1
|
Essam D, Ahmed AM, Abdel-Khaliek AA, Shaban M, Rabia M. One pot synthesis of poly m-toluidine incorporated silver and silver oxide nanocomposite as a promising electrode for supercapacitor devices. Sci Rep 2025; 15:2698. [PMID: 39837976 PMCID: PMC11750978 DOI: 10.1038/s41598-024-84848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/27/2024] [Indexed: 01/23/2025] Open
Abstract
The design and fabrication of novel electrodes with strong electrochemical responses are crucial in advanced supercapacitor technology. In this study, a poly(m-toluidine)/silver-silver oxide (PMT/Ag-Ag2O) nanocomposite was prepared using the photopolymerization method. Various characterization techniques were employed to analyze the prepared nanomaterials. The resulting structure of Ag-Ag2O minimizes ion diffusion distances, increases active sites, and accelerates redox reactions. The electrochemical response of PMT and PMT/Ag-Ag2O electrodes was evaluated in three different electrolyte solutions (Na2SO4, H2SO4, and HCl). The specific capacitance of PMT/Ag-Ag2O nanocomposite was found to be higher than that of PMT alone. Among the tested electrolytes, HCl exhibited the highest specific capacitance of 443 F g-1 at a gravimetric current density of 0.4 A g-1, surpassing H2SO4 (104 F g-1) and Na2SO4 (32 F g-1). Also, the PMT/Ag-Ag2O nanocomposite has demonstrated good cycling stability. It exhibited a high specific power density of 156 W Kg-1 and a specific energy density of 1.8 Wh Kg-1. These results highlight the potential of the prepared PMT/Ag-Ag2O nanocomposite as a nanoelectrode material for high-performance supercapacitors.
Collapse
Affiliation(s)
- Doaa Essam
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
- Physical Chemistry Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Ashour M Ahmed
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Abdel-Khaliek
- Physical Chemistry Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohamed Shaban
- Physics Department, Faculty of Science, Islamic University of Madinah, P. O. Box: 170, 42351, Al Madinah Al Monawara, Saudi Arabia
| | - Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Yang J, Burkert O, Mizaikoff B, Smiatek J. Multidomain Protein-Urea Interactions: Differences in Binding Behavior Lead to Different Destabilization Tendencies for Monoclonal Antibodies. J Phys Chem B 2024; 128:10408-10416. [PMID: 39387517 DOI: 10.1021/acs.jpcb.4c05358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We study the influence of urea on the stability of monoclonal antibodies (mAbs) using molecular dynamics (MD) simulations in combination with differential scanning fluorimetry (DSF). We show that a denaturing cosolute such as urea binds strongly to the protein, which can lead to denaturation and enhanced aggregation behavior at high temperatures. The interaction between protein and urea crucially depends on the surface properties of the individual mAb domains and therefore affects the general binding to the protein differently. The study of these mechanisms for proteins with multiple domains, such as mAbs, encounters significant limitations in experimental analysis methods due to their complexity. Using computational and experimental methods, we are able to separate the protein-urea interaction by domain and show that Lennard-Jones interactions are mainly responsible for significant binding effects. Our results emphasize the potential of MD simulations in combination with Kirkwood-Buff theory to study the interactions between proteins with multiple domains and cosolutes as formulation excipients for drug discovery and development.
