1
|
Andreev P, Denisova A, Fedoseev V. Reversible Watermarking for Electrocardiogram Protection. SENSORS (BASEL, SWITZERLAND) 2025; 25:2185. [PMID: 40218698 PMCID: PMC11991258 DOI: 10.3390/s25072185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
The electrocardiogram (ECG) is one of the widespread diagnostic methods used in telemedicine. However, in the telemedicine systems, the data transfer process to the end user may suffer from security risks. Reversible watermarking can preserve the security of electrocardiograms and keep their original precision for correct diagnostics. In this paper, we present an extensive investigation of four reversible watermarking methods: prediction error expansion (PEE), reversible contrast mapping difference expansion (RCM), integer transform-based difference expansion (ITB), and compression-based watermarking. We discover new facets of the existing ECG watermarking methods (PEE and compression-based watermarking) and adapt image watermarking methods (RCM and ITB) to ECG signal. We compare different kinds of prediction and compression methods used in the studied methods and provide a watermark capacity comparison for different methods' implementations. The research results will help in watermarking method selection in practice.
Collapse
Affiliation(s)
| | | | - Victor Fedoseev
- Geoinformatics and Information Security Department, Samara National Research University, Samara 443086, Russia; (P.A.); (A.D.)
| |
Collapse
|
2
|
Nopour R. Development of Prediction Model for 5-year Survival of Colorectal Cancer. Cancer Inform 2024; 23:11769351241275889. [PMID: 39238654 PMCID: PMC11375664 DOI: 10.1177/11769351241275889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/28/2024] [Indexed: 09/07/2024] Open
Abstract
Objectives This study aims to introduce a prediction model based on a machine learning approach as an efficient solution for prediction purposes to better prognosis and increase CRC survival. Methods In the current retrospective study, we used the data of 1062 CRC cases to analyse and establish a prediction model for the 5-year CRC survival. The machine learning algorithms were used to develop prediction models, including random Forest, XG-Boost, bagging, logistic regression, support vector machine, artificial neural network, decision tree, and K-nearest neighbours. Results The current study revealed that the XG-Boost with AU-ROC of 0.906 and 0.813 for internal and external conditions gave us better insight into predictability and generalizability than other algorithms. Conclusion XG-Boost can be utilised as a knowledge source for implementing intelligent systems as an assistive tool for clinical decision-making in healthcare settings to improve prognosis and increase CRC survival through various clinical solutions that doctors can achieve.
Collapse
Affiliation(s)
- Raoof Nopour
- Department of Health Information Management, Student Research Committee, School of Health Management and Information Sciences Branch, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zeng L, Huang M, Li Y, Chen Q, Dai HN. Progressive Feature Fusion Attention Dense Network for Speckle Noise Removal in OCT Images. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:748-756. [PMID: 36074879 DOI: 10.1109/tcbb.2022.3205217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although deep learning for Big Data analytics has achieved promising results in the field of optical coherence tomography (OCT) image denoising, the low recognition rate caused by complex noise distribution and a large number of redundant features is still a challenge faced by deep learning-based denoising methods. Moreover, the network with large depth will bring high computational complexity. To this end, we propose a progressive feature fusion attention dense network (PFFADN) for speckle noise removal in OCT images. We arrange densely connected dense blocks in the deep convolution network, and sequentially connect the shallow convolution feature map with the deep one extracted from each dense block to form a residual block. We add attention mechanism to the network to extract the key features and suppress the irrelevant ones. We fuse the output feature maps from all dense blocks and input them to the reconstruction output layer. We compare PFFADN with the state-of-the-art denoising algorithms on retinal OCT images. Experiments show that our method has better improvement in denoising performance.
Collapse
|
4
|
Movahed M, Bilderback S. Evaluating the readiness of healthcare administration students to utilize AI for sustainable leadership: a survey study. J Health Organ Manag 2024; ahead-of-print. [PMID: 38858220 DOI: 10.1108/jhom-12-2023-0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
PURPOSE This paper explores how healthcare administration students perceive the integration of Artificial Intelligence (AI) in healthcare leadership, mainly focusing on the sustainability aspects involved. It aims to identify gaps in current educational curricula and suggests enhancements to better prepare future healthcare professionals for the evolving demands of AI-driven healthcare environments. DESIGN/METHODOLOGY/APPROACH This study utilized a cross-sectional survey design to understand healthcare administration students' perceptions regarding integrating AI in healthcare leadership. An online questionnaire, developed from an extensive literature review covering fundamental AI knowledge and its role in sustainable leadership, was distributed to students majoring and minoring in healthcare administration. This methodological approach garnered participation from 62 students, providing insights and perspectives crucial for the study's objectives. FINDINGS The research revealed that while a significant majority of healthcare administration students (70%) recognize the potential of AI in fostering sustainable leadership in healthcare, only 30% feel adequately prepared to work in AI-integrated environments. Additionally, students were interested in learning more about AI applications in healthcare and the role of AI in sustainable leadership, underscoring the need for comprehensive AI-focused education in their curriculum. RESEARCH LIMITATIONS/IMPLICATIONS The research is limited by its focus on a single academic institution, which may not fully represent the diversity of perspectives in healthcare administration. PRACTICAL IMPLICATIONS This study highlights the need for healthcare administration curricula to incorporate AI education, aligning theoretical knowledge with practical applications, to effectively prepare future professionals for the evolving demands of AI-integrated healthcare environments. ORIGINALITY/VALUE This research paper presents insights into healthcare administration students' readiness and perspectives toward AI integration in healthcare leadership, filling a critical gap in understanding the educational needs in the evolving landscape of AI-driven healthcare.
