1
|
Neelamraju PM, Gundepudi K, Sanki PK, Busi KB, Mistri TK, Sangaraju S, Dalapati GK, Ghosh KK, Ghosh S, Ball WB, Chakrabortty S. Potential applications for photoacoustic imaging using functional nanoparticles: A comprehensive overview. Heliyon 2024; 10:e34654. [PMID: 39166037 PMCID: PMC11334826 DOI: 10.1016/j.heliyon.2024.e34654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 08/22/2024] Open
Abstract
This paper presents a comprehensive overview of the potential applications for Photo-Acoustic (PA) imaging employing functional nanoparticles. The exploration begins with an introduction to nanotechnology and nanomaterials, highlighting the advancements in these fields and their crucial role in shaping the future. A detailed discussion of the various types of nanomaterials and their functional properties sets the stage for a thorough examination of the fundamentals of the PA effect. This includes a thorough chronological review of advancements, experimental methodologies, and the intricacies of the source and detection of PA signals. The utilization of amplitude and frequency modulation, design of PA cells, pressure sensor-based signal detection, and quantification methods are explored in-depth, along with additional mechanisms induced by PA signals. The paper then delves into the versatile applications of photoacoustic imaging facilitated by functional nanomaterials. It investigates the influence of nanomaterial shape, size variation, and the role of composition, alloys, and hybrid materials in harnessing the potential of PA imaging. The paper culminates with an insightful discussion on the future scope of this field, focusing specifically on the potential applications of photoacoustic (PA) effect in the domain of biomedical imaging and nanomedicine. Finally, by providing the comprehensive overview, the current work provides a valuable resource underscoring the transformative potential of PA imaging technique in biomedical research and clinical practice.
Collapse
Affiliation(s)
- Pavan Mohan Neelamraju
- Department of Electronics and Communication Engineering, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Karthikay Gundepudi
- Department of Electronics and Communication Engineering, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Pradyut Kumar Sanki
- Department of Electronics and Communication Engineering, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Kumar Babu Busi
- Department of Chemistry, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Tapan Kumar Mistri
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sambasivam Sangaraju
- National Water and Energy Center, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Goutam Kumar Dalapati
- Center for Nanofibers and Nanotechnology, Mechanical Engineering Department, National University of Singapore, Singapore, 117576
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921
| | - Siddhartha Ghosh
- Department of Physics, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Writoban Basu Ball
- Department of Biological Sciences, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | | |
Collapse
|
2
|
Ki J, Lee H, Lee TG, Lee S, Wi J, Na H. Visualization Materials Using Silicon-Based Optical Nanodisks (ViSiON) for Enhanced NIR Imaging in Ophthalmology. Adv Healthc Mater 2024; 13:e2303713. [PMID: 38216129 PMCID: PMC11468672 DOI: 10.1002/adhm.202303713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/18/2023] [Indexed: 01/14/2024]
Abstract
ViSiON (visualization materials composed of silicon-based optical nanodisks) is presented, which offers a unique optical combination of near-infrared (NIR) optical properties and biodegradability. Initially, numerical simulations are conducted to calculate the total extinction and scattering effects of ViSiON by the diameter-to-thickness ratio, predicting precise control over its scattering properties in the NIR region. A top-down patterning technique is employed to synthesize ViSiON with accurate diameter and thickness control. ViSiON with a 50 nm thickness exhibits scattering properties over 400 times higher than that of 30 nm, rendering it suitable as a contrast agent for optical coherence tomography (OCT), especially in ophthalmic applications. Furthermore, ViSiON possesses inherent biodegradability in media, with ≈95% degradation occurring after 48 h, and the degradation rate can be finely tuned based on the quantity of protein coating applied to the surface. Subsequently, the OCT imaging capability is validated even within vessels smaller than 300 µm, simulating retinal vasculature using a retinal phantom. Then, using an ex ovo chick embryo model, it is demonstrated that ViSiON enhances the strength of protein membranes by 6.17 times, thereby presenting the potential for ViSiON as an OCT imaging probe capable of diagnosing retinal diseases.
