1
|
Li Y, Adanty K, Vette A, Vakiel P, Ouellet S, Raboud DW, Dennison C. Review of Mechanisms and Research Methods for Blunt Ballistic Head Injury. J Biomech Eng 2022; 145:1145669. [PMID: 35993786 DOI: 10.1115/1.4055289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 11/08/2022]
Abstract
Head injuries account for 15% to 20% of all military injuries and pose a high risk of causing functional disability and fatality. Blunt ballistic impacts are one of the threats that can lead to severe head injuries. This review aims to examine the mechanisms and injury risk assessment associated with blunt ballistic head injury (BBHI). The review further discusses research methods and instrumentation used in BBHI studies, focusing on their limitations and challenges. Studies on the mechanisms of focal and diffuse brain injuries remain largely inconclusive and require further efforts. Some studies have attempted to associate BBHIs with head mechanics, but more research is required to establish correlations between head mechanics and injury severity. Limited access to experimental models and a lack of instrumentation capable of measuring the mechanics of brain tissue in-situ are potential reasons for the lack of understanding of injury mechanisms, injury correlations and injury tolerance levels specific to this loading regime. Targeted research for understanding and assessing head injuries in blunt ballistic impacts is a necessary step in improving our ability to design protection systems to mitigate these injuries.
Collapse
Affiliation(s)
- Yizhao Li
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9
| | - Kevin Adanty
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9
| | - Albert Vette
- Faculty of Electrical Engineering, Kempten University of Applied Sciences,Bahnhofstrasse 61, 87435 Kempten (Allgäu), Germany; Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9
| | - Paris Vakiel
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada, V8P 5C2; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada, V5Z 1M9
| | - Simon Ouellet
- Weapons Effects and Protection Section, Defence R&D Valcartier Research Centre, Quebec, QC, Canada, G3J 1X5
| | - Don W Raboud
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9
| | - Christopher Dennison
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada, V8P 5C2
| |
Collapse
|
2
|
The Application of Microelectromechanical Systems (MEMS) Accelerometers to the Assessment of Blast Threat to Armored Vehicle Crew. SENSORS 2021; 22:s22010316. [PMID: 35009858 PMCID: PMC8749562 DOI: 10.3390/s22010316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/26/2022]
Abstract
This paper describes the development and application of an autonomous register and measurement system (ARMS), and the application of microelectromechanical systems (MEMS) accelerometers to the assessment of blast threat to armored vehicle crews. Taking measurements with reference to an explosion is one of the principal issues in the protection of crews of special vehicles. The proposed ARMS reduces research costs and contributes to the development of an autonomous, wireless test stand, applicable in various research areas and industry. The ARMS performs data acquisition with simultaneous measurement in multiple channels. The maximum sampling rate is 100 kHz and the sensor range is ±500 g. This solution is an alternative to cable systems, which have a high energy demand. The functionality of the developed autonomous measuring system is demonstrated experimentally. The paper concludes with a field study of the proposed system and the application of MEMS accelerometers via a mine blast test of a military vehicle at level 4 of STANAG 4569.
Collapse
|
3
|
Dymek M, Ptak M, Ratajczak M, Fernandes FAO, Kwiatkowski A, Wilhelm J. Analysis of HIC and Hydrostatic Pressure in the Human Head during NOCSAE Tests of American Football Helmets. Brain Sci 2021; 11:287. [PMID: 33669105 PMCID: PMC7996556 DOI: 10.3390/brainsci11030287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
Brain damage is a serious economic and social burden. Contact sports such as American football, are one of the most common sources of concussions. The biomechanical response of the head-helmet system caused by dynamic loading plays a major role. The literature has focused on measuring the resultant kinematics that act on the head and helmet during tackles. However, few studies have focused on helmet validation tests, supported by recent findings and emerging numerical approaches. The future of helmet standards could benefit from insights at the level of injury mechanisms, using numerical tools to assess the helmets. Therefore, in this work, a numerical approach is employed to investigate the influence of intracranial pressure (ICP) on brain pathophysiology during and after helmeted impacts, which are common in American football. The helmeted impacts were performed at several impact locations according to the NOCSAE standard (configurations A, AP, B, C, D, F, R, UT). In order to evaluate the ICP levels, the αHEAD finite element head and brain model was combined with a Hybrid III-neck structure and then coupled with an American football helmet to simulate the NOCSAE impacts. In addition, the ICP level was analyzed together with the resulting HIC value, since the latter is commonly used, in this application and others, as the injury criterion. The obtained results indicate that ICP values exceed the common threshold of head injury criteria and do not correlate with HIC values. Thus, this work raises concern about applying the HIC to predict brain injury in American football direct head impacts, since it does not correlate with ICP predicted with the FE head model.
