1
|
Faber J, Hinrichsen J, Soufivand AA, Lu HH, Rosenberger T, Karakaya E, Detsch R, Boccaccini AR, Budday S. Tuning the mechanical properties of alginate dialdehyde-gelatin (ADA-GEL) bioinks for bioprinting approaches by varying the degree of oxidation. J Mech Behav Biomed Mater 2025; 163:106871. [PMID: 39764923 DOI: 10.1016/j.jmbbm.2024.106871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 02/08/2025]
Abstract
Extrusion-based 3D bioprinting is one of the most promising and widely used technologies in bioprinting. However, the development of bioprintable, biocompatible bioinks with tailored mechanical and biological properties remains a major challenge in this field. Alginate dialdehyde-gelatin (ADA-GEL) hydrogels face these difficulties and enable to tune the mechanical properties depending on the degree of oxidation (% DO) of ADA. Here, we present a holistic approach for characterizing the influence of the % DO on the mechanical properties of ADA-GEL hydrogels under multiple loading modes, compression, tension, and torsional shear in the large-strain regime. We evaluate complex mechanical characteristics including nonlinearity, hysteresis, conditioning, and stress relaxation. We calibrate hyperelastic material models to determine the corresponding material parameters inversely. Our results confirm that decreasing the % DO of ionically crosslinked ADA-GEL hydrogels leads to an increase in stiffness, more distinct nonlinearity, more pronounced hysteresis, and minor preconditioning effects, while the relaxation behavior is slightly affected. The fabrication technique - molding or printing - does only slightly affect the complex mechanical properties and stress relaxation behavior. Ionically and enzymatically dual-crosslinked ADA-GEL hydrogels showed higher stresses during cyclic loading and less viscous effects during stress relaxation in all three loading modes. We conclude that the % DO and the crosslinking procedure are crucial parameters to tune the mechanical behavior of ADA-GEL hydrogels. Careful choice of these parameters might facilitate the fabrication of biomaterials that closely mimic the properties of native tissues for advanced tissue engineering applications.
Collapse
Affiliation(s)
- Jessica Faber
- Institute of Continuum Mechanics and Biomechanics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 90762 Fürth, Germany
| | - Jan Hinrichsen
- Institute of Continuum Mechanics and Biomechanics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 90762 Fürth, Germany
| | - Anahita Ahmadi Soufivand
- Institute of Continuum Mechanics and Biomechanics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 90762 Fürth, Germany
| | - Hsuan-Heng Lu
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91056 Erlangen, Germany
| | - Tanja Rosenberger
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91056 Erlangen, Germany
| | - Emine Karakaya
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91056 Erlangen, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91056 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91056 Erlangen, Germany
| | - Silvia Budday
- Institute of Continuum Mechanics and Biomechanics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 90762 Fürth, Germany.
| |
Collapse
|
2
|
Mao R, Zhang J, Qin H, Liu Y, Xing Y, Zeng W. Application progress of bio-manufacturing technology in kidney organoids. Biofabrication 2025; 17:022007. [PMID: 39933190 DOI: 10.1088/1758-5090/adb4a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/11/2025] [Indexed: 02/13/2025]
Abstract
Kidney transplantation remains a pivotal treatment modality for kidney disease, yet its progress is significantly hindered by the scarcity of donor kidneys and ethical dilemmas surrounding their procurement. As organoid technology evolves and matures, the creation of bionic human kidney organoids offers profound potential for advancing kidney disease research, drug nephrotoxicity screening, and regenerative medicine. Nevertheless, current kidney organoid models grapple with limitations such as constrained cellular differentiation, underdeveloped functional structures, and a crucial absence of vascularization. This deficiency in vascularization, in particular, stunts organoid development, restricts their size, diminishes filtration capabilities, and may trigger immune inflammatory reactions through the resulting ischemic microenvironment. Hence, the achievement of vascularization within kidney organoids and the successful establishment of functional microvascular networks constitutes a paramount goal for their future progression. In this review, we provide an overview of recent advancements in biotechnology domains, encompassing organ-on-a-chip technology, biomimetic matrices, and bioprinting, with the aim of catalyzing technological breakthroughs that can enhance the vascularization of kidney organoids and broaden their applicability. These technologies hold the key to unlocking the full potential of kidney organoids as a transformative therapeutic option for kidney disease.