Collapse
Affiliation(s)
- Jisun Ki
- Center for Systems BiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA 02114USA
- Safety Measurement InstituteKorea Research Institute of Standards and ScienceDaejeon34113Republic of Korea
| | - Hyunji Lee
- Safety Measurement InstituteKorea Research Institute of Standards and ScienceDaejeon34113Republic of Korea
- Department of Medical PhysicsUniversity of Science and TechnologyDaejeon34113Republic of Korea
| | - Tae Geol Lee
- Safety Measurement InstituteKorea Research Institute of Standards and ScienceDaejeon34113Republic of Korea
- Department of Applied Measurement ScienceUniversity of Science and TechnologyDaejeon34113Republic of Korea
| | - Sang‐Won Lee
- Safety Measurement InstituteKorea Research Institute of Standards and ScienceDaejeon34113Republic of Korea
- Department of Medical PhysicsUniversity of Science and TechnologyDaejeon34113Republic of Korea
- Department of Applied Measurement ScienceUniversity of Science and TechnologyDaejeon34113Republic of Korea
| | - Jung‐Sub Wi
- Department of Materials Science and EngineeringHanbat National UniversityDaejeon34158Republic of Korea
| | - Hee‐Kyung Na
- Safety Measurement InstituteKorea Research Institute of Standards and ScienceDaejeon34113Republic of Korea
- Department of Applied Measurement ScienceUniversity of Science and TechnologyDaejeon34113Republic of Korea
| |
Collapse
|
3
|
Le TD, Min JJ, Lee C. Enhanced resolution and sensitivity acoustic-resolution photoacoustic microscopy with semi/unsupervised GANs. Sci Rep 2023; 13:13423. [PMID: 37591911 PMCID: PMC10435476 DOI: 10.1038/s41598-023-40583-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023] Open
Abstract
Acoustic-resolution photoacoustic microscopy (AR-PAM) enables visualization of biological tissues at depths of several millimeters with superior optical absorption contrast. However, the lateral resolution and sensitivity of AR-PAM are generally lower than those of optical-resolution PAM (OR-PAM) owing to the intrinsic physical acoustic focusing mechanism. Here, we demonstrate a computational strategy with two generative adversarial networks (GANs) to perform semi/unsupervised reconstruction with high resolution and sensitivity in AR-PAM by maintaining its imaging capability at enhanced depths. The b-scan PAM images were prepared as paired (for semi-supervised conditional GAN) and unpaired (for unsupervised CycleGAN) groups for label-free reconstructed AR-PAM b-scan image generation and training. The semi/unsupervised GANs successfully improved resolution and sensitivity in a phantom and in vivo mouse ear test with ground truth. We also confirmed that GANs could enhance resolution and sensitivity of deep tissues without the ground truth.
Collapse
Affiliation(s)
- Thanh Dat Le
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, 61186, Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun, 58128, Jeollanam-do, Korea
| | - Changho Lee
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, 61186, Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun, 58128, Jeollanam-do, Korea.
| |
Collapse
|
4
|
Dubyk K, Borisova T, Paliienko K, Krisanova N, Isaiev M, Alekseev S, Skryshevsky V, Lysenko V, Geloen A. Bio-distribution of Carbon Nanoparticles Studied by Photoacoustic Measurements. NANOSCALE RESEARCH LETTERS 2022; 17:127. [PMID: 36562892 PMCID: PMC9789283 DOI: 10.1186/s11671-022-03768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based nanomaterials are promising for a wide range of biomedical applications, i.e. drug delivery, therapy, and imaging including photoacoustic tomography, where they can serve as contrast agents, biocompatibility and biodistribution of which should be assessed before clinical setting. In this paper, localization of carbon flurooxide nanoparticles, carbon nanodots from β-alanine, carbon nanodots from urea and citric acid and glucose-ethylenediamine nanoparticles (NPs) in organs of Wistar rats were studied by photoacoustic measurements after 24 h of their intravenous injection. 16 ns light pulse from a Q-switched Nd:YAG laser with 1064 nm wavelength was used as an excitation source. The laser-induced photoacoustic signals were recorded with a ring piezoelectric detector. Light absorption by carbon NPs resulted in noticeable enhancement of the photoacoustic amplitude in the tissues where the NPs were accumulated. The NPs were preferably accumulated in liver, kidneys and spleen, and to a lesser extent in heart and gastrocnemius muscles. Together with remarkable fluorescent properties of the studied carbon nanomaterials, their photoacoustic responses allow their application for bi-modal fluorescence-photoacoustic bio-imaging.