Collapse
Affiliation(s)
- Mateusz Dymek
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Lukasiewicza 7/9, 50-371 Wroclaw, Poland
| | - Mariusz Ptak
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Lukasiewicza 7/9, 50-371 Wroclaw, Poland
| | - Monika Ratajczak
- Faculty of Mechanical Engineering, University of Zielona Gora, ul. Szafrana 4, 65-516 Zielona Gora, Poland;
| | - Fábio A. O. Fernandes
- TEMA—Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Artur Kwiatkowski
- Department of Neurosurgery, Provincial Specialist Hospital in Legnica, ul. Iwaszkiewicza 5, 59-220 Legnica, Poland;
| | | |
Collapse
|
4
|
Płatek P, Rajkowski K, Cieplak K, Sarzyński M, Małachowski J, Woźniak R, Janiszewski J. Deformation Process of 3D Printed Structures Made from Flexible Material with Different Values of Relative Density. Polymers (Basel) 2020; 12:polym12092120. [PMID: 32957601 PMCID: PMC7569865 DOI: 10.3390/polym12092120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
The main aim of this article is the analysis of the deformation process of regular cell structures under quasi-static load conditions. The methodology used in the presented investigations included a manufacturability study, strength tests of the base material as well as experimental and numerical compression tests of developed regular cellular structures. A regular honeycomb and four variants with gradually changing topologies of different relative density values have been successfully designed and produced in the TPU-Polyflex flexible thermoplastic polyurethane material using the Fused Filament Fabrication (FFF) 3D printing technique. Based on the results of performed technological studies, the most productive and accurate 3D printing parameters for the thermoplastic polyurethane filament were defined. It has been found that the 3D printed Polyflex material is characterised by a very high flexibility (elongation up to 380%) and a non-linear stress-strain relationship. A detailed analysis of the compression process of the structure specimens revealed that buckling and bending were the main mechanisms responsible for the deformation of developed structures. The Finite Element (FE) method and Ls Dyna software were used to conduct computer simulations reflecting the mechanical response of the structural specimens subjected to a quasi-static compression load. The hyperelastic properties of the TPU material were described with the Simplified Rubber Material (SRM) constitutive model. The proposed FE models, as well as assumed initial boundary conditions, were successfully validated. The results obtained from computer simulations agreed well with the data from the experimental compression tests. A linear relationship was found between the relative density and the maximum strain energy value.
Collapse
Affiliation(s)
- Paweł Płatek
- Faculty of Mechatronics and Aerospace, Military University of Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland; (K.R.); (K.C.); (M.S.); (R.W.); (J.J.)
- Correspondence: ; Tel.: +48-261-839-657
| | - Kamil Rajkowski
- Faculty of Mechatronics and Aerospace, Military University of Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland; (K.R.); (K.C.); (M.S.); (R.W.); (J.J.)
| | - Kamil Cieplak
- Faculty of Mechatronics and Aerospace, Military University of Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland; (K.R.); (K.C.); (M.S.); (R.W.); (J.J.)
| | - Marcin Sarzyński
- Faculty of Mechatronics and Aerospace, Military University of Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland; (K.R.); (K.C.); (M.S.); (R.W.); (J.J.)
| | - Jerzy Małachowski
- Faculty of Mechanical Engineering, Military University of Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland;
| | - Ryszard Woźniak
- Faculty of Mechatronics and Aerospace, Military University of Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland; (K.R.); (K.C.); (M.S.); (R.W.); (J.J.)
| | - Jacek Janiszewski
- Faculty of Mechatronics and Aerospace, Military University of Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland; (K.R.); (K.C.); (M.S.); (R.W.); (J.J.)
| |
Collapse
|
5
|
Injury Biomechanics of a Child’s Head: Problems, Challenges and Possibilities with a New aHEAD Finite Element Model. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traumatic brain injury (TBI) is a major public health problem among children. The predominant causes of TBI in young children are motor vehicle accidents, firearm incidents, falls, and child abuse. The limitation of in vivo studies on the human brain has made the finite element modelling an important tool to study brain injury. Numerical models based on the finite element approach can provide valuable data on biomechanics of brain tissues and help explain many pathological conditions. This work reviews the existing numerical models of a child’s head. However, the existing literature is very limited in reporting proper geometric representation of a small child’s head. Therefore, an advanced 2-year-old child’s head model, named aHEAD 2yo (aHEAD: advanced Head models for safety Enhancement And medical Development), has been developed, which advances the state-of-the-art. The model is one of the first published in the literature, which entirely consists of hexahedral elements for three-dimensional (3D) structures of the head, such as the cerebellum, skull, and cerebrum with detailed geometry of gyri and sulci. It includes cerebrospinal fluid as Smoothed Particle Hydrodynamics (SPH) and a detailed model of pressurized bringing veins. Moreover, the presented review of the literature showed that material models for children are now one of the major limitations. There is also no unambiguous opinion as to the use of separate materials for gray and white matter. Thus, this work examines the impact of various material models for the brain on the biomechanical response of the brain tissues during the mechanical loading described by Hardy et al. The study compares the inhomogeneous models with the separation of gray and white matter against the homogeneous models, i.e., without the gray/white matter separation. The developed model along with its verification aims to establish a further benchmark in finite element head modelling for children and can potentially provide new insights into injury mechanisms.