Collapse
Affiliation(s)
- Jiyoung Yang
- Institute for Analytical and Bioanalytical Chemistry, University of Ulm, Ulm D-89069, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Analytical Development Biologicals, Biberach D-88397, Germany
| | - Oliver Burkert
- Boehringer Ingelheim Pharma GmbH & Co. KG, Analytical Development Biologicals, Biberach D-88397, Germany
| | - Boris Mizaikoff
- Institute for Analytical and Bioanalytical Chemistry, University of Ulm, Ulm D-89069, Germany
| | - Jens Smiatek
- Boehringer Ingelheim Pharma GmbH & Co. KG, Development NCE, Biberach D-88397, Germany
- Institute for Computational Physics, University of Stuttgart, Stuttgart D-70569, Germany
| |
Collapse
|
3
|
Balboni RDC, Cholant CM, Lemos RMJ, Rodrigues LS, Carreno NLV, Santos MJL, Avellaneda CAO, Andreazza R. Highly transparent sustainable biogel electrolyte based on cellulose acetate for application in electrochemical devices. Int J Biol Macromol 2024; 265:130757. [PMID: 38462107 DOI: 10.1016/j.ijbiomac.2024.130757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
In this study, an easy and low-cost production method for a cellulose acetate-based gel polymer containing lithium perchlorate and propylene carbonate is described, as well as the investigation of its properties for potential use as an electrolyte in electrochemical devices. Cellulose acetate, a biopolymer derived from natural matrix, is colourless and transparent, as confirmed by the UV-Vis spectroscopy, with 85 % transparency in visible spectrum. The gels were prepared and tested at different concentrations and proportions to optimise their properties. Thermogravimetry, XRD, and FTIR analyses revealed crucial characteristics, including a substantial 90 % mass loss between 150 and 250 °C, a semi-crystalline nature with complete salt dissociation within the polymer matrix, and a decrease in intensity at 1780 cm-1 with increasing Li+ ion concentration, suggesting an improvement in ionic conduction capacity. In terms of electrochemical performance, the gel containing 10 % by mass of cellulose acetate and 1.4 M of LiClO4 emerged as the most promising. It exhibited a conductivity of 2.3 × 10-4 S.cm-1 at 25 °C and 3.0 × 10-4 S.cm-1 at 80 °C. Additionally, it demonstrated an ideal shape of cyclic voltammetry curves and stability after 400 cycles, establishing its suitability as an electrolyte in electrochemical devices.
Collapse
Affiliation(s)
- Raphael D C Balboni
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil
| | - Camila M Cholant
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil
| | - Rafaela M J Lemos
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil
| | - Lucas S Rodrigues
- Engineering, Modeling and Applied Social Sciences Center, Federal University of ABC (UFABC), Santo André, SP 09210-580, Brazil
| | - Neftali L V Carreno
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil.
| | - Marcos J L Santos
- Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.
| | - Cesar A O Avellaneda
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil
| | - Robson Andreazza
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, RS 96010-000, Brazil.
| |
Collapse
|
4
|
Miranda-Quintana RA, Chen L, Smiatek J. Insights into Hildebrand Solubility Parameters - Contributions from Cohesive Energies or Electrophilicity Densities? Chemphyschem 2024; 25:e202300566. [PMID: 37883736 DOI: 10.1002/cphc.202300566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
We introduce certain concepts and expressions from conceptual density functional theory (DFT) to study the properties of the Hildebrand solubility parameter. The original form of the Hildebrand solubility parameter is used to qualitatively estimate solubilities for various apolar and aprotic substances and solvents and is based on the square root of the cohesive energy density. Our results show that a revised expression allows the replacement of cohesive energy densities by electrophilicity densities, which are numerically accessible by simple DFT calculations. As an extension, the reformulated expression provides a deeper interpretation of the main contributions and, in particular, emphasizes the importance of charge transfer mechanisms. All calculated values of the Hildebrand parameters for a large number of common solvents are compared with experimental values and show good agreement for non- or moderately polar aprotic solvents in agreement with the original formulation of the Hildebrand solubility parameters. The observed deviations for more polar and protic solvents define robust limits from the original formulation which remain valid. Likewise, we show that the use of machine learning methods leads to only slightly better predictability.
Collapse
Affiliation(s)
| | - Lexin Chen
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, D-70569, Stuttgart, Germany
| |
Collapse
|
5
|
Miranda-Quintana RA, Chen L, Craig VSJ, Smiatek J. Quantitative Solvation Energies from Gas-Phase Calculations: First-Principles Charge Transfer and Perturbation Approaches. J Phys Chem B 2023; 127:2546-2551. [PMID: 36917810 DOI: 10.1021/acs.jpcb.2c08907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
We present a first-principles approach for the calculation of solvation energies and enthalpies with respect to different ion pair combinations in various solvents. The method relies on the conceptual density functional theory (DFT) of solvation, from which detailed expressions for the solvation energies can be derived. In addition to fast and straightforward gas phase calculations, we also study the influence of modified chemical reactivity descriptors in terms of electronic perturbations. The corresponding phenomenological changes in molecular energy levels can be interpreted as the influence of continuum solvents. Our approach shows that the introduction of these modified expressions is essential for a quantitative agreement between the calculated and the experimental results.