Collapse
Affiliation(s)
- Kateryna Dubyk
- Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601 Ukraine
- Corporation Science Park, Taras Shevchenko University of Kyiv, 60, Volodymyrska Street, Kyiv, 01033 Ukraine
| | - Tatiana Borisova
- Corporation Science Park, Taras Shevchenko University of Kyiv, 60, Volodymyrska Street, Kyiv, 01033 Ukraine
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054 Ukraine
| | - Konstantin Paliienko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054 Ukraine
| | - Natalia Krisanova
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054 Ukraine
| | - Mykola Isaiev
- Université de Lorraine, CNRS, LEMTA, F-54000 Nancy, France
| | - Sergei Alekseev
- Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601 Ukraine
- Corporation Science Park, Taras Shevchenko University of Kyiv, 60, Volodymyrska Street, Kyiv, 01033 Ukraine
| | - Valeriy Skryshevsky
- Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601 Ukraine
- Corporation Science Park, Taras Shevchenko University of Kyiv, 60, Volodymyrska Street, Kyiv, 01033 Ukraine
| | - Vladimir Lysenko
- Light Matter Institute, UMR-5306, Claude Bernard University of Lyon/CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Alain Geloen
- UMR Ecologie Microbienne Lyon (LEM), CNRS 5557, INRAE 1418, Claude Bernard University of Lyon, VetAgro Sup, Research Team “Bacterial Opportunistic Pathogens and Environment” (BPOE), University of Lyon, 69622 Villeurbanne, France
| |
Collapse
|
5
|
He C, Zhu J, Zhang H, Qiao R, Zhang R. Photoacoustic Imaging Probes for Theranostic Applications. BIOSENSORS 2022; 12:947. [PMID: 36354456 PMCID: PMC9688356 DOI: 10.3390/bios12110947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Photoacoustic imaging (PAI), an emerging biomedical imaging technology, capitalizes on a wide range of endogenous chromophores and exogenous contrast agents to offer detailed information related to the functional and molecular content of diseased biological tissues. Compared with traditional imaging technologies, PAI offers outstanding advantages, such as a higher spatial resolution, deeper penetrability in biological tissues, and improved imaging contrast. Based on nanomaterials and small molecular organic dyes, a huge number of contrast agents have recently been developed as PAI probes for disease diagnosis and treatment. Herein, we report the recent advances in the development of nanomaterials and organic dye-based PAI probes. The current challenges in the field and future research directions for the designing and fabrication of PAI probes are proposed.
Collapse
Affiliation(s)
| | | | | | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
6
|
Jing H, Liu S, Jiang J, Tran VP, Rong J, Wang P, Lindsey JS. Meso bromination and derivatization of synthetic bacteriochlorins. NEW J CHEM 2022. [DOI: 10.1039/d1nj05853c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Twelve bacteriochlorin building blocks featuring meso-substitution have been prepared including a set with finely tuned long-wavelength absorption (725–757 nm) for studies in photonics.
