1
|
Maestre J, Jarma D, Williams E, Wylie D, Horner S, Kinney K. Microbial communities in rural and urban homes and their relationship to surrounding land use, household characteristics, and asthma status. BUILDING AND ENVIRONMENT 2024; 266:112014. [DOI: 10.1016/j.buildenv.2024.112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Huang Z, Yu X, Liu Q, Maki T, Alam K, Wang Y, Xue F, Tang S, Du P, Dong Q, Wang D, Huang J. Bioaerosols in the atmosphere: A comprehensive review on detection methods, concentration and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168818. [PMID: 38036132 DOI: 10.1016/j.scitotenv.2023.168818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
In the past few decades, especially since the outbreak of the coronavirus disease (COVID-19), the effects of atmospheric bioaerosols on human health, the environment, and climate have received great attention. To evaluate the impacts of bioaerosols quantitatively, it is crucial to determine the types of bioaerosols in the atmosphere and their spatial-temporal distribution. We provide a concise summary of the online and offline observation strategies employed by the global research community to sample and analyze atmospheric bioaerosols. In addition, the quantitative distribution of bioaerosols is described by considering the atmospheric bioaerosols concentrations at various time scales (daily and seasonal changes, for example), under various weather, and different underlying surfaces. Finally, a comprehensive summary of the reasons for the spatiotemporal distribution of bioaerosols is discussed, including differences in emission sources, the impact process of meteorological factors and environmental factors. This review of information on the latest research progress contributes to the emergence of further observation strategies that determine the quantitative dynamics of public health and ecological effects of bioaerosols.
Collapse
Affiliation(s)
- Zhongwei Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
| | - Xinrong Yu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiantao Liu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Teruya Maki
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Khan Alam
- Department of Physics, University of Peshawar, Peshawar 25120, Pakistan
| | - Yongkai Wang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fanli Xue
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shihan Tang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Pengyue Du
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qing Dong
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Wang
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
| | - Jianping Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Iqbal MA, Siddiqua SA, Faruk MO, Md Towfiqul Islam AR, Salam MA. Systematic review and meta-analysis of the potential threats to respiratory health from microbial Bioaerosol exposures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122972. [PMID: 37984479 DOI: 10.1016/j.envpol.2023.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Infectious diseases are a part of everyday life, and acute respiratory diseases are the most common. Many agents carrying out respiratory infections are transmitted as bioaerosols through the air, usually, particulate matter containing living organisms. The purpose of the study is to conduct a systematic review and meta-analysis to assess the likelihood that people exposed to bioaerosols may experience severe respiratory diseases. Nine digital databases and bibliographies were assessed for papers conducted between January 1960 and April 2021. A total of 35 health and exposure studies were included from 825 studies for the systematic review, while only 17 contented the meta-inclusion analysis's criteria. This systematic review found higher bacterial bioaerosol concentrations in poultry farms, waste dumpsites, composting plants, and paper industries. The meta-analysis's Standard Mean Difference (SMD) measurement indicates a substantially positive association between bioaerosol exposure and respiratory disease outcomes in targeted populations. The value is 0.955 [95% CI, range 0.673-1.238; p < 0.001]. As per the Risk of Bias (ROB) findings, most of findings (30 out of 35 [85.71%]) were judged to have low ROB. From the random effect probit model, the total relative risk is 1.477 (95% CI, range 0.987-2.211), indicating a higher risk of respiratory diseases from bioaerosol exposure than the control groups. The total risk difference is 0.121 (95% CI, -0.0229 to 0.264), which means intervention groups may have a higher risk of respiratory diseases from continuous bioaerosol exposure than the control groups. The dose-response relationship revealed a strong positive linear coefficient correlation between bacterial & fungal bioaerosol exposure to respiratory health. Based on self-reported outcomes in those studies, The systematic review and meta-analysis stated that bioaerosol exposure had an effect on pulmonary health.
Collapse
Affiliation(s)
- Muhammad Anwar Iqbal
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Sadia Afrin Siddiqua
- Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Omar Faruk
- Department of Statistics, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | | | - Mohammed Abdus Salam
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| |
Collapse
|
4
|
Jomat O, Géry A, Leudet A, Capitaine A, Garon D, Bonhomme J. Spectrometric Characterization of Clinical and Environmental Isolates of Aspergillus Series Versicolores. J Fungi (Basel) 2023; 9:868. [PMID: 37754976 PMCID: PMC10532193 DOI: 10.3390/jof9090868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Aspergillus series Versicolores are molds distributed among 17 species, commonly found in our environment, and responsible for infections. Since 2022, a new taxonomy has grouped them into 4 major lineages: A. versicolor, A. subversicolor, A. sydowii, and A. creber. Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) could be a faster and more cost-effective alternative to molecular techniques for identifying them by developing a local database. To evaluate this technique, 30 isolates from Aspergillus series Versicolores were used. A total of 59 main spectra profiles (MSPs) were created in the local database. This protocol enabled accurate identification of 100% of the extracted isolates, of which 97% (29/30) were correctly identified with a log score ≥ 2.00. Some MSPs recorded as Aspergillus versicolor in the supplier's database could lead to false identifications as they did not match with the correct lineages. Although the local database is still limited in the number and diversity of species of Aspergillus series Versicolores, it is sufficiently effective for correct lineage identification according to the latest taxonomic revision, and better than the MALDI-TOF MS supplier's database. This technology could improve the speed and accuracy of routine fungal identification for these species.
