanum-Containing Magnesium Alloy with Antitumor Function Based on Increased Reactive Oxygen Species. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Developing antitumor implants is of great significance to repair tumor-induced bone defects and simultaneously prevent bone tumor recurrence. The tumor cells, compared to normal cells, have a high reactive oxygen species level. They are vulnerable to oxidative insults under increased intrinsic oxidative stress. The lanthanum (La) ion with high phospholipid binding ability can open the mitochondrial permeability transition pore, which blocks the electron transport chain in the mitochondria, and consequently increases reactive oxygen species level. In this study, La was alloyed to Mg-6Zn-0.5Zr (ZK60) through selective laser melting technology. The results indicated that the mitochondrial membrane potential dropped whilst the reactive oxygen species increased as the La content increased. ZK60-1.0La revealed a high cell inhibition rate of 61.9% for bone tumor cell and high cell viability of 91.9% for normal cells, indicating that the alloy could induce bone tumor cell death, as well as exhibit good biocompatibility for normal cell. In addition, its degradation rate 1.23 mm/year was lower than that of ZK60 alloy 2.13 mm/year, which was mainly attributed to the grain refinement.
Collapse
|