Collapse
Affiliation(s)
- Ramón Alain Miranda-Quintana
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, United States
| | - Lexin Chen
- Department of Chemistry, University of Florida, Gainesville, Florida 32603, United States
| | - Vincent S J Craig
- Department of Applied Mathematics, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
6
|
Cabral-Neto JP, de Mendonça Pimentel RM, Santos SM, Silva MM. Estimation of lithium-ion battery scrap generation from electric vehicles in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23070-23078. [PMID: 36316550 PMCID: PMC9628594 DOI: 10.1007/s11356-022-23730-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Among the diversity of electronic waste, lithium-ion batteries (LIB), specifically those used in the propulsion of electric vehicles (EV), are considered pollutants of significant impact. When not used and disposed of correctly, LIBs can cause damage of various types to health and the environment. The electrochemical instability inherent in these batteries releases toxic gases, risks explosion, and is always associated with a series of electronic circuits composed of various metals, including heavy metals. As a result of public policies to encourage vehicle electrification, the Brazilian EVs sector has shown high growth, even within an economic crisis scenario. In this sense, this study presents a model for estimating the production of electric vehicles and the generation of scrap LIBs, based on time series, combining battery life, car sales data, and the mileage profile covered by a car in Brazil. Around 700 thousand EVs are expected to be circulating in Brazil by 2030, with approximately 500 thousand LIBs to be converted into scrap by 2040. Finally, the delaying effect of the scrap generated from LIBs is highlighted, in line with the battery life, which, in the future, may have a very negative impact on waste management.
Collapse
Affiliation(s)
- João Pinto Cabral-Neto
- Instituto Federal de Educação, Ciência e Tecnologia de Alagoas, 530 Ferroviário Ave, Maceió, AL, 57020-600, Brazil.
- Universidade Federal de Pernambuco, 1235 Prof. Moraes Rego Ave, Recife, PE, 50670-901, Brazil.
| | - Rejane Magalhães de Mendonça Pimentel
- Universidade Federal de Pernambuco, 1235 Prof. Moraes Rego Ave, Recife, PE, 50670-901, Brazil
- Universidade Federal Rural de Pernambuco, Dom Manuel de Medeiros St, Recife, PE, 52171-900, Brazil
| | - Simone Machado Santos
- Universidade Federal de Pernambuco, 1235 Prof. Moraes Rego Ave, Recife, PE, 50670-901, Brazil
| | - Maísa Mendonça Silva
- Universidade Federal de Pernambuco, 1235 Prof. Moraes Rego Ave, Recife, PE, 50670-901, Brazil
- Nanjing University of Aeronautics and Astronautics, Qinhuai District, 29 Yudao St, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Miranda-Quintana RA, Smiatek J. Application of Fundamental Chemical Principles for Solvation Effects: A Unified Perspective for Interaction Patterns in Solution. J Phys Chem B 2022; 126:8864-8872. [PMID: 36269164 DOI: 10.1021/acs.jpcb.2c06315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We demonstrate the utility of basic chemical principles like the "|Δμ| big is good" (DMB) rule for the study of solvation interactions between distinct solutes such as ions and solvents. The corresponding approach allows us to define relevant criteria for maximum solvation energies of ion pairs in different solvents in terms of electronegativities and chemical hardnesses. Our findings reveal that the DMB principle culminates into the strong and weak acids and bases concept as recently derived for specific ion effects in various solvents. The further application of the DMB approach highlights a similar condition for the chemical hardnesses with a reminiscence to the hard/soft acids and bases principle. Comparable conclusions can also be drawn with regard to the change of the solvent. We show that favorable solvent interactions are mainly driven by low chemical hardnesses as well as high electronegativity differences between the ions and the solvent. Our findings highlight that solvation interactions are governed by basic chemical principles, which demonstrates the close similarity between solvation mechanisms and chemical reactions.
Collapse
Affiliation(s)
- Ramón Alain Miranda-Quintana
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida32611, United States
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, StuttgartD-70569, Germany
| |
Collapse
|
8
|
Miranda-Quintana RA, Smiatek J. Electronic properties of amino acids and nucleobases: similarity classes and pairing principles from chemical reactivity indices. Phys Chem Chem Phys 2022; 24:22477-22486. [PMID: 36106477 DOI: 10.1039/d2cp02767d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a new classification scheme for amino acids and nucleobases based on the electronic properties of the individual molecules. Using chemical reactivity indices such as electronegativity, electrophilicity, and chemical hardness, we can identify similarities and differences between each class of amino acids and nucleobases. Notable differences emerge in particular with regard to high, neutral or low electronegativity as well as different combinations of chemical hardness. Our approach allows us to relate these insights to the properties of the side groups in terms of a unique reference scheme. We further show that hydrophobic differences between amino acids are rather negligible in the context of electronic properties. Our classification scheme also rationalizes the occurrence of distinct stable nucleobase pairs and clearly emphasizes certain differences between individual molecules. The stability and abundant occurrence of Watson-Crick nucleobase pairs is further discussed in the context of the minimum electrophilicity principle.