Collapse
Affiliation(s)
- Mohammad Movahed
- Department of Economics, Finance, and Healthcare Administration, Valdosta State University, Valdosta, Georgia, USA
| | | |
Collapse
|
5
|
Yeh WC, Kuo CY, Chen JM, Ku TH, Yao DJ, Ho YC, Lin RY. Pioneering Data Processing for Convolutional Neural Networks to Enhance the Diagnostic Accuracy of Traditional Chinese Medicine Pulse Diagnosis for Diabetes. Bioengineering (Basel) 2024; 11:561. [PMID: 38927797 PMCID: PMC11201186 DOI: 10.3390/bioengineering11060561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Traditional Chinese medicine (TCM) has relied on pulse diagnosis as a cornerstone of healthcare assessment for thousands of years. Despite its long history and widespread use, TCM pulse diagnosis has faced challenges in terms of diagnostic accuracy and consistency due to its dependence on subjective interpretation and theoretical analysis. This study introduces an approach to enhance the accuracy of TCM pulse diagnosis for diabetes by leveraging the power of deep learning algorithms, specifically LeNet and ResNet models, for pulse waveform analysis. LeNet and ResNet models were applied to analyze TCM pulse waveforms using a diverse dataset comprising both healthy individuals and patients with diabetes. The integration of these advanced algorithms with modern TCM pulse measurement instruments shows great promise in reducing practitioner-dependent variability and improving the reliability of diagnoses. This research bridges the gap between ancient wisdom and cutting-edge technology in healthcare. LeNet-F, incorporating special feature extraction of a pulse based on TMC, showed improved training and test accuracies (73% and 67%, respectively, compared with LeNet's 70% and 65%). Moreover, ResNet models consistently outperformed LeNet, with ResNet18-F achieving the highest accuracy (82%) in training and 74% in testing. The advanced preprocessing techniques and additional features contribute significantly to ResNet18-F's superior performance, indicating the importance of feature engineering strategies. Furthermore, the study identifies potential avenues for future research, including optimizing preprocessing techniques to handle pulse waveform variations and noise levels, integrating additional time-frequency domain features, developing domain-specific feature selection algorithms, and expanding the scope to other diseases. These advancements aim to refine traditional Chinese medicine pulse diagnosis, enhancing its accuracy and reliability while integrating it into modern technology for more effective healthcare approaches.
Collapse
Affiliation(s)
- Wei-Chang Yeh
- Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 30013, Taiwan; (W.-C.Y.); (R.-Y.L.)
| | - Chen-Yi Kuo
- Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 30013, Taiwan; (W.-C.Y.); (R.-Y.L.)
| | | | | | - Da-Jeng Yao
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (D.-J.Y.)
| | - Ya-Chi Ho
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (D.-J.Y.)
| | - Ruei-Yu Lin
- Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 30013, Taiwan; (W.-C.Y.); (R.-Y.L.)
| |
Collapse
|
6
|
Hatfaludi CA, Tache IA, Ciusdel CF, Puiu A, Stoian D, Calmac L, Popa-Fotea NM, Bataila V, Scafa-Udriste A, Itu LM. Co-registered optical coherence tomography and X-ray angiography for the prediction of fractional flow reserve. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1029-1039. [PMID: 38376719 DOI: 10.1007/s10554-024-03069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Cardiovascular disease (CVD) stands as the leading global cause of mortality, and coronary artery disease (CAD) has the highest prevalence, contributing to 42% of these fatalities. Recognizing the constraints inherent in the anatomical assessment of CAD, Fractional Flow Reserve (FFR) has emerged as a pivotal functional diagnostic metric. Herein, we assess the potential of employing an ensemble approach with deep neural networks (DNN) to predict invasively measured Fractional Flow Reserve (FFR) using raw anatomical data extracted from both optical coherence tomography (OCT) and X-ray coronary angiography (XA). In this study, we used a challenging dataset, with 46% of the lesions falling within the FFR range of 0.75 to 0.85. Despite this complexity, our model achieved an accuracy of 84.3%, demonstrating a sensitivity of 87.5% and a specificity of 81.4%. Our results demonstrate that incorporating both OCT and XA signals, co-registered, as inputs for the DNN model leads to an important increase in overall accuracy.
Collapse
Affiliation(s)
- Cosmin-Andrei Hatfaludi
- Advanta, Siemens SRL, 15 Noiembrie Bvd, Brasov, 500097, Romania.
- Automation and Information Technology, Transilvania University of Brasov, Mihai Viteazu nr. 5, Brasov, 5000174, Romania.