Collapse
Affiliation(s)
- Haoyu Jing
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Sijia Liu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Jianbing Jiang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Vy-Phuong Tran
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Jie Rong
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Pengzhi Wang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| |
Collapse
|
7
|
Peng C, Chen M, Spicer JB, Jiang X. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review.: Part II: Nanoacoustics for biomedical imaging and therapy. SENSORS AND ACTUATORS. A, PHYSICAL 2021; 332:112925. [PMID: 34937992 PMCID: PMC8691754 DOI: 10.1016/j.sna.2021.112925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the past decade, acoustics at the nanoscale (i.e., nanoacoustics) has evolved rapidly with continuous and substantial expansion of capabilities and refinement of techniques. Motivated by research innovations in the last decade, for the first time, recent advancements of acoustics-associated nanomaterials/nanostructures and nanodevices for different applications are outlined in this comprehensive review, which is written in two parts. As part II of this two-part review, this paper concentrates on nanoacoustics in biomedical imaging and therapy applications, including molecular ultrasound imaging, photoacoustic imaging, ultrasound-mediated drug delivery and therapy, and photoacoustic drug delivery and therapy. Firstly, the recent developments of nanosized ultrasound and photoacoustic contrast agents as well as their various imaging applications are examined. Secondly, different types of nanomaterials/nanostructures as nanocarriers for ultrasound and photoacoustic therapies are discussed. Finally, a discussion of challenges and future research directions are provided for nanoacoustics in medical imaging and therapy.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James B. Spicer
- Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Nozdriukhin D, Kalva SK, Li W, Yashchenok A, Gorin D, Razansky D, Deán-Ben XL. Rapid Volumetric Optoacoustic Tracking of Individual Microparticles In Vivo Enabled by a NIR-Absorbing Gold-Carbon Shell. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48423-48432. [PMID: 34613688 DOI: 10.1021/acsami.1c15509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rapid volumetric in vivo visualization of circulating microparticles can facilitate new biomedical applications, such as blood flow characterization or targeted drug delivery. However, existing imaging modalities generally lack the sensitivity to detect the weak signals generated by individual micrometer-sized particles distributed across millimeter- to centimeter-scale depths in living mammalian tissues. Also, the temporal resolution is typically insufficient to track the particles in an entire three-dimensional region. Herein, we introduce a new type of monodisperse (4 μm) silica-core microparticle coated with a shell formed by a multilayered structure of carbon nanotubes (CNT) and gold nanoparticles (AuNP) to provide strong optoacoustic (OA) absorption-based contrast. We capitalize on the unique advantages of a state-of-the-art high-frame-rate OA tomography system to visualize and track the motion of these core-shell particles individually and volumetrically as they flow throughout the mouse brain vasculature. The feasibility of localizing individual solid particles smaller than red blood cells opens new opportunities for mapping the blood flow velocity, enhancing the resolution and visibility of OA images, and developing new biosensing assays.
Collapse
Affiliation(s)
- Daniil Nozdriukhin
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, 8057 Zürich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, 8093 Zürich, Switzerland
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Sandeep Kumar Kalva
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, 8057 Zürich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Weiye Li
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, 8057 Zürich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Alexey Yashchenok
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Dmitry Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, 8057 Zürich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, 8057 Zürich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Jeong S, Yoo SW, Kim HJ, Park J, Kim JW, Lee C, Kim H. Recent Progress on Molecular Photoacoustic Imaging with Carbon-Based Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5643. [PMID: 34640053 PMCID: PMC8510032 DOI: 10.3390/ma14195643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022]
Abstract
For biomedical imaging, the interest in noninvasive imaging methods is ever increasing. Among many modalities, photoacoustic imaging (PAI), which is a combination of optical and ultrasound imaging techniques, has received attention because of its unique advantages such as high spatial resolution, deep penetration, and safety. Incorporation of exogenous imaging agents further amplifies the effective value of PAI, since they can deliver other specified functions in addition to imaging. For these agents, carbon-based materials can show a large specific surface area and interesting optoelectronic properties, which increase their effectiveness and have proved their potential in providing a theragnostic platform (diagnosis + therapy) that is essential for clinical use. In this review, we introduce the current state of the PAI modality, address recent progress on PAI imaging that takes advantage of carbon-based agents, and offer a future perspective on advanced PAI systems using carbon-based agents.
Collapse
Affiliation(s)
- Songah Jeong
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun 58128, Jeollanam-do, Korea;
| | - Hea Ji Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Jieun Park
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Ji Woo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Changho Lee
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun 58128, Jeollanam-do, Korea;
- Department of Nuclear Medicine, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju 61469, Korea
- Department of Artificial Intelligence Convergence, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Hyungwoo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| |
Collapse
|
10
|
Tsang VT, Li X, Wong TT. A Review of Endogenous and Exogenous Contrast Agents Used in Photoacoustic Tomography with Different Sensing Configurations. SENSORS 2020; 20:s20195595. [PMID: 33003566 PMCID: PMC7582683 DOI: 10.3390/s20195595] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022]
Abstract
Optical-based sensing approaches have long been an indispensable way to detect molecules in biological tissues for various biomedical research and applications. The advancement in optical microscopy is one of the main drivers for discoveries and innovations in both life science and biomedical imaging. However, the shallow imaging depth due to the use of ballistic photons fundamentally limits optical imaging approaches’ translational potential to a clinical setting. Photoacoustic (PA) tomography (PAT) is a rapidly growing hybrid imaging modality that is capable of acoustically detecting optical contrast. PAT uniquely enjoys high-resolution deep-tissue imaging owing to the utilization of diffused photons. The exploration of endogenous contrast agents and the development of exogenous contrast agents further improve the molecular specificity for PAT. PAT’s versatile design and non-invasive nature have proven its great potential as a biomedical imaging tool for a multitude of biomedical applications. In this review, representative endogenous and exogenous PA contrast agents will be introduced alongside common PAT system configurations, including the latest advances of all-optical acoustic sensing techniques.
