1
|
Huang D, Li Q, Han Y, Xia SY, Zhou J, Che H, Lu K, Yang F, Long X, Chen Y. Biogenic volatile organic compounds dominated the near-surface ozone generation in Sichuan Basin, China, during fall and wintertime. J Environ Sci (China) 2024; 141:215-224. [PMID: 38408822 DOI: 10.1016/j.jes.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 02/28/2024]
Abstract
The complex air pollution driven by both Ozone (O3) and fine particulate matter (PM2.5) significantly influences the air quality in the Sichuan Basin (SCB). Understanding the O3 formation during autumn and winter is necessary to understand the atmospheric oxidative capacity. Therefore, continuous in-site field observations were carried out during the late summer, early autumn and winter of 2020 in a rural area of Chongqing. The total volatile organic compounds (VOCs) concentration reported by a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) were 13.66 ± 9.75 ppb, 5.50 ± 2.64 ppb, and 9.41 ± 5.11 ppb in late summer, early autumn and winter, respectively. The anthropogenic VOCs (AVOCs) and biogenic VOCs (BVOCs) were 8.48 ± 7.92 ppb and 5.18 ± 2.99 ppb in late summer, 3.31 ± 1.89 ppb and 2.19 ± 0.93 ppb in autumn, and 6.22 ± 3.99 ppb and 3.20 ± 1.27 ppb in winter. A zero-dimensional atmospheric box model was employed to investigate the sensitivity of O3-precursors by relative incremental reactivity (RIR). The RIR values of AVOCs, BVOCs, carbon monoxide (CO), and nitrogen oxides (NOx) were 0.31, 0.71, 0.09, and -0.36 for late summer, 0.24, 0.59, 0.22, and -0.38 for early autumn, and 0.30, 0.64, 0.33 and -0.70 for winter, and the results showed that the O3 formation of sampling area was in the VOC-limited region, and O3 was most sensitive to BVOCs (with highest RIR values, > 0.6). This study can be helpful in understanding O3 formation and interpreting the secondary formation of aerosols in the winter.
Collapse
Affiliation(s)
- Dasheng Huang
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; College of Resources and Environment, Chongqing School, University of the Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, China
| | - Qing Li
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404199, China
| | - Yan Han
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Shi-Yong Xia
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Jiawei Zhou
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hanxiong Che
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Keding Lu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Fumo Yang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Xin Long
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
2
|
Sharma BR, Kuttippurath J, Patel VK, Gopikrishnan GS. Regional sources of NH 3, SO 2 and CO in the Third Pole. ENVIRONMENTAL RESEARCH 2024; 248:118317. [PMID: 38301761 DOI: 10.1016/j.envres.2024.118317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
The Third Pole (TP) is a high mountain region in the world, and is well-known for its pristine environment, but recent development activities in the region have degraded its air quality. Here, we investigate the spatial and temporal changes of the air pollutants ammonia (NH₃), sulphur dioxide (SO₂) and carbon monoxide (CO) in TP, and reveal their sources using satellite measurements and emission inventory. We observe a clear seasonal cycle of NH3 in TP, with high values in summer and low values in winter. The intense agriculture activities in the southern TP are the cause of high NH₃ (6-8 × 1016 molec./cm2) there. Similarly, CO shows a distinct seasonal cycle with high values in spring in the southeast TP due to biomass burning. In addition, the eastern boundary of TP in the Sichuan and Qinghai provinces also show high values of CO (about 1.5 × 1018 mol/cm2), primarily owing to the industrial activities. There is no seasonal cycle found for SO₂ distribution in TP, but relatively high values (8-10 mg/m2) are observed in its eastern boundary. The high-altitude pristine regions of inner TP are also getting polluted because of increased human activities in and around TP, as we estimate positive trends in CO (0.5-1.5 × 1016 mol/cm2/yr) there. In addition, positive trends are also found in NH₃ (0.025 × 1016 molec./cm2/yr) during 2008-2020 in most regions of TP and SO₂ (about 0.25-0.75 mg/m2/yr) in the Sichuan and Qinghai region during 2000-2020. As revealed by the emission inventory, there are high anthropogenic emissions of NH3, SO2 and CO within TP. There are emissions of pollutants from energy sectors, oil and refinery, agriculture waste burning and manure management within TP. These anthropogenic activities accelerate the ongoing development in TP, but severely erode its environment.