| | - Irina-Andra Tache
- Advanta, Siemens SRL, 15 Noiembrie Bvd, Brasov, 500097, Romania
- Department of Automatic Control and Systems Engineering, University Politehnica of Bucharest, Bucharest, 014461, Romania
| | - Costin-Florian Ciusdel
- Advanta, Siemens SRL, 15 Noiembrie Bvd, Brasov, 500097, Romania
- Automation and Information Technology, Transilvania University of Brasov, Mihai Viteazu nr. 5, Brasov, 5000174, Romania
| | - Andrei Puiu
- Advanta, Siemens SRL, 15 Noiembrie Bvd, Brasov, 500097, Romania
- Automation and Information Technology, Transilvania University of Brasov, Mihai Viteazu nr. 5, Brasov, 5000174, Romania
| | - Diana Stoian
- Advanta, Siemens SRL, 15 Noiembrie Bvd, Brasov, 500097, Romania
- Automation and Information Technology, Transilvania University of Brasov, Mihai Viteazu nr. 5, Brasov, 5000174, Romania
| | - Lucian Calmac
- Department of Cardiology, Emergency Clinical Hospital, 8 Calea Floreasca, Bucharest, 014461, Romania
- Department Cardio-Thoracic, University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari, Bucharest, 050474, Romania
| | - Nicoleta-Monica Popa-Fotea
- Department of Cardiology, Emergency Clinical Hospital, 8 Calea Floreasca, Bucharest, 014461, Romania
- Department Cardio-Thoracic, University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari, Bucharest, 050474, Romania
| | - Vlad Bataila
- Department of Cardiology, Emergency Clinical Hospital, 8 Calea Floreasca, Bucharest, 014461, Romania
| | - Alexandru Scafa-Udriste
- Department of Cardiology, Emergency Clinical Hospital, 8 Calea Floreasca, Bucharest, 014461, Romania
- Department Cardio-Thoracic, University of Medicine and Pharmacy "Carol Davila", 8 Eroii Sanitari, Bucharest, 050474, Romania
| | - Lucian Mihai Itu
- Advanta, Siemens SRL, 15 Noiembrie Bvd, Brasov, 500097, Romania
- Automation and Information Technology, Transilvania University of Brasov, Mihai Viteazu nr. 5, Brasov, 5000174, Romania
| |
Collapse
|
7
|
Tripathi A, Waqas A, Venkatesan K, Yilmaz Y, Rasool G. Building Flexible, Scalable, and Machine Learning-Ready Multimodal Oncology Datasets. SENSORS (BASEL, SWITZERLAND) 2024; 24:1634. [PMID: 38475170 PMCID: PMC10933897 DOI: 10.3390/s24051634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The advancements in data acquisition, storage, and processing techniques have resulted in the rapid growth of heterogeneous medical data. Integrating radiological scans, histopathology images, and molecular information with clinical data is essential for developing a holistic understanding of the disease and optimizing treatment. The need for integrating data from multiple sources is further pronounced in complex diseases such as cancer for enabling precision medicine and personalized treatments. This work proposes Multimodal Integration of Oncology Data System (MINDS)-a flexible, scalable, and cost-effective metadata framework for efficiently fusing disparate data from public sources such as the Cancer Research Data Commons (CRDC) into an interconnected, patient-centric framework. MINDS consolidates over 41,000 cases from across repositories while achieving a high compression ratio relative to the 3.78 PB source data size. It offers sub-5-s query response times for interactive exploration. MINDS offers an interface for exploring relationships across data types and building cohorts for developing large-scale multimodal machine learning models. By harmonizing multimodal data, MINDS aims to potentially empower researchers with greater analytical ability to uncover diagnostic and prognostic insights and enable evidence-based personalized care. MINDS tracks granular end-to-end data provenance, ensuring reproducibility and transparency. The cloud-native architecture of MINDS can handle exponential data growth in a secure, cost-optimized manner while ensuring substantial storage optimization, replication avoidance, and dynamic access capabilities. Auto-scaling, access controls, and other mechanisms guarantee pipelines' scalability and security. MINDS overcomes the limitations of existing biomedical data silos via an interoperable metadata-driven approach that represents a pivotal step toward the future of oncology data integration.
Collapse
Affiliation(s)
- Aakash Tripathi
- Department of Machine Learning, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.W.); (K.V.); (G.R.)
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA;
| | - Asim Waqas
- Department of Machine Learning, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.W.); (K.V.); (G.R.)
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA;
| | - Kavya Venkatesan
- Department of Machine Learning, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.W.); (K.V.); (G.R.)
| | - Yasin Yilmaz
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA;
| | - Ghulam Rasool
- Department of Machine Learning, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.W.); (K.V.); (G.R.)
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA;
- Department of Neuro-Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Aslam M, Rajbdad F, Azmat S, Li Z, Boudreaux JP, Thiagarajan R, Yao S, Xu J. A novel method for detection of pancreatic Ductal Adenocarcinoma using explainable machine learning. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 245:108019. [PMID: 38237450 DOI: 10.1016/j.cmpb.2024.108019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND AND OBJECTIVE Pancreatic Ductal Adenocarcinoma (PDAC) is a form of pancreatic cancer that is one of the primary causes of cancer-related deaths globally, with less than 10 % of the five years survival rate. The prognosis of pancreatic cancer has remained poor in the last four decades, mainly due to the lack of early diagnostic mechanisms. This study proposes a novel method for detecting PDAC using explainable and supervised machine learning from Raman spectroscopic signals. METHODS An insightful feature set consisting of statistical, peak, and extended empirical mode decomposition features is selected using the support vector machine recursive feature elimination method integrated with a correlation bias reduction. Explicable features successfully identified mutations in Kirsten rat sarcoma viral oncogene homolog (KRAS) and tumor suppressor protein53 (TP53) in the fingerprint region for the first time in the literature. PDAC and normal pancreas are classified using K-nearest neighbor, linear discriminant analysis, and support vector machine classifiers. RESULTS This study achieved a classification accuracy of 98.5% using a nonlinear support vector machine. Our proposed method reduced test time by 28.5 % and saved 85.6 % memory utilization, which reduces complexity significantly and is more accurate than the state-of-the-art method. The generalization of the proposed method is assessed by fifteen-fold cross-validation, and its performance is evaluated using accuracy, specificity, sensitivity, and receiver operating characteristic curves. CONCLUSIONS In this study, we proposed a method to detect and define the fingerprint region for PDAC using explainable machine learning. This simple, accurate, and efficient method for PDAC detection in mice could be generalized to examine human pancreatic cancer and provide a basis for precise chemotherapy for early cancer treatment.
Collapse
Affiliation(s)
- Murtaza Aslam
- Department of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fozia Rajbdad
- Department of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Shoaib Azmat
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Pakistan
| | - Zheng Li
- Department of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - J Philip Boudreaux
- Department of Surgery, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ramcharan Thiagarajan
- Department of Surgery, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Shaomian Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jian Xu
- Department of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
9
|
Hassan J, Saeed SM, Deka L, Uddin MJ, Das DB. Applications of Machine Learning (ML) and Mathematical Modeling (MM) in Healthcare with Special Focus on Cancer Prognosis and Anticancer Therapy: Current Status and Challenges. Pharmaceutics 2024; 16:260. [PMID: 38399314 PMCID: PMC10892549 DOI: 10.3390/pharmaceutics16020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The use of data-driven high-throughput analytical techniques, which has given rise to computational oncology, is undisputed. The widespread use of machine learning (ML) and mathematical modeling (MM)-based techniques is widely acknowledged. These two approaches have fueled the advancement in cancer research and eventually led to the uptake of telemedicine in cancer care. For diagnostic, prognostic, and treatment purposes concerning different types of cancer research, vast databases of varied information with manifold dimensions are required, and indeed, all this information can only be managed by an automated system developed utilizing ML and MM. In addition, MM is being used to probe the relationship between the pharmacokinetics and pharmacodynamics (PK/PD interactions) of anti-cancer substances to improve cancer treatment, and also to refine the quality of existing treatment models by being incorporated at all steps of research and development related to cancer and in routine patient care. This review will serve as a consolidation of the advancement and benefits of ML and MM techniques with a special focus on the area of cancer prognosis and anticancer therapy, leading to the identification of challenges (data quantity, ethical consideration, and data privacy) which are yet to be fully addressed in current studies.