Collapse
Affiliation(s)
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany.
| |
Collapse
|
9
|
Gregory KP, Elliott GR, Robertson H, Kumar A, Wanless EJ, Webber GB, Craig VSJ, Andersson GG, Page AJ. Understanding specific ion effects and the Hofmeister series. Phys Chem Chem Phys 2022; 24:12682-12718. [PMID: 35543205 DOI: 10.1039/d2cp00847e] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Specific ion effects (SIE), encompassing the Hofmeister Series, have been known for more than 130 years since Hofmeister and Lewith's foundational work. SIEs are ubiquitous and are observed across the medical, biological, chemical and industrial sciences. Nevertheless, no general predictive theory has yet been able to explain ion specificity across these fields; it remains impossible to predict when, how, and to what magnitude, a SIE will be observed. In part, this is due to the complexity of real systems in which ions, counterions, solvents and cosolutes all play varying roles, which give rise to anomalies and reversals in anticipated SIEs. Herein we review the historical explanations for SIE in water and the key ion properties that have been attributed to them. Systems where the Hofmeister series is perturbed or reversed are explored, as is the behaviour of ions at the liquid-vapour interface. We discuss SIEs in mixed electrolytes, nonaqueous solvents, and in highly concentrated electrolyte solutions - exciting frontiers in this field with particular relevance to biological and electrochemical applications. We conclude the perspective by summarising the challenges and opportunities facing this SIE research that highlight potential pathways towards a general predictive theory of SIE.
Collapse
Affiliation(s)
- Kasimir P Gregory
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia. .,Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Gareth R Elliott
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Hayden Robertson
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Anand Kumar
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Erica J Wanless
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Grant B Webber
- School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Vincent S J Craig
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Gunther G Andersson
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Alister J Page
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| |
Collapse
|
10
|
Miranda-Quintana RA, Smiatek J. Specific Ion Effects in Different Media: Current Status and Future Challenges. J Phys Chem B 2021; 125:13840-13849. [PMID: 34918938 DOI: 10.1021/acs.jpcb.1c07957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We discuss the current state of research as well as the future challenges for a deeper understanding of specific ion effects in protic and aprotic solvents as well as various additional media. Despite recent interest in solute or interfacial effects, we focus exclusively on the specific properties of ions in bulk electrolyte solutions. Corresponding results show that many mechanisms remain unknown for these simple media, although theoretical, computational, and experimental studies have provided some insights into explaining individual observations. In particular, the importance of local interactions and electronic properties is emphasized, which enabled a more consistent interpretation of specific ion effects over the past years. Despite current insufficient knowledge, we also discuss future challenges in relation to dynamic properties as well as the influence of different concentrations, different solvents, and solute contributions to gain a deeper understanding of specific ion effects for technological applications.
Collapse
Affiliation(s)
- Ramón Alain Miranda-Quintana
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany.,Digitalization Development Biologicals CMC, Boehringer Ingelheim Pharma GmbH & Co. KG, D-88397 Biberach (Riss), Germany
| |
Collapse
|
11
|
Eisenhart AE, Beck TL. Specific Ion Solvation and Pairing Effects in Glycerol Carbonate. J Phys Chem B 2021; 125:13635-13643. [PMID: 34894679 DOI: 10.1021/acs.jpcb.1c06575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identifying the driving forces behind the solvation of inorganic salts by nonaqueous solvents is an important step in the development of green solvents. Here we focus on one promising solvent: glycerol carbonate (GC). Using ab initio molecular dynamics simulations, we build upon our previous work by detailing glycerol carbonate's interactions with a series of anions, a lithium ion, and the LiF ion pair. Through these investigations, we highlight the changes in solvation behavior as the anion size increases, the competition of binding shown by lithium for the oxygens of GC, and the behavior of the LiF ion pair in a GC solution. These results indicate the importance of the cation's identity in ion-pairing structure and dynamics and lend insight into the key factors behind the specific ion effects seen in GC.