Collapse
Affiliation(s)
- Océane Jomat
- Mycology and Parasitology Department, Caen University Hospital, UNICAEN, Normandie University, 14000 Caen, France; (A.L.); (A.C.)
| | - Antoine Géry
- ToxEMAC-ABTE, UNICAEN & UNIROUEN, Normandie University, 14000 Caen, France; (A.G.); (D.G.)
| | - Astrid Leudet
- Mycology and Parasitology Department, Caen University Hospital, UNICAEN, Normandie University, 14000 Caen, France; (A.L.); (A.C.)
| | - Agathe Capitaine
- Mycology and Parasitology Department, Caen University Hospital, UNICAEN, Normandie University, 14000 Caen, France; (A.L.); (A.C.)
| | - David Garon
- ToxEMAC-ABTE, UNICAEN & UNIROUEN, Normandie University, 14000 Caen, France; (A.G.); (D.G.)
| | - Julie Bonhomme
- Mycology and Parasitology Department, Caen University Hospital, UNICAEN, Normandie University, 14000 Caen, France; (A.L.); (A.C.)
- ToxEMAC-ABTE, UNICAEN & UNIROUEN, Normandie University, 14000 Caen, France; (A.G.); (D.G.)
| |
Collapse
|
5
|
Géry A, Séguin V, Eldin de Pécoulas P, Bonhomme J, Garon D. Aspergilli series Versicolores: importance of species identification in the clinical setting. Crit Rev Microbiol 2022:1-14. [PMID: 35758008 DOI: 10.1080/1040841x.2022.2082267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The moulds of the genus Aspergillus section Nidulantes series Versicolores are ubiquitous and particularly recurrent in indoor air. They are considered present in 70% of the bioaerosols to which we are exposed most of our time spent indoors. With the taxonomic revision proposed in 2012 and the discovery of four new species, the series Versicolores currently includes 18 species. These moulds, although considered as cryptic (except Aspergillus sydowii), are opportunistic pathogens that can exhibit increased minimal inhibitory concentrations to conventional antifungal agents. In this review, we discuss the ecology and clinical implications of each species belonging to the series Versicolores. This survey also highlights the lack of consideration for taxonomic revisions in clinical practice and in scientific studies which greatly limits the acquisition of specific knowledge on species belonging to the series Versicolores.
Collapse
Affiliation(s)
- Antoine Géry
- Unicaen and Unirouen, ToxEMAC-ABTE, Centre F. Baclesse, Normandie Univ, Caen, France
| | - Virginie Séguin
- Unicaen and Unirouen, ToxEMAC-ABTE, Centre F. Baclesse, Normandie Univ, Caen, France
| | | | - Julie Bonhomme
- Unicaen and Unirouen, ToxEMAC-ABTE, Centre F. Baclesse, Normandie Univ, Caen, France.,Department of Microbiology, Caen University Hospital, Caen, France
| | - David Garon
- Unicaen and Unirouen, ToxEMAC-ABTE, Centre F. Baclesse, Normandie Univ, Caen, France
| |
Collapse
|
6
|
Cellular Cytotoxicity and Oxidative Potential of Recurrent Molds of the Genus Aspergillus Series Versicolores. Microorganisms 2022; 10:microorganisms10020228. [PMID: 35208683 PMCID: PMC8875557 DOI: 10.3390/microorganisms10020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Molds are ubiquitous biological pollutants in bioaerosols. Among these molds, the genus Aspergillus is found in the majority of indoor air samples, and includes several species with pathogenic and toxigenic properties. Aspergillus species in the series Versicolores remain little known despite recurrence in bioaerosols. In order to investigate their toxicity, we studied 22 isolates of clinical and environmental origin, corresponding to seven different species of the series Versicolores. Spore suspensions and ethyl acetate extracts prepared from fungal isolates were subjected to oxidative potential measurement using the dithiothreitol (DTT) test and cell survival measurement. The DTT tests showed that all species of the series Versicolores had an oxidative potential, either by their spores (especially for Aspergillus jensenii) or by the extracts (especially from Aspergillus amoenus). Measurements of cell survival of A549 and HaCaT cell lines showed that only the spore suspension containing 105 spores/mL of Aspergillus jensenii caused a significant decrease in survival after 72 h of exposure. The same tests performed with mixtures of 105 spores/mL showed a potentiation of the cytotoxic effect, with a significant decrease in cell survival for mixtures containing spores of two species (on A549 cells, p = 0.05 and HaCaT cells, p = 0.001) or three different species (on HaCaT cells, p = 0.05). Cell survival assays after 72 h of exposure to the fungal extracts showed that Aspergillus puulaauensis extract was the most cytotoxic (IC50 < 25 µg/mL), while Aspergillus fructus caused no significant decrease in cell survival.