Collapse
Affiliation(s)
- Jasmin Hassan
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (S.M.S.)
| | | | - Lipika Deka
- Faculty of Computing, Engineering and Media, De Montfort University, Leicester LE1 9BH, UK;
| | - Md Jasim Uddin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
10
|
Soliman A, Agvall B, Etminani K, Hamed O, Lingman M. The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study. J Med Internet Res 2023; 25:e46934. [PMID: 37889530 PMCID: PMC10638630 DOI: 10.2196/46934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/22/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Sensitive and interpretable machine learning (ML) models can provide valuable assistance to clinicians in managing patients with heart failure (HF) at discharge by identifying individual factors associated with a high risk of readmission. In this cohort study, we delve into the factors driving the potential utility of classification models as decision support tools for predicting readmissions in patients with HF. OBJECTIVE The primary objective of this study is to assess the trade-off between using deep learning (DL) and traditional ML models to identify the risk of 100-day readmissions in patients with HF. Additionally, the study aims to provide explanations for the model predictions by highlighting important features both on a global scale across the patient cohort and on a local level for individual patients. METHODS The retrospective data for this study were obtained from the Regional Health Care Information Platform in Region Halland, Sweden. The study cohort consisted of patients diagnosed with HF who were over 40 years old and had been hospitalized at least once between 2017 and 2019. Data analysis encompassed the period from January 1, 2017, to December 31, 2019. Two ML models were developed and validated to predict 100-day readmissions, with a focus on the explainability of the model's decisions. These models were built based on decision trees and recurrent neural architecture. Model explainability was obtained using an ML explainer. The predictive performance of these models was compared against 2 risk assessment tools using multiple performance metrics. RESULTS The retrospective data set included a total of 15,612 admissions, and within these admissions, readmission occurred in 5597 cases, representing a readmission rate of 35.85%. It is noteworthy that a traditional and explainable model, informed by clinical knowledge, exhibited performance comparable to the DL model and surpassed conventional scoring methods in predicting readmission among patients with HF. The evaluation of predictive model performance was based on commonly used metrics, with an area under the precision-recall curve of 66% for the deep model and 68% for the traditional model on the holdout data set. Importantly, the explanations provided by the traditional model offer actionable insights that have the potential to enhance care planning. CONCLUSIONS This study found that a widely used deep prediction model did not outperform an explainable ML model when predicting readmissions among patients with HF. The results suggest that model transparency does not necessarily compromise performance, which could facilitate the clinical adoption of such models.
Collapse
Affiliation(s)
- Amira Soliman
- Center for Applied Intelligent Systems Research, School of Information Technology, Halmstad University, Halmstad, Sweden
| | - Björn Agvall
- Department of Research and Development, Region Halland, Halmstad, Sweden
- Center for Primary Health Care Research, Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Kobra Etminani
- Center for Applied Intelligent Systems Research, School of Information Technology, Halmstad University, Halmstad, Sweden
- Department of Research and Development, Region Halland, Halmstad, Sweden
| | - Omar Hamed
- Center for Applied Intelligent Systems Research, School of Information Technology, Halmstad University, Halmstad, Sweden
| | - Markus Lingman
- Center for Applied Intelligent Systems Research, School of Information Technology, Halmstad University, Halmstad, Sweden
- Department of Research and Development, Region Halland, Halmstad, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Department of Cardiology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
11
|
Quek LJ, Heikkonen MR, Lau Y. Use of artificial intelligence techniques for detection of mild cognitive impairment: A systematic scoping review. J Clin Nurs 2023; 32:5752-5762. [PMID: 37032649 DOI: 10.1111/jocn.16699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/10/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023]
Abstract
AIMS AND OBJECTIVES The objective of this scoping review is to explore the types and mechanisms of Artificial intelligence (AI) techniques for detecting mild cognitive impairment (MCI). BACKGROUND Early detection of MCI is crucial because it may progress to Alzheimer's disease. DESIGN A systematic scoping review. METHODS Five-step framework of Arksey and O'Malley was used following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews checklist. A total of 11 databases (PubMed, EMBASE, CINAHL, Cochrane Library, Scopus, Web of Science, IEEE Explore, Science.gov, ACM digital library, arXIV and ProQuest) was used to search from inception till 17th December 2021. Grey literature and reference list were searched. Articles screening and data charting were conducted by two independent reviewers. RESULTS There were a total of 70 articles included from 2011 to 2022 across 16 countries. Four types of AI techniques were found, namely machine learning (ML), deep learning (DL), fuzzy logic (FL) and technique combinations. Herein, ML detects similar pattern within preselected data to classify subjects into non-MCI or MCI groups. Meanwhile, DL performs classification based on data patterns and data analyses are performed by themselves. Furthermore, FL utilises human-defined rules to decide the degree to which a person has MCI. A combination of AI techniques enhances the feature preparation phase for ML or DL to perform accurate classification. CONCLUSION Although AI-based MCI detection tool is critical for healthcare decision-making, clinical utility and risks remain underexplored. Hopefully, this review equips clinicians with background AI knowledge to address these clinical concerns. Hence, future research should explore more techniques and representative datasets to improve AI development. RELEVANCE TO CLINICAL PRACTICE Results of this review can increase the knowledge of AI-based MCI detection tools. REVIEW REGISTRATION This study protocol was registered in the Open Science Framework Registries (https://osf.io/45rdt).