Collapse
Affiliation(s)
- Andrew E Eisenhart
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Thomas L Beck
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
12
|
Miranda-Quintana RA, Smiatek J. Electronic Properties of Protein Destabilizers and Stabilizers: Implications for Preferential Binding and Exclusion Mechanisms. J Phys Chem B 2021; 125:11857-11868. [PMID: 34672590 DOI: 10.1021/acs.jpcb.1c06295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We study the electronic properties of low-weight organic co-solutes by means of conceptual density functional theory calculations. Our results highlight the important role of certain chemical reactivity descriptors such as chemical hardness, electronegativity, nucleofugality, and the electrofugality as important criteria to classify protein stabilizers and destabilizers. Our results imply Lewis basic properties with lower chemical hardness for stabilizers, while destabilizers show higher Lewis acidity with higher chemical hardness. Further consideration of analytical calculations in terms of transfer energies reveals the crucial role of co-solute-protein interactions which significantly change the interaction pattern of the stabilizing or destabilizing species. The corresponding outcomes connect statistical thermodynamics with the electronic properties of co-solutes and also allow us to define general principles for strong stabilizers and destabilizers.
Collapse
Affiliation(s)
- Ramón Alain Miranda-Quintana
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
13
|
Keller F, Heuer A, Galla HJ, Smiatek J. Stabilization of DPPC lipid bilayers in the presence of co-solutes: molecular mechanisms and interaction patterns. Phys Chem Chem Phys 2021; 23:22936-22946. [PMID: 34622252 DOI: 10.1039/d1cp03052c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We study the interactions between dipalmitoylphosphatidylcholine (DPPC) lipid bilayers in the gel and the fluid phase with ectoine, amino ectoine and water molecules by means of atomistic molecular dynamics (MD) simulations and conceptual density functional theory (DFT) calculations. Our results reveal a pronounced preferential exclusion of both co-solutes from the DPPC lipid bilayer which is stronger for the fluid phase. The corresponding outcomes can be brought into relation with the Kirkwood-Buff theory of solutions in order to provide a thermodynamic rationale for the experimentally observed stabilization of the gel phase. Closely related to preferential exclusion of both co-solutes, our simulations also highlight a preferential hydration behavior as manifested by an increased number of hydrogen bonds between water and DPPC molecules. All results are rationalized by conceptual DFT calculations with regard to differences in the electronic properties between ectoine and amino ectoine.
Collapse
Affiliation(s)
- Fabian Keller
- Institute of Physical Chemistry, University of Münster, D-48149 Münster, Germany
| | - Andreas Heuer
- Institute of Physical Chemistry, University of Münster, D-48149 Münster, Germany
| | - Hans-Joachim Galla
- Institute of Biochemistry, University of Münster, D-48149 Münster, Germany
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany.
| |
Collapse
|
14
|
Beneficial properties of solvents and ions for lithium ion and post-lithium ion batteries: Implications from charge transfer models. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Rasheev H, Stoyanova R, Tadjer A. Dual-Metal Electrolytes for Hybrid-Ion Batteries: Synergism or Antagonism? Chemphyschem 2021; 22:1110-1123. [PMID: 33826193 DOI: 10.1002/cphc.202100066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/19/2021] [Indexed: 11/09/2022]
Abstract
The construction of hybrid metal-ion batteries faces a plethora of challenges. A critical one is to unveil the solvation/desolvation processes at the molecular level in electrolytes that ensure efficient transfer of several types of charge carriers. This study reports first results on simulations of mixed-ion electrolytes. All combinations of homo- and hetero-binuclear complexes of Li+ , Na+ and Mg2+ , solvated with varying number of ethylene carbonate (EC) molecules are modeled in non-polar and polar environment by means of first principles calculations and compared to the mononuclear analogues in terms of stability, spatial organization, charge distribution and solvation/desolvation behavior. The used PF6 - counterion is shown to have minor impact on the geometry of the complexes. The desolvation energy penalty of binuclear complexes can be lowered by the fluoride ions, emerging upon the PF6 - decay. These model investigations could be extended to rationalize the solvation structure and ionic mobility in dual-ion electrolytes.