Collapse
|
11
|
Park E, Lee YJ, Lee C, Eom TJ. Effective photoacoustic absorption spectrum for collagen-based tissue imaging. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-8. [PMID: 32406216 PMCID: PMC7219632 DOI: 10.1117/1.jbo.25.5.056002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/01/2020] [Indexed: 05/11/2023]
Abstract
SIGNIFICANCE Collagen is a basic component of many tissues such as tendons, muscles, and skin, and its imaging helps diagnose and monitor treatments in a variety of fields, including orthopedics. However, due to the overlapping peaks of the absorption spectrum with water in the short-wave infrared region (SWIR), it is difficult to select an optimal wavelength and obtain the photoacoustic (PA) image for collagen-based tissues. Therefore, an additional approach to selecting the proper wavelength is needed. AIM The aim of this study is to derive an effective PA absorption spectrum of collagen to select the optimal wavelength for high-sensitive PA imaging (PAI). APPROACH We measure the absorption spectrum by acquiring the PA signal from various collagen-based samples. To derive an effective PA absorption spectrum in the SWIR band, the following two parameters should be considered: (1) the laser excitation for generating the PA signal and (2) the absorption spectrum for water in the SWIR band. This molecular intrinsic property suggests the optimal wavelength for high-sensitive PAI of collagen-based samples. RESULTS PA absorption spectral peaks of collagen were found at wavelengths of 1200, 1550, and 1700 nm. Thereby, the PA signal increased by up to five times compared with the wavelength commonly used in collagen PAI. We applied a pulsed fiber laser with a center wavelength of 1560 nm, and the three-dimensional PA image of a collagen patch was obtained. CONCLUSIONS The effective PA absorption spectrum contributes to the improvement of the PA image sensitivity by presenting the optimal wavelength of the target samples.
Collapse
Affiliation(s)
- Eunwoo Park
- Gwangju Institute of Science and Technology, Advanced Photonics Research Institute, Gwangju, Republic of Korea
| | - Yong-Jae Lee
- Gwangju Institute of Science and Technology, Advanced Photonics Research Institute, Gwangju, Republic of Korea
| | - Changho Lee
- Chonnam National University, Medical School and Hwasun Hospital, Department of Nuclear Medicine, Hwasun, Republic of Korea
- Address all correspondence to Changho Lee, E-mail: ; Tae Joong Eom, E-mail:
| | - Tae Joong Eom
- Gwangju Institute of Science and Technology, Advanced Photonics Research Institute, Gwangju, Republic of Korea
- Address all correspondence to Changho Lee, E-mail: ; Tae Joong Eom, E-mail:
| |
Collapse
|
12
|
Upputuri PK, Pramanik M. Recent advances in photoacoustic contrast agents for in vivo imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1618. [DOI: 10.1002/wnan.1618] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Paul Kumar Upputuri
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore Singapore
| |
Collapse
|
13
|
Leng H, Wang Y, Jhang DF, Chu TS, Tsao CH, Tsai CH, Giamundo S, Chen YY, Liao KW, Chuang CC, Ger TR, Chen LT, Liao LD. Characterization of a Fiber Bundle-Based Real-Time Ultrasound/Photoacoustic Imaging System and Its In Vivo Functional Imaging Applications. MICROMACHINES 2019; 10:mi10120820. [PMID: 31783545 PMCID: PMC6953120 DOI: 10.3390/mi10120820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
Photoacoustic (PA) imaging is an attractive technology for imaging biological tissues because it can capture both functional and structural information with satisfactory spatial resolution. Current commercially available PA imaging systems are limited by their bulky size or inflexible user interface. We present a new handheld real-time ultrasound/photoacoustic imaging system (HARP) consisting of a detachable, high-numerical-aperture (NA) fiber bundle-based illumination system integrated with an array-based ultrasound (US) transducer and a data acquisition platform. In this system, different PA probes can be used for different imaging applications by switching the transducers and the corresponding jackets to combine the fiber pads and transducer into a single probe. The intuitive user interface is a completely programmable MATLAB-based platform. In vitro phantom experiments were conducted to test the imaging performance of the developed PA system. Furthermore, we demonstrated (1) in vivo brain vasculature imaging, (2) in vivo imaging of real-time stimulus-evoked cortical hemodynamic changes during forepaw electrical stimulation, and (3) in vivo imaging of real-time cerebral pharmacokinetics in rats using the developed PA system. The overall purpose of this design concept for a customizable US/PA imaging system is to help overcome the diverse challenges faced by medical researchers performing both preclinical and clinical PA studies.