Collapse
Affiliation(s)
- Li JuanVivian Quek
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore city, Singapore
| | - Maria Rosaliini Heikkonen
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore city, Singapore
| | - Ying Lau
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore city, Singapore
| |
Collapse
|
12
|
Kaisti M, Laitala J, Wong D, Airola A. Domain randomization using synthetic electrocardiograms for training neural networks. Artif Intell Med 2023; 143:102583. [PMID: 37673557 DOI: 10.1016/j.artmed.2023.102583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/26/2023] [Accepted: 05/15/2023] [Indexed: 09/08/2023]
Abstract
We present a method for training neural networks with synthetic electrocardiograms that mimic signals produced by a wearable single lead electrocardiogram monitor. We use domain randomization where the synthetic signal properties such as the waveform shape, RR-intervals and noise are varied for every training example. Models trained with synthetic data are compared to their counterparts trained with real data. Detection of r-waves in electrocardiograms recorded during different physical activities and in atrial fibrillation is used to assess the performance. By allowing the randomization of the synthetic signals to increase beyond what is typically observed in the real-world data the performance is on par or superseding the performance of networks trained with real data. Experiments show robust model performance using different seeds and on different unseen test sets that were fully separated from the training phase. The ability of the model to generalize well to hidden test sets without any specific tuning provides a simple and explainable alternative to more complex adversarial domain adaptation methods for model generalization. This method opens up the possibility of extending the use of synthetic data towards domain insensitive cardiac disease classification when disease specific a priori information is used in the electrocardiogram generation. Additionally, the method provides training with free-to-collect data with accurate labels, control of the data distribution eliminating class imbalances that are typically observed in health-related data, and the generated data is inherently private.
Collapse
Affiliation(s)
- Matti Kaisti
- Department of Computing, Digital Health Lab, University of Turku, Turku 20500, Finland.
| | - Juho Laitala
- Department of Computing, Digital Health Lab, University of Turku, Turku 20500, Finland
| | - David Wong
- Department of Computer Science and Centre for Health Informatics, University of Manchester, Manchester, UK
| | - Antti Airola
- Department of Computing, Digital Health Lab, University of Turku, Turku 20500, Finland
| |
Collapse
|
13
|
Fan P, Miranda O, Qi X, Kofler J, Sweet RA, Wang L. Unveiling the Enigma: Exploring Risk Factors and Mechanisms for Psychotic Symptoms in Alzheimer's Disease through Electronic Medical Records with Deep Learning Models. Pharmaceuticals (Basel) 2023; 16:911. [PMID: 37513822 PMCID: PMC10385983 DOI: 10.3390/ph16070911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Around 50% of patients with Alzheimer's disease (AD) may experience psychotic symptoms after onset, resulting in a subtype of AD known as psychosis in AD (AD + P). This subtype is characterized by more rapid cognitive decline compared to AD patients without psychosis. Therefore, there is a great need to identify risk factors for the development of AD + P and explore potential treatment options. In this study, we enhanced our deep learning model, DeepBiomarker, to predict the onset of psychosis in AD utilizing data from electronic medical records (EMRs). The model demonstrated superior predictive capacity with an AUC (area under curve) of 0.907, significantly surpassing conventional risk prediction models. Utilizing a perturbation-based method, we identified key features from multiple medications, comorbidities, and abnormal laboratory tests, which notably influenced the prediction outcomes. Our findings demonstrated substantial agreement with existing studies, underscoring the vital role of metabolic syndrome, inflammation, and liver function pathways in AD + P. Importantly, the DeepBiomarker model not only offers a precise prediction of AD + P onset but also provides mechanistic understanding, potentially informing the development of innovative treatments. With additional validation, this approach could significantly contribute to early detection and prevention strategies for AD + P, thereby improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Peihao Fan
- Computational Chemical Genomics Screening Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Oshin Miranda
- Computational Chemical Genomics Screening Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiguang Qi
- Computational Chemical Genomics Screening Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Julia Kofler
- Department of Pathology, Division of Neuropathology, UPMC Presbyterian Hospital, Pittsburgh, PA 15213, USA
| | - Robert A Sweet
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lirong Wang
- Computational Chemical Genomics Screening Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
14
|
Rescinito R, Ratti M, Payedimarri AB, Panella M. Prediction Models for Intrauterine Growth Restriction Using Artificial Intelligence and Machine Learning: A Systematic Review and Meta-Analysis. Healthcare (Basel) 2023; 11:healthcare11111617. [PMID: 37297757 DOI: 10.3390/healthcare11111617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND IntraUterine Growth Restriction (IUGR) is a global public health concern and has major implications for neonatal health. The early diagnosis of this condition is crucial for obtaining positive outcomes for the newborn. In recent years Artificial intelligence (AI) and machine learning (ML) techniques are being used to identify risk factors and provide early prediction of IUGR. We performed a systematic review (SR) and meta-analysis (MA) aimed to evaluate the use and performance of AI/ML models in detecting fetuses at risk of IUGR. METHODS We conducted a systematic review according to the PRISMA checklist. We searched for studies in all the principal medical databases (MEDLINE, EMBASE, CINAHL, Scopus, Web of Science, and Cochrane). To assess the quality of the studies we used the JBI and CASP tools. We performed a meta-analysis of the diagnostic test accuracy, along with the calculation of the pooled principal measures. RESULTS We included 20 studies reporting the use of AI/ML models for the prediction of IUGR. Out of these, 10 studies were used for the quantitative meta-analysis. The most common input variable to predict IUGR was the fetal heart rate variability (n = 8, 40%), followed by the biochemical or biological markers (n = 5, 25%), DNA profiling data (n = 2, 10%), Doppler indices (n = 3, 15%), MRI data (n = 1, 5%), and physiological, clinical, or socioeconomic data (n = 1, 5%). Overall, we found that AI/ML techniques could be effective in predicting and identifying fetuses at risk for IUGR during pregnancy with the following pooled overall diagnostic performance: sensitivity = 0.84 (95% CI 0.80-0.88), specificity = 0.87 (95% CI 0.83-0.90), positive predictive value = 0.78 (95% CI 0.68-0.86), negative predictive value = 0.91 (95% CI 0.86-0.94) and diagnostic odds ratio = 30.97 (95% CI 19.34-49.59). In detail, the RF-SVM (Random Forest-Support Vector Machine) model (with 97% accuracy) showed the best results in predicting IUGR from FHR parameters derived from CTG. CONCLUSIONS our findings showed that AI/ML could be part of a more accurate and cost-effective screening method for IUGR and be of help in optimizing pregnancy outcomes. However, before the introduction into clinical daily practice, an appropriate algorithmic improvement and refinement is needed, and the importance of quality assessment and uniform diagnostic criteria should be further emphasized.