Collapse
|
7
|
Sánchez Espinosa KC, Rojas Flores TI, Davydenko SR, Venero Fernández SJ, Almaguer M. Fungal populations in the bedroom dust of children in Havana, Cuba, and its relationship with environmental conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53010-53020. [PMID: 34021890 DOI: 10.1007/s11356-021-14231-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The study of the fungal community composition in house dust is useful to assess the accumulative exposure to fungi in indoor environments. The objective of this research was to characterize the fungal diversity of house dust and its association with the environmental conditions of bedrooms. For this, the dust was collected from 41 bedrooms of children between the ages of 8 and 9 with a family history of asthma, residents of Havana, Cuba. The fungal content of each sample was determined by two methods: plate culture with malt extract agar and by direct microscopy. An ecological analysis was carried out from the fungal diversity detected. To describe the factors associated with the fungi detected, bivariate logistic regression was used. Through direct microscopy, between 10 and 2311 fragments of hyphae and spores corresponding mainly to Cladosporium, Coprinus, Curvularia, Aspergillus/Penicillium, Xylariaceae, and Periconia were identified. Through the culture, 0-208 CFU were quantified, where Aspergillus, Cladosporium, and Penicillium predominated. The culturability evidenced the differences between the quantification determined by both methods. A positive relationship was found between the type of cleaning of the furniture, the presence of trees in front of the bedroom, indoor relative humidity, indoor temperature, the presence of air conditioning, and natural ventilation with specific spore types and genera. The use of two different identification methods allowed to detect a greater fungal diversity in the residences evaluated. Monitoring the exposure to these fungal allergens in childhood can help to prevent sensitization in the allergic child, the development of asthma, and other respiratory diseases.
Collapse
Affiliation(s)
- Kenia C Sánchez Espinosa
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, 25 n. 455 e/I & J, Vedado, 10400, Havana, Cuba
| | - Teresa I Rojas Flores
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, 25 n. 455 e/I & J, Vedado, 10400, Havana, Cuba
| | - Sonia Rodríguez Davydenko
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, 25 n. 455 e/I & J, Vedado, 10400, Havana, Cuba
| | - Silvia J Venero Fernández
- National Institute of Hygiene, Epidemiology and Microbiology, Infanta n. 1158 e/Llinás & Clavel, Cerro, 10300, Havana, Cuba
| | - Michel Almaguer
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, 25 n. 455 e/I & J, Vedado, 10400, Havana, Cuba.
| |
Collapse
|
8
|
First Characterization and Description of Aspergillus Series Versicolores in French Bioaerosols. J Fungi (Basel) 2021; 7:jof7080676. [PMID: 34436215 PMCID: PMC8399101 DOI: 10.3390/jof7080676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Air quality can be altered by fungal contaminants suspended in the air, forming bioaerosols. Aspergilli section Nidulantes series Versicolores are recurrent in bioaerosols and are mainly responsible for allergies and asthma aggravation. Phylogenetic studies recently identified 12 new species within this series. This study is the first to identify species of Aspergillus series Versicolores in French bioaerosols and to characterize them macroscopically, microscopically and molecularly. Bioaerosols were collected in a cancer treatment center, in contaminated homes and in agricultural environments. A total of 93 isolates were cultured on selective media, observed by optical microscopy and identified by benA amplification before sequencing. The field data (temperature and relative humidity) were statistically tested to explore the ecology of these species. Eight species were identified from bioaerosols: Aspergillus creber and A. jensenii, which represent more than 80% of the isolates, and A. protuberus, A. puulaauensis, A. sydowii, A. tabacinus, A. amoenus and A. fructus. Aspergilli series Versicolores are distributed differently depending on the sampling site and climatic determinants. Aspergillus protuberus was found in bioaerosols collected under significantly lower relative humidity (p = 3.899 × 10-4). Characterization and repartition of these isolates belonging to the Versicolores series constitute an important step to better assess exposure to fungal bioaerosols.
Collapse
|
9
|
A novel qPCR based-method for detection and quantification of three recurrent species of Penicillium isolated from bioaerosols in mold-damaged homes. J Microbiol Methods 2021; 186:106236. [PMID: 33984389 DOI: 10.1016/j.mimet.2021.106236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022]
Abstract
Fungal contamination of indoor environments can cause respiratory diseases and induce damages to building materials. Among the fungal species found in mold-damaged homes, Penicillium brevicompactum, P. chrysogenum and P. crustosum can be considered as recurrent strains. In this study, we therefore propose a rapid and novel qPCR-based method in order to allow the monitoring of these three fungal species. The method developed allows the quantification of the target DNA of these three Penicillium species with a limit of quantification of 0.01 ng/μL without significant difference with spectrophotometry quantification assay for DNA concentrations between 5 and 100 ng/μL. This technique also enables the rapid detection of these three species in complex mixtures of DNA extracted from 15 bioaerosols collected in mold-damaged homes and previously cultured on agar plate. This new sensitive and specific qPCR technique can thus be easily integrated into bioaerosol studies.
Collapse
|