1
|
Clifton OE, Schwede D, Hogrefe C, Bash JO, Bland S, Cheung P, Coyle M, Emberson L, Flemming J, Fredj E, Galmarini S, Ganzeveld L, Gazetas O, Goded I, Holmes CD, Horváth L, Huijnen V, Li Q, Makar PA, Mammarella I, Manca G, Munger JW, Pérez-Camanyo JL, Pleim J, Ran L, Jose RS, Silva SJ, Staebler R, Sun S, Tai APK, Tas E, Vesala T, Weidinger T, Wu Z, Zhang L. A single-point modeling approach for the intercomparison and evaluation of ozone dry deposition across chemical transport models (Activity 2 of AQMEII4). ATMOSPHERIC CHEMISTRY AND PHYSICS 2023; 23:9911-9961. [PMID: 37990693 PMCID: PMC10659075 DOI: 10.5194/acp-23-9911-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A primary sink of air pollutants and their precursors is dry deposition. Dry deposition estimates differ across chemical transport models, yet an understanding of the model spread is incomplete. Here, we introduce Activity 2 of the Air Quality Model Evaluation International Initiative Phase 4 (AQMEII4). We examine 18 dry deposition schemes from regional and global chemical transport models as well as standalone models used for impact assessments or process understanding. We configure the schemes as single-point models at eight Northern Hemisphere locations with observed ozone fluxes. Single-point models are driven by a common set of site-specific meteorological and environmental conditions. Five of eight sites have at least 3 years and up to 12 years of ozone fluxes. The interquartile range across models in multiyear mean ozone deposition velocities ranges from a factor of 1.2 to 1.9 annually across sites and tends to be highest during winter compared with summer. No model is within 50 % of observed multiyear averages across all sites and seasons, but some models perform well for some sites and seasons. For the first time, we demonstrate how contributions from depositional pathways vary across models. Models can disagree with respect to relative contributions from the pathways, even when they predict similar deposition velocities, or agree with respect to the relative contributions but predict different deposition velocities. Both stomatal and nonstomatal uptake contribute to the large model spread across sites. Our findings are the beginning of results from AQMEII4 Activity 2, which brings scientists who model air quality and dry deposition together with scientists who measure ozone fluxes to evaluate and improve dry deposition schemes in the chemical transport models used for research, planning, and regulatory purposes.
Collapse
Affiliation(s)
- Olivia E. Clifton
- NASA Goddard Institute for Space Studies, New York, NY, USA
- Center for Climate Systems Research, Columbia Climate School, Columbia University in the City of New York, New York, NY, USA
| | - Donna Schwede
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Christian Hogrefe
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jesse O. Bash
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Sam Bland
- Stockholm Environment Institute, Environment and Geography Department, University of York, York, UK
| | - Philip Cheung
- Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, Canada
| | - Mhairi Coyle
- United Kingdom Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, UK
- The James Hutton Institute, Craigiebuckler, Aberdeen, UK
| | - Lisa Emberson
- Environment and Geography Department, University of York, York, UK
| | | | - Erick Fredj
- Department of Computer Science, The Jerusalem College of Technology, Jerusalem, Israel
| | | | - Laurens Ganzeveld
- Meteorology and Air Quality Section, Wageningen University, Wageningen, the Netherlands
| | - Orestis Gazetas
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | - Ignacio Goded
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | - Christopher D. Holmes
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA
| | - László Horváth
- ELKH-SZTE Photoacoustic Research Group, Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Vincent Huijnen
- Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
| | - Qian Li
- The Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Paul A. Makar
- Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, Canada
| | - Ivan Mammarella
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Giovanni Manca
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | - J. William Munger
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | | | - Jonathan Pleim
- Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Limei Ran
- Natural Resources Conservation Service, United States Department of Agriculture, Greensboro, NC, USA
| | - Roberto San Jose
- Computer Science School, Technical University of Madrid (UPM), Madrid, Spain
| | - Sam J. Silva
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ralf Staebler
- Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, Canada
| | - Shihan Sun
- Earth and Environmental Sciences Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Amos P. K. Tai
- Earth and Environmental Sciences Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Eran Tas
- The Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Timo Vesala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Tamás Weidinger