Collapse
Affiliation(s)
- Hristo Rasheev
- Institute of General and Inorganic Chemistry (IGIC), Bulgarian Academy of Science, 1113, Sofia, Bulgaria.,Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd, 1164, Sofia, Bulgaria
| | - Radostina Stoyanova
- Institute of General and Inorganic Chemistry (IGIC), Bulgarian Academy of Science, 1113, Sofia, Bulgaria
| | - Alia Tadjer
- Institute of General and Inorganic Chemistry (IGIC), Bulgarian Academy of Science, 1113, Sofia, Bulgaria.,Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd, 1164, Sofia, Bulgaria
| |
Collapse
|
16
|
Oprzeska-Zingrebe EA, Smiatek J. Interactions of a DNA G-quadruplex with TMAO and urea: a molecular dynamics study on co-solute compensation mechanisms. Phys Chem Chem Phys 2021; 23:1254-1264. [PMID: 33355575 DOI: 10.1039/d0cp05356b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We study the individual and combined influence of TMAO and urea on a basket-type DNA G-quadruplex by means of atomistic molecular dynamics (MD) simulations. In combination with the Kirkwood-Buff theory of solutions, we propose a simple mechanism to elucidate the impact of TMAO and urea on the G-quadruplex. Our results reveal the importance of the molecular accumulation around the DNA in terms of stabilizing or destabilizing effects. The results for mixtures show only a weak interaction between both co-solutes, which highlights the additivity of contributions. Despite the fact, that TMAO can to some extent compensate the adverse impact of urea on the G-quadruplex structure, the destabilizing influence is not completely eliminated. This observation opens the door for further research on selective stabilization of DNA G-quadruplexes by modulating the concentrations of TMAO and urea in solution.
Collapse
Affiliation(s)
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany.
| |
Collapse
|
17
|
Miranda-Quintana RA, Smiatek J. Calculation of donor numbers: Computational estimates for the Lewis basicity of solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Miranda‐Quintana RA, Smiatek J. Theoretical Insights into Specific Ion Effects and Strong-Weak Acid-Base Rules for Ions in Solution: Deriving the Law of Matching Solvent Affinities from First Principles. Chemphyschem 2020; 21:2605-2617. [PMID: 32975891 PMCID: PMC7756232 DOI: 10.1002/cphc.202000644] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/21/2020] [Indexed: 12/02/2022]
Abstract
We present a detailed study of specific ion effects, volcano plots and the law of matching solvent affinities by means of a conceptual density functional theory (DFT) approach. Our results highlight that specific ion effects and the corresponding implications on the solvation energy are mainly due to differences in the electric chemical potentials and chemical hardnesses of the ions and the solvent. Our approach can be further used to identify reliable criteria for the validity of the law of matching solvent affinities. Basic expressions are derived, which allow us to study the limiting conditions for this empirical observation with regard to matching chemical reactivity indices. Moreover, we show that chaotropic and kosmotropic concepts and their implications for the stability of ion pairs are directly related to a generalized strong and weak acids and bases (SWAB) principle for ions in solution, which is also applicable to rationalize the shape of volcano plots for different solvents. In contrast to previous assumptions, all empirical findings can be explained by the properties of local solvent-ion complexes which dominate the specific global behavior of ion pairs in solution.
Collapse
Affiliation(s)
| | - Jens Smiatek
- Institut für ComputerphysikUniversität Stuttgart70569StuttgartGermany
| |
Collapse
|
19
|
Yang J, Knape MJ, Burkert O, Mazzini V, Jung A, Craig VSJ, Miranda-Quintana RA, Bluhmki E, Smiatek J. Artificial neural networks for the prediction of solvation energies based on experimental and computational data. Phys Chem Chem Phys 2020; 22:24359-24364. [PMID: 33084665 DOI: 10.1039/d0cp03701j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The knowledge of thermodynamic properties for novel electrolyte formulations is of fundamental interest for industrial applications as well as academic research. Herewith, we present an artificial neural networks (ANN) approach for the prediction of solvation energies and entropies for distinct ion pairs in various protic and aprotic solvents. The considered feed-forward ANN is trained either by experimental data or computational results from conceptual density functional theory calculations. The proposed concept of mapping computed values to experimental data lowers the amount of time-consuming and costly experiments and helps to overcome certain limitations. Our findings reveal high correlation coefficients between predicted and experimental values which demonstrate the validity of our approach.