Collapse
Affiliation(s)
- B R Sharma
- CORAL, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - J Kuttippurath
- CORAL, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - V K Patel
- CORAL, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - G S Gopikrishnan
- CORAL, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
3
|
Luo C, Ma Y, Lu K, Li Y, Liu Y, Zhang T, Yin F, Shui T. How multiple air pollutants affect hand, foot, and mouth disease incidence in children: assessing effect modification by geographical context in multicity of Sichuan, southwest China. BMC Public Health 2024; 24:263. [PMID: 38263020 PMCID: PMC10804470 DOI: 10.1186/s12889-023-17484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Several studies have suggested a significant association of hand, foot, and mouth disease (HFMD) with ambient air pollutants. Existing studies have characterized the role of air pollutants on HFMD using only risk ratio measures while ignoring the attributable burden. And whether the geographical context (i.e., diverse topographic features) could modulate the relationships is unclear. METHODS Daily reported childhood HFMD counts, ambient air pollution, and meteorological data during 2015-2017 were collected for each of 21 cities in Sichuan Province. A multistage analysis was carried out in different populations based on geographical context to assess effect modification by topographic conditions. We first constructed a distributed lag nonlinear model (DLNM) for each city to describe the relationships with risk ratio measures. Then, we applied a multivariate meta-regression to estimate the pooled effects of multiple air pollutants on HFMD from the exposure and lagged dimensions. Finally, attributable risks measures were calculated to quantify HFMD burden by air pollution. RESULTS Based on 207554 HFMD cases in Sichuan Province, significant associations of HFMD with ambient air pollutants were observed mainly at relatively high exposure ranges. The effects of ambient air pollutants on HFMD are most pronounced on lag0 or around lag7, with relative risks gradually approaching the reference line thereafter. The attributable risks of O3 were much greater than those of other air pollutants, particularly in basin and mountain regions. CONCLUSIONS This study revealed significant pooled relationships between multiple air pollutants and HFMD incidence from both exposure and lag dimensions. However, the specific effects, including RRs and ARs, differ depending on the air pollution variable and geographical context. These findings provide local authorities with more evidence to determine key air pollutants and regions for devising and implementing targeted interventions.
Collapse
Affiliation(s)
- Caiying Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yue Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Kai Lu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ying Li
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Yaqiong Liu
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Tao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Fei Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Tiejun Shui
- Yunnan Center for Disease Control and Prevention, Kunming, China.
| |
Collapse
|
4
|
Uwiringiyimana E, Gao J, Zhang D, Biswash MR, Shi YXX. Bioaccumulation and translocation of Hg and Cr by tobacco in Sichuan Province, China: understanding the influence of soil pH. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1193. [PMID: 37698692 DOI: 10.1007/s10661-023-11806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
The present study investigated the bioaccumulation and translocation of mercury (Hg) and chromium (Cr) in Yunyan 87 flue-cured tobacco (Nicotiana tabacum) and assessed the influence of soil pH on the metal uptake by plant organs at the field scale. The study was conducted in 4 different regions selected from Sichuan Province, China: Guangyuan, Luzhou, Panzhihua, and Yibin. The results revealed that Hg highly contaminated Yibin soils at 0.29 mg kg-1 and by Cr at 147 mg kg-1, which is above the permissible limit. The levels of Hg in tobacco plant organs were predominantly in the order of leaves > root > stem. The overall trend for Cr contents in tobacco organs was in the order of root > leaves > stem. The results of an index of bioaccumulation (IBA) and translocation factor (TF) showed that the values observed in Panzhihua and Guangyuan tobacco leaves were generally higher, despite the low levels of soil contamination. The linear mixed model (LMM) demonstrated that the log of Hg IBA in tobacco organs was likely to decrease with soil pH increase, whereas the log of Cr IBA only decreased in the root but gradually increased in the aerial parts with soil pH increase. The total random variation in the log of metals' IBA due to regions indicated that for Hg, 33.42% of the variation was explained by regional differences, while for Cr, only 13% was accounted. The results suggested that Yibin and Luzhou need to correct the soil acidity if they are set to reduce Hg contamination in tobacco-growing soils. Guangyuan and Panzhihua need efforts to keep the soil pH on track to avoid high contamination levels, and effective measures of soil nutrients supply are required to produce high tobacco leaf quality free from heavy metal content. The findings of this study may be used to ascertain regional differences in heavy metals, particularly Hg and Cr uptake by tobacco plant organs, and to prevent the cultivation areas contamination through soil pH monitoring.