Collapse
Affiliation(s)
- Riccardo Rescinito
- Department of Translational Medicine (DiMeT), University of Eastern Piedmont/Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Matteo Ratti
- Department of Translational Medicine (DiMeT), University of Eastern Piedmont/Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Anil Babu Payedimarri
- Department of Translational Medicine (DiMeT), University of Eastern Piedmont/Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Massimiliano Panella
- Department of Translational Medicine (DiMeT), University of Eastern Piedmont/Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
15
|
Soh ZD, Cheng CY. Application of big data in ophthalmology. Taiwan J Ophthalmol 2023; 13:123-132. [PMID: 37484625 PMCID: PMC10361443 DOI: 10.4103/tjo.tjo-d-23-00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/02/2023] [Indexed: 07/25/2023] Open
Abstract
The advents of information technologies have led to the creation of ever-larger datasets. Also known as big data, these large datasets are characterized by its volume, variety, velocity, veracity, and value. More importantly, big data has the potential to expand traditional research capabilities, inform clinical practice based on real-world data, and improve the health system and service delivery. This review first identified the different sources of big data in ophthalmology, including electronic medical records, data registries, research consortia, administrative databases, and biobanks. Then, we provided an in-depth look at how big data analytics have been applied in ophthalmology for disease surveillance, and evaluation on disease associations, detection, management, and prognostication. Finally, we discussed the challenges involved in big data analytics, such as data suitability and quality, data security, and analytical methodologies.
Collapse
Affiliation(s)
- Zhi Da Soh
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
16
|
Investigation on the Distribution Characteristics of Chinese Continuing Education Based on the Community Detection Algorithm in Complex Networks. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8149395. [PMID: 36065373 PMCID: PMC9440787 DOI: 10.1155/2022/8149395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
In order to closely fit the characteristics of continuing education, the development of continuing education teaching activities under the network background should not only be combined with the characteristics of professional adult education but also make reasonable use of modern teaching models in the actual teaching process. Based on the community detection algorithm in complex networks, this article makes thorough research and analysis on the complexity of Chinese continuing education by using complex network technology. By establishing the characteristics of vertex degree distribution, average path length, and clustering coefficient of complex networks, it is confirmed that Chinese continuing education has scale-free network characteristics and small-world network characteristics. The three aspects of relationship strength comprehensively analyze the information dissemination speed, scope, interpretation, and application; through the combination of the ant colony algorithm and complex network technology, multiple information dissemination paths are abstracted in Chinese continuing education. The research shows that the application of complex network algorithms can effectively improve the speed and quality of continuing education in China. It is found that the government should increase the number of adult education projects and improve the level of project categories, form key adult education research basis to promote the diversification of research subjects, expand the space for adult education projects to balance regional and provincial differences and attach importance to basic research on adult education, and integrate applied research.
Collapse
|
17
|
Towards computational solutions for precision medicine based big data healthcare system using deep learning models: A review. Comput Biol Med 2022; 149:106020. [DOI: 10.1016/j.compbiomed.2022.106020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022]
|
18
|
Yu G. PageRank Topic Finder based Algorithm for Multimedia Resources in Preschool Education. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4173243. [PMID: 35909855 PMCID: PMC9329012 DOI: 10.1155/2022/4173243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/07/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
In traditional preschool education, it is time-consuming and laborious to acquire effective materials by using artificial search method. However, with the development of Internet technology, a variety of preschool education institutions or individuals have released their own preschool education resources on the Internet. At present, multimedia technology has been popularized in many schools, and it plays a more and more significant role in teaching. In preschool education teaching, teachers use multimedia resources not only conducive to improve children's learning efficiency but also make the teaching quality from the whole to a higher level. However, some kindergarten teachers rely too much on multimedia in teaching and do not effectively combine it with traditional teaching methods. Sometimes they even use video and related multimedia teaching resources throughout the class, which makes preschool children lack knowledge and knowledge. Therefore, this paper designs a multimedia resource retrieval system based on the theme of preschool education, which mainly achieves the extraction of multimedia resources from web pages and the analysis of multimedia-related text information. In order to design a high-performance topic search algorithm, we must first carry out page parsing, Chinese and English word segmentation, and other page preprocessing. The research results show that it is found that the text-based automatic classification of multimedia resources in preschool education and the filtering of multimedia noise in web pages can provide relevant personnel in the field of preschool education with the retrieval service of multimedia resources.