- Department of Meteorology, Institute of Geography and Earth Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Zhiyong Wu
- ORISE Fellow at Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Leiming Zhang
- Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, Canada
| |
Collapse
|
2
|
Alapaty K, Cheng B, Bash J, Munger JW, Walker JT, Arunachalam S. Dry Deposition Methods Based on Turbulence Kinetic Energy: Part 1. Evaluation of Various Resistances and Sensitivity Studies Using a Single-Point Model. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:1-26. [PMID: 36589524 PMCID: PMC9797033 DOI: 10.1029/2022jd036631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
Different functions are used to account for turbulence strength in the atmospheric boundary layer for different stability regimes. These functions are one of the sources for differences among different atmospheric models' predictions and associated biases. Also, turbulence strength is underrepresented in some of the resistance formulations. To address these issues with dry deposition, firstly we take advantage of three-dimensional (3-D) turbulence information in estimating resistances by proposing and validating a 3-D turbulence velocity scale that is relevant for different stability regimes of boundary layer. Secondly, we hypothesize and validate that friction velocity measured by 3-D sonic anemometer can be effectively replaced by the new turbulence velocity scale multiplied by the von Karman constant. Finally, we (1) present a set of resistance formulations for ozone (O3) based on the 3-D turbulence velocity scale; (2) intercompare estimations of such resistances with those obtained using existing formulations; and, (3) evaluate simulated O3 fluxes using a single-point dry deposition model against long-term observations of O3 fluxes at the Harvard Forest (MA) site. Results indicate that the new resistance formulations work very well in simulating surface latent heat and O3 fluxes when compared to respective existing formulations and measurements at a decadal time scale. Findings from this research may help to improve the capability of dry deposition schemes for better estimation of dry deposition fluxes and create opportunities for the development of a community dry deposition model for use in regional/global air quality models.
Collapse
Affiliation(s)
- Kiran Alapaty
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Bin Cheng
- Oak Ridge Institute for Science and Education Postdoctoral Fellow in the Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, NC 27711
| | - Jesse Bash
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - J. William Munger
- Harvard School of Engineering and Applied Sciences, 24 Oxford St. Cambridge, MA 02138
| | - John T. Walker
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Saravanan Arunachalam
- Institute for the Environment, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
4
|
Clifton OE, Fiore AM, Massman WJ, Baublitz CB, Coyle M, Emberson L, Fares S, Farmer DK, Gentine P, Gerosa G, Guenther AB, Helmig D, Lombardozzi DL, Munger JW, Patton EG, Pusede SE, Schwede DB, Silva SJ, Sörgel M, Steiner AL, Tai APK. Dry Deposition of Ozone over Land: Processes, Measurement, and Modeling. REVIEWS OF GEOPHYSICS (WASHINGTON, D.C. : 1985) 2020; 58:10.1029/2019RG000670. [PMID: 33748825 PMCID: PMC7970530 DOI: 10.1029/2019rg000670] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/24/2020] [Indexed: 05/21/2023]
Abstract
Dry deposition of ozone is an important sink of ozone in near surface air. When dry deposition occurs through plant stomata, ozone can injure the plant, altering water and carbon cycling and reducing crop yields. Quantifying both stomatal and nonstomatal uptake accurately is relevant for understanding ozone's impact on human health as an air pollutant and on climate as a potent short-lived greenhouse gas and primary control on the removal of several reactive greenhouse gases and air pollutants. Robust ozone dry deposition estimates require knowledge of the relative importance of individual deposition pathways, but spatiotemporal variability in nonstomatal deposition is poorly understood. Here we integrate understanding of ozone deposition processes by synthesizing research from fields such as atmospheric chemistry, ecology, and meteorology. We critically review methods for measurements and modeling, highlighting the empiricism that underpins modeling and thus the interpretation of observations. Our unprecedented synthesis of knowledge on deposition pathways, particularly soil and leaf cuticles, reveals process understanding not yet included in widely-used models. If coordinated with short-term field intensives, laboratory studies, and mechanistic modeling, measurements from a few long-term sites would bridge the molecular to ecosystem scales necessary to establish the relative importance of individual deposition pathways and the extent to which they vary in space and time. Our recommended approaches seek to close knowledge gaps that currently limit quantifying the impact of ozone dry deposition on air quality, ecosystems, and climate.