Collapse
Affiliation(s)
- Ernest Uwiringiyimana
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianing Gao
- College of Tourism and Geographical Science, Leshan Normal University, Leshan, China
| | - Dan Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Md Romel Biswash
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang-Xiao-Xiao Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Research on the Growth Mechanism of PM2.5 in Central and Eastern China during Autumn and Winter from 2013–2020. ATMOSPHERE 2022. [DOI: 10.3390/atmos13010134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Haze is a majorly disastrous type of weather in China, especially central and eastern of China. The development of haze is mainly caused by highly concentrated fine particles (PM2.5) on a regional scale. Here, we present the results from an autumn and winter study conducted from 2013 to 2020 in seven highly polluted areas (27 representative stations) in central and eastern China to analyze the growth mechanism of PM2.5. At the same time, taking Beijing Station as an example, the characteristics of aerosol composition and particle size in the growth phase are analyzed. Taking into account the regional and inter-annual differences of fine particles (PM2.5) distribution, the local average PM2.5 growth value of the year is used as the boundary value for dividing slow, rapid, and explosive growth (only focuses on the hourly growth rate greater than 0). The average value of PM2.5 in the autumn and winter of each regional representative station shows a decreasing trend as a whole, especially after 2017, whereby the decreasing trend was significant. The distribution value of +ΔPM2.5 (PM2.5 hourly growth rate) in the north of the Huai River is lower than that in the south of the Huai River, and both of the +ΔPM2.5 after 2017 showed a significant decreasing trend. The average PM2.5 threshold before the explosive growth is 70.8 µg m−3, and the threshold that is extremely prone to explosive growth is 156 µg m−3 to 277 µg m−3 in north of the Huai River. For the area south of the Huai River, the threshold for PM2.5 explosive growth is relatively low, as a more stringent threshold also puts forward stricter requirements on atmospheric environmental governance. For example, in Beijing, the peak diameters gradually shift to larger sizes when the growth rate increases. The number concentration increasing mainly distributed in Aitken mode (AIM) and Accumulation mode (ACM) during explosive growth. Among the various components of submicron particulate matter (PM1), organic aerosol (OA), especially primary OA (POA), have become one of the most critical components for the PM2.5 explosive growth in Beijing. During the growth period, the contribution of secondary particulate matter (SPM) to the accumulated pollutants is significantly higher than that of primary particulate matter (PPM). However, the proportion of SPM gradually decreases when the growth rate increases. The contribution of the PPM can reach 48% in explosive growth. Compared to slow and rapid growth, explosive growth mainly occurs in the stable atmosphere of higher humidity, lower pressure, lower temperature, small winds, and low mixed layers.
Collapse
|
6
|
The Impact of Local Anti-Smog Resolution in Cracow (Poland) on the Concentrations of PM10 and BaP Based on the Results of Measurements of the State Environmental Monitoring. ENERGIES 2021. [DOI: 10.3390/en15010056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a result of conducted air quality policy, including recent legal regulations (the local anti-smog resolution), the number of individual solid fuel heating devices in Cracow (Poland) gradually decreased. Reports on air quality in the city indicate that the concentration of pollutants in Cracow’s air shows a downward trend. However, a similar tendency in terms of improving air quality is also observed in the entire voivodeship, where, as a result of analogous although less radical measures, the number of individual solid fuel heating devices is also decreasing. The paper discusses the impact of legal regulations in Cracow on the improvement of air quality in the context of changes taking place in nearby cities. Trends in changes in PM10 and BaP (PM10) concentrations are analyzed. The rate of decline of the analyzed pollutants concentrations is estimated with the use of nonparametric linear regression. Analysis showed that the rate of decline in the average annual concentrations of PM10 and BaP (PM10) in Cracow is always higher than for the analyzed cities of the Malopolskie Voivodeship. The difference is more pronounced with regard to the months of the heating season. The rate of changes for the average annual BaP (PM10) concentrations in Cracow, compared to other analyzed cities of the Malopolskie Voivodeship, is more intensive than in the case of PM10 concentrations (1.5 times stronger with regard to the months of the heating season). Since the concentration of BaP (PM10) is a better indicator of the effects of liquidation of high-emission furnaces than the concentration of PM10, it can be concluded that the impact of actions related to the improvement of air quality in Cracow in the context of changes taking place in selected cities of the Malopolskie Voivodeship is more visible.
Collapse
|