Collapse
Affiliation(s)
- Guiping Yu
- Normal College, Eastern Liaoning University, Dandong, Liaoning 118000, China
| |
Collapse
|
19
|
Towards a Deep-Learning Approach for Prediction of Fractional Flow Reserve from Optical Coherence Tomography. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cardiovascular disease (CVD) is the number one cause of death worldwide, and coronary artery disease (CAD) is the most prevalent CVD, accounting for 42% of these deaths. In view of the limitations of the anatomical evaluation of CAD, Fractional Flow Reserve (FFR) has been introduced as a functional diagnostic index. Herein, we evaluate the feasibility of using deep neural networks (DNN) in an ensemble approach to predict the invasively measured FFR from raw anatomical information that is extracted from optical coherence tomography (OCT). We evaluate the performance of various DNN architectures under different formulations: regression, classification—standard, and few-shot learning (FSL) on a dataset containing 102 intermediate lesions from 80 patients. The FSL approach that is based on a convolutional neural network leads to slightly better results compared to the standard classification: the per-lesion accuracy, sensitivity, and specificity were 77.5%, 72.9%, and 81.5%, respectively. However, since the 95% confidence intervals overlap, the differences are statistically not significant. The main findings of this study can be summarized as follows: (1) Deep-learning (DL)-based FFR prediction from reduced-order raw anatomical data is feasible in intermediate coronary artery lesions; (2) DL-based FFR prediction provides superior diagnostic performance compared to baseline approaches that are based on minimal lumen diameter and percentage diameter stenosis; and (3) the FFR prediction performance increases quasi-linearly with the dataset size, indicating that a larger train dataset will likely lead to superior diagnostic performance.
Collapse
|
20
|
Musa N, Gital AY, Aljojo N, Chiroma H, Adewole KS, Mojeed HA, Faruk N, Abdulkarim A, Emmanuel I, Folawiyo YY, Ogunmodede JA, Oloyede AA, Olawoyin LA, Sikiru IA, Katb I. A systematic review and Meta-data analysis on the applications of Deep Learning in Electrocardiogram. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2022; 14:9677-9750. [PMID: 35821879 PMCID: PMC9261902 DOI: 10.1007/s12652-022-03868-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/26/2022] [Indexed: 06/08/2023]
Abstract
The success of deep learning over the traditional machine learning techniques in handling artificial intelligence application tasks such as image processing, computer vision, object detection, speech recognition, medical imaging and so on, has made deep learning the buzz word that dominates Artificial Intelligence applications. From the last decade, the applications of deep learning in physiological signals such as electrocardiogram (ECG) have attracted a good number of research. However, previous surveys have not been able to provide a systematic comprehensive review including biometric ECG based systems of the applications of deep learning in ECG with respect to domain of applications. To address this gap, we conducted a systematic literature review on the applications of deep learning in ECG including biometric ECG based systems. The study analyzed systematically, 150 primary studies with evidence of the application of deep learning in ECG. The study shows that the applications of deep learning in ECG have been applied in different domains. We presented a new taxonomy of the domains of application of the deep learning in ECG. The paper also presented discussions on biometric ECG based systems and meta-data analysis of the studies based on the domain, area, task, deep learning models, dataset sources and preprocessing methods. Challenges and potential research opportunities were highlighted to enable novel research. We believe that this study will be useful to both new researchers and expert researchers who are seeking to add knowledge to the already existing body of knowledge in ECG signal processing using deep learning algorithm. Supplementary information The online version contains supplementary material available at 10.1007/s12652-022-03868-z.
Collapse
Affiliation(s)
- Nehemiah Musa
- Department of Mathematical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Abdulsalam Ya’u Gital
- Department of Mathematical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | | | - Haruna Chiroma
- Computer Science and Engineering, University of Hafr Al-Batin, Hafr, Saudi Arabia
- Computer Science and Engineering , University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
| | - Kayode S. Adewole
- Department of Computer Science, University of Ilorin, Ilorin, Nigeria
| | - Hammed A. Mojeed
- Department of Computer Science, University of Ilorin, Ilorin, Nigeria
| | - Nasir Faruk
- Department of Physics, Sule Lamido University, Kafin Hausa, Nigeria
| | - Abubakar Abdulkarim
- Department of Electrical Engineering, Ahmadu Bello University Zaria, Zaria, Nigeria
| | - Ifada Emmanuel
- Department of Physics, Sule Lamido University, Kafin Hausa, Nigeria
| | | | | | | | | | | | - Ibrahim Katb
- Computer Science and Engineering, University of Hafr Al-Batin, Hafr, Saudi Arabia
| |
Collapse
|
21
|
Intelligent Classification Method of Archive Data Based on Multigranular Semantics. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7559523. [PMID: 35607460 PMCID: PMC9124107 DOI: 10.1155/2022/7559523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022]
Abstract
With the rapid development of information technology, the amount of data in various digital archives has exploded. How to reasonably mine and analyze archive data and improve the effect of intelligent management of newly included archives has become an urgent problem to be solved. The existing archival data classification method is manual classification oriented to management needs. This manual classification method is inefficient and ignores the inherent content information of the archives. In addition, for the discovery and utilization of archive information, it is necessary to further explore and analyze the correlation between the contents of the archive data. Facing the needs of intelligent archive management, from the perspective of the text content of archive data, further analysis of manually classified archives is carried out. Therefore, this paper proposes an intelligent classification method for archive data based on multigranular semantics. First, it constructs a semantic-label multigranular attention model; that is, the output of the stacked expanded convolutional coding module and the label graph attention module are jointly connected to the multigranular attention Mechanism network, the weighted label output by the multigranularity attention mechanism network is used as the input of the fully connected layer, and the output value of the fully connected layer used to map the predicted label is input into a Sigmoid layer to obtain the predicted probability of each label; then, the model for training: use the multilabel data set to train the constructed semantic-label multigranularity attention model, adjust the parameters until the semantic-label multigranularity attention model converges, and obtain the trained semantic-label multigranularity attention model. Taking the multilabel data set to be classified as input, the semantic-label multigranularity attention model after training outputs the classification result.