Collapse
Affiliation(s)
- Jiyoung Yang
- Boehringer Ingelheim Pharma GmbH & Co. KG, Analytical Development Biologicals, Birkendorfer Strasse 65, D-88397 Biberach (Riss), Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Smiatek J. Theoretical and Computational Insight into Solvent and Specific Ion Effects for Polyelectrolytes: The Importance of Local Molecular Interactions. Molecules 2020; 25:E1661. [PMID: 32260301 PMCID: PMC7180813 DOI: 10.3390/molecules25071661] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
Polyelectrolytes in solution show a broad plethora of interesting effects. In this short review article, we focus on recent theoretical and computational findings regarding specific ion and solvent effects and their impact on the polyelectrolyte behavior. In contrast to standard mean field descriptions, the properties of polyelectrolytes are significantly influenced by crucial interactions with the solvent, co-solvent and ion species. The corresponding experimental and simulation results reveal a significant deviation from theoretical predictions, which also highlights the importance of charge transfer, dispersion and polarization interactions in combination with solvation mechanisms. We discuss recent theoretical and computational findings in addition to novel approaches which help broaden the applicability of simple mean field theories.
Collapse
Affiliation(s)
- Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| |
Collapse
|
21
|
Smiatek J. Specific Ion Effects and the Law of Matching Solvent Affinities: A Conceptual Density Functional Theory Approach. J Phys Chem B 2020; 124:2191-2197. [PMID: 32105071 DOI: 10.1021/acs.jpcb.9b10886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We study the principles behind specific ion effects of alkali and halide ions in various protic and aprotic solvents by means of a conceptual density functional theory (DFT) approach. The results of our calculations are in good agreement with experimental data and underline the crucial role of frontier molecular orbital energies. Further analysis reveals that the electronegativities and chemical hardness values of the considered ion and solvent species provide a molecular rationale for specific ion effects and the law of matching water affinities. Based on the analytical expressions and DFT calculations, we show that solvent affinities and the occurrence of specific ion effects, among other molecular mechanisms and interactions, are mainly due to electronegativity differences between the ions and the surrounding solvent molecules.
Collapse
Affiliation(s)
- Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
22
|
Adenusi H, Le Donne A, Porcelli F, Bodo E. Ab Initio Molecular Dynamics Study of Phospho-Amino Acid-Based Ionic Liquids: Formation of Zwitterionic Anions in the Presence of Acidic Side Chains. J Phys Chem B 2020; 124:1955-1964. [PMID: 32037824 PMCID: PMC7997564 DOI: 10.1021/acs.jpcb.9b09703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We
present a computational analysis of the complex proton-transfer
processes in two protic ionic liquids based on phosphorylated amino
acid anions. The structure and the short time dynamics have been analyzed
via ab initio and semi-empirical molecular dynamics. Given the presence
of mobile protons on the side chain, such ionic liquids may represent
a viable prototype of highly conductive ionic mediums. The results
of our simulations are not entirely satisfactory in this respect.
Our results indicate that conduction in these liquids may be limited
due to a quick quenching of the proton-transfer processes. In particular,
we have found that, while proton migration does occur on very short
timescales, the amino groups act as proton scavengers preventing an
efficient proton migration. Despite their limits as conductive mediums,
we show that these ionic liquids possess an unconventional microscopic
structure, where the anionic component is made by amino acid anions
that the aforementioned proton transfer has transformed into zwitterionic
isomers. This unusual chemical structure is relevant because of the
recent use of amino acid-based ionic liquids, such as CO2 absorbent.
Collapse
Affiliation(s)
- Henry Adenusi
- Chemistry Department, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome Italy
| | - Andrea Le Donne
- Chemistry Department, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome Italy
| | - Francesco Porcelli
- Chemistry Department, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome Italy
| | - Enrico Bodo
- Chemistry Department, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome Italy
| |
Collapse
|
23
|
Fiates J, Zhang Y, Franco LFM, Maginn EJ, Doubek G. Impact of anion shape on Li+ solvation and on transport properties for lithium–air batteries: a molecular dynamics study. Phys Chem Chem Phys 2020; 22:15842-15852. [DOI: 10.1039/d0cp00853b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Here we report the influence of the anion shape over the solvation structure and transport properties over commonly employed Li–O2 electrolytes and discuss their implications for the device.