Collapse
Affiliation(s)
- Runqi Mao
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Junming Zhang
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Haoxiang Qin
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Yuanyuan Liu
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Yuxin Xing
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, People's Republic of China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, People's Republic of China
- Jinfeng Laboratory, Chongqing 401329, People's Republic of China
| |
Collapse
|
3
|
Kocsis D, Sztankovics D, Józsa L, Németh A, Garay T, Naszlady MB, Lengyel M, Vecsernyés M, Antal I, Sebestyén A, Erdő F. In Vitro Functional and Structural Evaluation of Low-Complexity Artificial Human Epidermis for 3D Tissue Engineering. Bioengineering (Basel) 2025; 12:230. [PMID: 40150694 PMCID: PMC11939566 DOI: 10.3390/bioengineering12030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
In recent times, with the need for a reduction, refinement, and replacement of in vivo animal testing, there has been an increasing demand for the use of relevant in vitro human cell systems in drug development. There is also a great demand for the replacement of skin tissue in various wounds and burns. Furthermore, human skin cell-based in vitro systems can be used to investigate the side effects (toxicity and irritation) and tissue penetration of topical preparations. In this study, exploratory experiments were performed to produce artificial epidermis using two hydrogel scaffolds, alginate and GelMA C. The amount of keratinocytes added to the matrix (10-50-100 × 106/mL) and the duration of tissue maturation (fresh, 1-3-4 weeks) were optimized in an extensive study. The behavior and structure of the two hydrogels were functionally and morphologically assessed. The permeability order for caffeine in the tested barriers was the following: alginate > GelMA C > cellulose acetate membrane > rat skin. It was concluded that GelMA C matrix provides a more favorable environment for cell survival and tissue differentiation (as demonstrated by histology and immunohistochemistry) than alginate. The 3-week incubation and 50 × 106/mL cell number proved to be the most beneficial in the given system. This study provides data for the first time on the multifactorial optimization of two potential skin substitutes for tissue manufacturing. In order to use these results in tissue engineering, the fabricated artificial epidermis preparations must also be optimized for biocompatibility and from physical and mechanical point of views.
Collapse
Affiliation(s)
- Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (D.K.); (A.N.); (T.G.); (M.B.N.)
| | - Dániel Sztankovics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., 1085 Budapest, Hungary; (D.S.); (A.S.)
| | - Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (L.J.); (M.V.)
| | - Afrodité Németh
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (D.K.); (A.N.); (T.G.); (M.B.N.)
| | - Tamás Garay
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (D.K.); (A.N.); (T.G.); (M.B.N.)
- Department of Internal Medicine and Oncology, Semmelweis University, Korányi Sándor u. 2/a, 1083 Budapest, Hungary
| | - Márton Bese Naszlady
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (D.K.); (A.N.); (T.G.); (M.B.N.)
| | - Miléna Lengyel
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre u. 7, 1092 Budapest, Hungary; (M.L.); (I.A.)
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (L.J.); (M.V.)
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre u. 7, 1092 Budapest, Hungary; (M.L.); (I.A.)
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., 1085 Budapest, Hungary; (D.S.); (A.S.)
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (D.K.); (A.N.); (T.G.); (M.B.N.)
| |
Collapse
|
4
|
Sprenger L, Lu HH, Trippmacher S, Mansfeld U, Milkin P, Ionov L, Papastavrou G, Boccaccini AR, Salehi S. Composite Alginate Dialdehyde-Gelatin (ADA-GEL) Hydrogel Containing Short Ribbon-Shaped Fillers for Skeletal Muscle Tissue Biofabrication. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44605-44622. [PMID: 39159061 DOI: 10.1021/acsami.4c10751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Skeletal muscle tissue can be severely damaged by disease or trauma beyond its ability to self-repair, necessitating the further development of biofabrication and tissue-engineering tools for reconstructive processes. Hence, in this study, a composite bioink of oxidized alginate (ADA) and gelatin (GEL) including cell-laden ribbon-shaped fillers is used for enhancing cell alignment and the formation of an anisotropic structure. Different plasma treatments combined with protein coatings were evaluated for the improvement of cell adhesion to poly(lactic-co-glycolic acid) (PLGA) ribbon surfaces. Oxygen plasma activation of 30 W for 5 min showed high immobilization of fibronectin as a protein coating on the PLGA ribbon surface, which resulted in enhanced cell adhesion and differentiation of muscle cells. Furthermore, the effect of various concentrations of CaCl2 solution, used for ionic cross-linking of ADA, on ADA-GEL physical and mechanical properties as well as encapsulated C2C12 cell viability and proliferation behavior was investigated. The pore area was measured via two approaches, cryofixation and lyophilization, which, in accordance with degradation tests and mechanical analysis, showed that 60 mM CaCl2 concentration is the optimum range for cross-linking of the formulation of ADA 2.5%w/v-GEL 3.75%w/v. These cross-linked hydrogels showed a compression modulus of 11.5 kPa (similar to the native skeletal muscle tissue), a high viability of C2C12 muscle cells (>80%), and a high proliferation rate during 7 days of culture. Rheological characterization of the ADA-GEL composite hydrogel containing short fillers (100 μm long) showed its suitability as a bioink with shear-thinning and flow behavior compared to ADA-GEL.