Collapse
Affiliation(s)
| | - Arlene M Fiore
- Department of Earth and Environmental Sciences, Columbia University, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - William J Massman
- USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA
| | - Colleen B Baublitz
- Department of Earth and Environmental Sciences, Columbia University, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Mhairi Coyle
- Centre for Ecology and Hydrology, Edinburgh, Bush Estate, Penicuik, Midlothian, UK and The James Hutton Institute, Craigibuckler, Aberdeen, UK
| | - Lisa Emberson
- Stockholm Environment Institute, Environment Department, University of York, York, UK
| | - Silvano Fares
- Council of Agricultural Research and Economics, Research Centre for Forestry and Wood, and National Research Council, Institute of Bioeconomy, Rome, Italy
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | - Giacomo Gerosa
- Dipartimento di Matematica e Fisica, Università Cattolica del S. C., Brescia, Italy
| | - Alex B Guenther
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Detlev Helmig
- Institute of Alpine and Arctic Research, University of Colorado at Boulder, Boulder, CO, USA
| | | | - J William Munger
- School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | | | - Sally E Pusede
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Donna B Schwede
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, USA
| | - Sam J Silva
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthias Sörgel
- Max Plank Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Allison L Steiner
- Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Amos P K Tai
- Earth System Science Programme, Faculty of Science, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Warmiński K, Bęś A. Atmospheric Factors Affecting a Decrease in the Night-Time Concentrations of Tropospheric Ozone in a Low-Polluted Urban Area. WATER, AIR, AND SOIL POLLUTION 2018; 229:350. [PMID: 30416218 PMCID: PMC6208761 DOI: 10.1007/s11270-018-4012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 10/15/2018] [Indexed: 05/13/2023]
Abstract
Ozone (O3) decomposition in the troposphere is a very important process which prevents excessive O3 accumulation in the air. It is particularly significant on warm summer days which are marked by a high risk of photochemical smog. We used Spearman's rank correlation test to determine relationships between the drop in O3 concentrations over time (-ΔO3), nitrogen oxide (NO), nitrogen dioxide (NO2), and total nitrogen oxide (NOx) concentrations and meteorological factors (1-h average) in low-polluted urban area in Olsztyn (north-eastern Poland). Nitrogen oxide concentrations were measured continuously by the chemiluminescence method, and O3 concentrations were determined by the UV photometric method. The obtained results suggest that the rate of decomposition of tropospheric O3 is affected mostly by the presence of NOx, high temperature, and air humidity (positive correlation) as well as by wind speed (negative correlation). Maximum correlation coefficient values were reported between -ΔO3 and air temperature, -ΔO3 and absolute air humidity when NOx concentrations were low (below 1.0 microgram per cubic meter), reaching 0.271 and 0.243, respectively. These results indicate that O3 also reacted with air components other than NO and NO2. Precipitation at average temperature of < 0 °C did not significantly contribute to a drop in O3 concentrations at night-time. In the warm season, precipitation slowed down the rate of O3 decomposition, mostly because NOx were scrubbed by rain. An analysis of seasonal and daily -ΔO3 fluctuations revealed that -ΔO3 values were highest in the summer and shortly after sunset in the diurnal cycle.
Collapse
Affiliation(s)
- Kazimierz Warmiński
- Department of Chemistry, Research Group of Environmental Toxicology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| | - Agnieszka Bęś
- Department of Chemistry, Research Group of Environmental Toxicology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| |
Collapse
|