Collapse
|
22
|
Applying Machine Learning Techniques to the Audit of Antimicrobial Prophylaxis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High rates of inappropriate use of surgical antimicrobial prophylaxis were reported in many countries. Auditing the prophylactic antimicrobial use in enormous medical records by manual review is labor-intensive and time-consuming. The purpose of this study is to develop accurate and efficient machine learning models for auditing appropriate surgical antimicrobial prophylaxis. The supervised machine learning classifiers (Auto-WEKA, multilayer perceptron, decision tree, SimpleLogistic, Bagging, and AdaBoost) were applied to an antimicrobial prophylaxis dataset, which contained 601 instances with 26 attributes. Multilayer perceptron, SimpleLogistic selected by Auto-WEKA, and decision tree algorithms had outstanding discrimination with weighted average AUC > 0.97. The Bagging and SMOTE algorithms could improve the predictive performance of decision tree against imbalanced datasets. Although with better performance measures, multilayer perceptron and Auto-WEKA took more execution time as compared with that of other algorithms. Multilayer perceptron, SimpleLogistic, and decision tree algorithms have outstanding performance measures for identifying the appropriateness of surgical prophylaxis. The efficient models developed by machine learning can be used to assist the antimicrobial stewardship team in the audit of surgical antimicrobial prophylaxis. In future research, we still have the challenges and opportunities of enriching our datasets with more useful clinical information to improve the performance of the algorithms.
Collapse
|
23
|
Explainable Computational Intelligence Model for Antepartum Fetal Monitoring to Predict the Risk of IUGR. ELECTRONICS 2022. [DOI: 10.3390/electronics11040593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Intrauterine Growth Restriction (IUGR) is a restriction of the fetus that involves the abnormal growth rate of the fetus, and it has a huge impact on the new-born’s health. Machine learning (ML) algorithms can help in early prediction and discrimination of the abnormality of the fetus’ health to assist in reducing the risk during the antepartum period. Therefore, in this study, Random Forest (RF), Support Vector Machine (SVM), K Nearest Neighbor (KNN) and Gradient Boosting (GB) was utilized to discriminate whether a fetus was healthy or suffering from IUGR based on the fetal heart rate (FHR). The Recursive Feature Elimination (RFE) method was used to select the significant feature for the classification of fetus. Furthermore, the study Explainable Artificial Intelligence (EAI) was implemented using LIME and SHAP to generate the explanation and to add comprehensibility in the proposed models. The experimental results indicate that RF achieved the highest accuracy (0.97) and F1-score (0.98) with the reduced set of features. However, the SVM outperformed it in terms of Positive Predictive Value (PPV) and specificity (SP). The performance of the model was further validated using another dataset and found that it outperformed the baseline studies for both the datasets. The proposed model can aid doctors in monitoring fetal health and enhancing the prediction process.
Collapse
|
24
|
BARF: A new direct and cross-based binary residual feature fusion with uncertainty-aware module for medical image classification. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.07.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Artificial intelligence in drug design: algorithms, applications, challenges and ethics. FUTURE DRUG DISCOVERY 2021. [DOI: 10.4155/fdd-2020-0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The discovery paradigm of drugs is rapidly growing due to advances in machine learning (ML) and artificial intelligence (AI). This review covers myriad faces of AI and ML in drug design. There is a plethora of AI algorithms, the most common of which are summarized in this review. In addition, AI is fraught with challenges that are highlighted along with plausible solutions to them. Examples are provided to illustrate the use of AI and ML in drug discovery and in predicting drug properties such as binding affinities and interactions, solubility, toxicology, blood–brain barrier permeability and chemical properties. The review also includes examples depicting the implementation of AI and ML in tackling intractable diseases such as COVID-19, cancer and Alzheimer’s disease. Ethical considerations and future perspectives of AI are also covered in this review.
Collapse
|
26
|
A Big Data Approach to Customer Relationship Management Strategy in Hospitality Using Multiple Correspondence Domain Description. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
COVID-19 has hit the hotel sector in a hitherto unknown way. This situation is producing a fundamental change in client behavior that makes crucial an adequate knowledge of their profile to overcome an uncertain environment. Customer Relationship Management (CRM) can provide key strategies in hospitality industry by generating a great amount of valuable information about clients, whereas Big Data tools are providing with unprecedented facilities to conduct massive analysis and to focus the client-to-business relationship. However, few instruments have been proposed to handle categorical features, which are the most usual in CRMs, aiming to adapt the statistical robustness with the best interpretability for the managers. Therefore, our aim was to identify the profiles of clients from an international hotel chain using the overall data in its CRM system. An analysis method was created involving three elements: First, Multiple Correspondence Analysis provides us with a statistical description of the interactions among categories and features. Second, bootstrap resampling techniques give us information about the statistical variability of the feature maps. Third, kernel methods provide easy-to-visualize domain descriptions based on confidence areas in the maps. The proposed methodology can provide an operative and statistically principled way to scrutinize the CRM profiles in hospitality.
Collapse
|
27
|
Cheng CY, Soh ZD, Majithia S, Thakur S, Rim TH, Tham YC, Wong TY. Big Data in Ophthalmology. Asia Pac J Ophthalmol (Phila) 2020; 9:291-298. [PMID: 32739936 DOI: 10.1097/apo.0000000000000304] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Big data is the fuel of mankind's fourth industrial revolution. Coupled with new technology such as artificial intelligence and deep learning, the potential of big data is poised to be harnessed to its maximal in years to come. In ophthalmology, given the data-intensive nature of this specialty, big data will similarly play an important role. Electronic medical records, administrative and health insurance databases, mega national biobanks, crowd source data from mobile applications and social media, and international epidemiology consortia are emerging forms of "big data" in ophthalmology. In this review, we discuss the characteristics of big data, its potential applications in ophthalmology, and the challenges in leveraging and using these data. Importantly, in the next phase of work, it will be pertinent to further translate "big data" findings into real-world applications, to improve quality of eye care, and cost-effectiveness and efficiency of health services in ophthalmology.
Collapse
Affiliation(s)
- Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Zhi Da Soh
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Shivani Majithia
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Sahil Thakur
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Tyler Hyungtaek Rim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Yih Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| |
Collapse
|