Collapse
Affiliation(s)
- Lys Sprenger
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, 95447 Bayreuth, Germany
| | - Hsuan-Heng Lu
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Steffen Trippmacher
- Department of Physical Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Ulrich Mansfeld
- Bavarian Polymer Institute (BPI), KeyLAB, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Pavel Milkin
- Department of Biofabrication, Faculty of Engineering Sciences, University of Bayreuth, Ludwig-Thoma-Straße 36A, 95447 Bayreuth, Germany
| | - Leonid Ionov
- Department of Biofabrication, Faculty of Engineering Sciences, University of Bayreuth, Ludwig-Thoma-Straße 36A, 95447 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Georg Papastavrou
- Department of Physical Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Sahar Salehi
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, 95447 Bayreuth, Germany
| |
Collapse
|
5
|
Schipka R, Heltmann-Meyer S, Schneidereit D, Friedrich O, Röder J, Boccaccini AR, Schrüfer S, Schubert DW, Horch RE, Bosserhoff AK, Arkudas A, Kengelbach-Weigand A, Schmid R. Characterization of two different alginate-based bioinks and the influence of melanoma growth within. Sci Rep 2024; 14:12945. [PMID: 38839791 PMCID: PMC11153560 DOI: 10.1038/s41598-024-63642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
Extrusion-based bioprinting is an established method in biofabrication. Suitable bioinks have fundamentally different compositions and characteristics, which should be examined, in order to find a perfect model system. Here, we investigate the effect of two alginate-based, yet unalike 3D-printed bioinks, pre-crosslinked alginate-dialdehyde gelatin (ADA-GEL) and a mixture of alginate, hyaluronic acid, and gelatin (Alg/HA/Gel), on the melanoma cell line Mel Im and vice versa in terms of stiffness, shrinkage, cellular behavior and colony formation over 15 days. Rheological stiffness measurements revealed two soft gels with similar storage moduli. The cells did not have a significant impact on the overall stiffness, whereas ADA-GEL (2.5/2.5%) was significantly stiffer than Alg/HA/Gel (0.5/0.1/3%). Regarding the shrinkage of printed constructs, cells had a significant influence, especially in ADA-GEL, which has covalent bonds between the oxidized alginate and gelatin. Multi-photon microscopy exhibited proliferation, cell spreading and migration in ADA-GEL with cell-cell and cell-matrix interaction, dissimilarly to Alg/HA/Gel, in which cells formed spherical, encapsulated colonies. Scanning electron microscopy and histology showed degradation and multi-layered growth on ADA-GEL and fewer examples of escaped cells on Alg/HA/Gel. Both gels serve as proliferation bioink for melanoma with more necrosis in deeper Alg/HA/Gel colonies and differences in spreading and matrix interaction. These findings show the importance of proper characterization of the bioinks for different applications.
Collapse
Affiliation(s)
- Raphael Schipka
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Stefanie Heltmann-Meyer
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Jonas Röder
- Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Stefan Schrüfer
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
- RevoBITs, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Annika Kengelbach-Weigand
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Rafael Schmid
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
6
|
Schmid R, Schmidt SK, Schrüfer S, Schubert DW, Heltmann-Meyer S, Schicht M, Paulsen F, Horch RE, Bosserhoff AK, Kengelbach-Weigand A, Arkudas A. A vascularized in vivo melanoma model suitable for metastasis research of different tumor stages using fundamentally different bioinks. Mater Today Bio 2024; 26:101071. [PMID: 38736612 PMCID: PMC11081803 DOI: 10.1016/j.mtbio.2024.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Although 2D cancer models have been the standard for drug development, they don't resemble in vivo properties adequately. 3D models can potentially overcome this. Bioprinting is a promising technique for more refined models to investigate central processes in tumor development such as proliferation, dormancy or metastasis. We aimed to analyze bioinks, which could mimic these different tumor stages in a cast vascularized arteriovenous loop melanoma model in vivo. It has the advantage to be a closed system with a defined microenvironment, supplied only with one vessel-ideal for metastasis research. Tested bioinks showed significant differences in composition, printability, stiffness and microscopic pore structure, which led to different tumor stages (Matrigel and Alg/HA/Gel for progression, Cellink Bioink for dormancy) and resulted in different primary tumor growth (Matrigel significantly higher than Cellink Bioink). Light-sheet fluorescence microscopy revealed differences in vascularization and hemorrhages with no additional vessels found in Cellink Bioink. Histologically, typical human melanoma with different stages was demonstrated. HMB-45-positive tumors in progression inks were infiltrated by macrophages (CD163), highly proliferative (Ki67) and metastatic (MITF/BRN2, ATX, MMP3). Stainings of lymph nodes revealed metastases even without significant primary tumor growth in Cellink Bioink. This model can be used to study tumor pathology and metastasis of different tumor stages and therapies.