Collapse
Affiliation(s)
- Juliane Fiates
- School of Chemical Engineering
- University of Campinas
- Campinas 13083-852
- Brazil
- Department of Chemical and Biomolecular Engineering
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering
- University of Notre Dame
- Notre Dame
- USA
| | - Luís F. M. Franco
- School of Chemical Engineering
- University of Campinas
- Campinas 13083-852
- Brazil
| | - Edward J. Maginn
- Department of Chemical and Biomolecular Engineering
- University of Notre Dame
- Notre Dame
- USA
| | - Gustavo Doubek
- School of Chemical Engineering
- University of Campinas
- Campinas 13083-852
- Brazil
| |
Collapse
|
24
|
Oprzeska-Zingrebe EA, Smiatek J. Some Notes on the Thermodynamic Accuracy of Coarse-Grained Models. Front Mol Biosci 2019; 6:87. [PMID: 31552269 PMCID: PMC6746972 DOI: 10.3389/fmolb.2019.00087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/27/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ewa Anna Oprzeska-Zingrebe
- Institute for Computational Physics, Theoretical Chemical Physics, University of Stuttgart, Stuttgart, Germany
| | - Jens Smiatek
- Institute for Computational Physics, Theoretical Chemical Physics, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
25
|
Oprzeska-Zingrebe EA, Smiatek J. Aqueous Mixtures of Urea and Trimethylamine-N-oxide: Evidence for Kosmotropic or Chaotropic Behavior? J Phys Chem B 2019; 123:4415-4424. [PMID: 31046272 DOI: 10.1021/acs.jpcb.9b02598] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trimethylamine-N-oxide (TMAO) and urea are commonly produced in many extremophilic microorganisms that live in harsh environments. In view of high temperature, high pressure, or high salt content, TMAO is known as a protein structure stabilizer, whereas urea destabilizes protein structures even under ambient conditions. Despite clear evidence, destabilizers are often regarded as chaotropes, meaning water-structure breakers, whereas kosmotropes as water-structure makers are classified as stabilizers. Using atomistic molecular dynamics simulations, we study aqueous mixtures of TMAO and urea in various biologically relevant concentrations to gain insight into the molecular details of their mutual cross-interactions and their influence on water dynamics and structure. Our results for binary and ternary solutions in combination with different mixing ratios show that both co-solutes strengthen the water network in terms of dynamic and structural aspects. Slight differences in the water binding behavior between both species result in only negligible compensation effects. The outcomes of our simulations thus question the validity and the ill-considered use of attributes like kosmotropic or chaotropic substances for stabilizers and destabilizers.
Collapse
Affiliation(s)
| | - Jens Smiatek
- Institute for Computational Physics , University of Stuttgart , D-70569 Stuttgart , Germany.,Helmholtz-Institute Münster: Ionics in Energy Storage (HIMS-IEK 12) , Forschungszentrum Jülich GmbH , D-48149 Münster , Germany
| |
Collapse
|
26
|
Smiatek J. Enthalpic contributions to solvent–solute and solvent–ion interactions: Electronic perturbation as key to the understanding of molecular attraction. J Chem Phys 2019; 150:174112. [PMID: 31067894 DOI: 10.1063/1.5092567] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jens Smiatek
- Institut für Computerphysik, Universität Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
- Helmholtz Institut Münster (HI MS–IEK 12): Ionenleiter in Energiespeichern, Forschungszentrum Jülich GmbH, Corrensstrasse 46, D-48149 Münster, Germany
| |
Collapse
|
27
|
Nandy A, Smiatek J. Mixtures of LiTFSI and urea: ideal thermodynamic behavior as key to the formation of deep eutectic solvents? Phys Chem Chem Phys 2019; 21:12279-12287. [PMID: 31139787 DOI: 10.1039/c9cp01440c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We studied the dynamic and structural properties of deep eutectic solvents composed of LiTFSI salts in presence of urea.
Collapse
Affiliation(s)
- Aniruddha Nandy
- Department of Mechanical Engineering
- Indian Institute of Technology
- Kharagpur
- India
- Helmholtz-Institute Münster: Ionics in Energy Storage (HIMS-IEK 12)
| | - Jens Smiatek
- Helmholtz-Institute Münster: Ionics in Energy Storage (HIMS-IEK 12)
- Forschungszentrum Jülich GmbH
- D-48149 Münster
- Germany
- Institute for Computational Physics
| |
Collapse
|