Collapse
Affiliation(s)
- He Leng
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
| | - Yuhling Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
| | - De-Fu Jhang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan; (C.-C.C.)
| | - Tsung-Sheng Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan; (C.-C.C.)
| | - Chia-Hui Tsao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
| | - Chia-Hua Tsai
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
| | | | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan;
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Chiung-Cheng Chuang
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan; (C.-C.C.)
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan; (C.-C.C.)
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan;
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
- Correspondence:
| |
Collapse
|
14
|
Jung D, Park S, Lee C, Kim H. Recent Progress on Near-Infrared Photoacoustic Imaging: Imaging Modality and Organic Semiconducting Agents. Polymers (Basel) 2019; 11:E1693. [PMID: 31623160 PMCID: PMC6836006 DOI: 10.3390/polym11101693] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Over the past few decades, the photoacoustic (PA) effect has been widely investigated, opening up diverse applications, such as photoacoustic spectroscopy, estimation of chemical energies, or point-of-care detection. Notably, photoacoustic imaging (PAI) has also been developed and has recently received considerable attention in bio-related or clinical imaging fields, as it now facilitates an imaging platform in the near-infrared (NIR) region by taking advantage of the significant advancement of exogenous imaging agents. The NIR PAI platform now paves the way for high-resolution, deep-tissue imaging, which is imperative for contemporary theragnosis, a combination of precise diagnosis and well-timed therapy. This review reports the recent progress on NIR PAI modality, as well as semiconducting contrast agents, and outlines the trend in current NIR imaging and provides further direction for the prospective development of PAI systems.
Collapse
Affiliation(s)
- Doyoung Jung
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Suhyeon Park
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Changho Lee
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School & Hwasun Hospital, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do 58128, Korea.
| | - Hyungwoo Kim
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| |
Collapse
|
15
|
Lee C, Kim JY, Kim C. Recent Progress on Photoacoustic Imaging Enhanced with Microelectromechanical Systems (MEMS) Technologies. MICROMACHINES 2018; 9:E584. [PMID: 30413091 PMCID: PMC6266184 DOI: 10.3390/mi9110584] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/01/2023]
Abstract
Photoacoustic imaging (PAI) is a new biomedical imaging technology currently in the spotlight providing a hybrid contrast mechanism and excellent spatial resolution in the biological tissues. It has been extensively studied for preclinical and clinical applications taking advantage of its ability to provide anatomical and functional information of live bodies noninvasively. Recently, microelectromechanical systems (MEMS) technologies, particularly actuators and sensors, have contributed to improving the PAI system performance, further expanding the research fields. This review introduces cutting-edge MEMS technologies for PAI and summarizes the recent advances of scanning mirrors and detectors in MEMS.
Collapse
Affiliation(s)
- Changho Lee
- Department of Nuclear Medicine, Chonnam National University Medical School & Hwasun Hospital, Hwasun 58128, Korea.
| | - Jin Young Kim
- Departments of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| | - Chulhong Kim
- Departments of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
- Departments of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| |
Collapse
|