Collapse
Affiliation(s)
- Rafael Schmid
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Sonja K. Schmidt
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstraße 17, 91054, Erlangen, Germany
| | - Stefan Schrüfer
- Institute of Polymer Materials, Friedrich-Alexander University Erlangen-Nürnberg, Martensstraße 7, 91058, Erlangen, Germany
| | - Dirk W. Schubert
- Institute of Polymer Materials, Friedrich-Alexander University Erlangen-Nürnberg, Martensstraße 7, 91058, Erlangen, Germany
| | - Stefanie Heltmann-Meyer
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Martin Schicht
- Department of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstraße 19, 91054, Erlangen, Germany
| | - Friedrich Paulsen
- Department of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstraße 19, 91054, Erlangen, Germany
| | - Raymund E. Horch
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstraße 17, 91054, Erlangen, Germany
| | - Annika Kengelbach-Weigand
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Andreas Arkudas
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Krankenhausstraße 12, 91054, Erlangen, Germany
| |
Collapse
|
7
|
Gaglio CG, Baruffaldi D, Pirri CF, Napione L, Frascella F. GelMA synthesis and sources comparison for 3D multimaterial bioprinting. Front Bioeng Biotechnol 2024; 12:1383010. [PMID: 38590606 PMCID: PMC10999536 DOI: 10.3389/fbioe.2024.1383010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Gelatin Methacryloyl (GelMA) is one of the most used biomaterials for a wide range of applications, such as drug delivery, disease modeling and tissue regeneration. GelMA is obtained from gelatin, which can be derived from different sources (e.g., bovine skin, and porcine skin), through substitution of reactive amine and hydroxyl groups with methacrylic anhydride (MAA). The degree of functionalization (DoF) can be tuned by varying the MAA amount used; thus, different protocols, with different reaction efficiency, have been developed, using various alkaline buffers (e.g., phosphate-buffered saline, DPBS, or carbonate-bicarbonate solution). Obviously, DoF modulation has an impact on the final GelMA properties, so a deep investigation on the features of the obtained hydrogel must be carried on. The purpose of this study is to investigate how different gelatin sources and synthesis methods affect GelMA properties, as literature lacks direct and systematic comparisons between these parameters, especially between synthesis methods. The final aim is to facilitate the choice of the source or synthesis method according to the needs of the desired application. Hence, chemical and physical properties of GelMA formulations were assessed, determining the DoFs, mechanical and viscoelastic properties by rheological analysis, water absorption by swelling capacity and enzymatic degradation rates. Biological tests with lung adenocarcinoma cells (A549) were performed. Moreover, since 3D bioprinting is a rapidly evolving technology thanks to the possibility of precise deposition of cell-laden biomaterials (bioinks) to mimic the 3D structures of several tissues, the potential of different GelMA formulations as bioinks have been tested with a multi-material approach, revealing its printability and versatility in various applications.
Collapse
Affiliation(s)
- Cesare Gabriele Gaglio
- Department of Applied Science and Technology (DISAT)—PolitoBIOMed Lab—Politecnico di Torino, Turin, Italy
| | - Désireé Baruffaldi
- Department of Applied Science and Technology (DISAT)—PolitoBIOMed Lab—Politecnico di Torino, Turin, Italy
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology (DISAT)—PolitoBIOMed Lab—Politecnico di Torino, Turin, Italy
- Center for Sustainable Future Technologies, Italian Institute of Technology, Turin, Italy
| | - Lucia Napione
- Department of Applied Science and Technology (DISAT)—PolitoBIOMed Lab—Politecnico di Torino, Turin, Italy
| | - Francesca Frascella
- Department of Applied Science and Technology (DISAT)—PolitoBIOMed Lab—Politecnico di Torino, Turin, Italy
| |
Collapse
|