Collapse
|
6
|
Płatek P, Sienkiewicz J, Janiszewski J, Jiang F. Investigations on Mechanical Properties of Lattice Structures with Different Values of Relative Density Made from 316L by Selective Laser Melting (SLM). MATERIALS 2020; 13:ma13092204. [PMID: 32403406 PMCID: PMC7254314 DOI: 10.3390/ma13092204] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 01/19/2023]
Abstract
Nine variants of regular lattice structures with different relative densities have been designed and successfully manufactured. The produced structures have been subjected to geometrical quality control, and the manufacturability of the implemented selective laser melting (SLM) technique has been assessed. It was found that the dimensions of the produced lattice struts differ from those of the designed struts. These deviations depend on the strut orientation in relation to the specimen-building direction. Additionally, the microstructures and phase compositions of the obtained structures were characterized and compared with those of conventionally produced 316L stainless steel. The microstructure analysis and X-ray diffraction (XRD) patterns revealed a single austenite phase in the SLM samples. Both a certain broadening and a displacement of the austenite peaks were observed due to residual stresses and a crystallographic texture induced by the SLM process. Furthermore, the mechanical behavior of the lattice structure material has been defined. It was demonstrated that under both quasi-static and dynamic testing, lattice structures with high relative densities are stretch-dominated, whereas those with low relative densities are bending-dominated. Moreover, the linear dependency between the value of energy absorption and relative density under dynamic loading conditions has been established.
Collapse
Affiliation(s)
- Paweł Płatek
- Faculty of Mechatronics and Aerospace, Military University of Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland; (J.S.); (J.J.)
- Correspondence: ; Tel.: +48-261-839-657
| | - Judyta Sienkiewicz
- Faculty of Mechatronics and Aerospace, Military University of Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland; (J.S.); (J.J.)
| | - Jacek Janiszewski
- Faculty of Mechatronics and Aerospace, Military University of Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland; (J.S.); (J.J.)
| | - Fengchun Jiang
- College of Material Science and Chemical Engineering, Harbin Engineering University, 145 Nan-Tong Street, Harbin 15000, China;
| |
Collapse
|
7
|
Investigations on the Mechanical Response of Gradient Lattice Structures Manufactured via SLM. METALS 2020. [DOI: 10.3390/met10020213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The main aim of the paper is to evaluate the mechanical behavior or lattice specimens subjected to quasi-static and dynamic compression tests. Both regular and three different variants of SS 316L lattice structures with gradually changed topologies (discrete, increase and decrease) have been successfully designed and additively manufactured with the use of the selective laser melting technique. The fabricated structures were subjected to geometrical quality control, microstructure analysis, phase characterization and compression tests under quasi-static and dynamic loading conditions. The mismatch between dimensions in the designed and produced lattices was noticed. It generally results from the adopted technique of the manufacturing process. The microstructure and phase composition were in good agreement with typical ones after the additive manufacturing of stainless steel. Moreover, the relationship between the structure relative density and its energy absorption capacity has been defined. The value of the maximum deformation energy depends on the adopted gradient topology and reaches the highest value for a gradually decreased topology, which also indicates the highest relative density. However, the highest rate of densification was observed for a gradually increasing topology. In addition, the results show that the gradient topology of the lattice structure affects the global deformation under the loading. Both, static and dynamic loading resulted in both barrel- and waisted-shaped deformation for lattices with an increasing and a decreasing gradient, respectively. Lattice specimens with a gradually changed topology indicate specific mechanical properties, which make them attractive in terms of energy absorption applications.
Collapse
|
8
|
Analysis Regarding the Risk of Injuries of Soldiers Inside a Vehicle during Accidents Caused by Improvised Explosive Devices. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9194077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article presents the description of the mechanism of selected dysfunctions of the human skeletal system and internal organs. The problem is wide and requires extensive experimental and numerical research. This article presents the outline of the problem regarding the creation of personal injuries of soldiers inside armored vehicles. The explanation of the mechanism of injuries caused as a result of strong effects of pulse forces, resulting from both the consequences of the wave of pressure created during an explosion, as well as high accelerations of the vehicle’s hull, is presented herein. Examples of the results of numerical analyses of the pressure wave impact from an explosion are presented in the Article. LS-Dyna software was used to perform the numerical calculations. The analyses were carried out using the Conwep algorithm implemented in the calculation code. The significance of calculation methods, thanks to which it is possible to recreate a simulation in which there is a risk of injuries of soldiers without posing a threat to their health and life, should be noted here. The main parts of the human body, such as the bottom limb, the pelvic belt, the cervical spine and the abdomen, have been considered. Mechanisms causing typical injuries of soldiers inside vehicles under which explosives are detonated have been analyzed for particular body parts through multiple numerical simulations. The analysis of the process of injury creation has been conducted on the basis of the statistical data regarding the most common injuries of soldiers. The validation process of numerical analyses was carried out using the results of experimental research.
Collapse
|