1
|
Jia S, Ma H, Gao S, Yang L, Sun Q. Thermoelectric Materials and Devices for Advanced Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405019. [PMID: 39392147 DOI: 10.1002/smll.202405019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Thermoelectrics (TEs), enabling the direct conversion between heat and electrical energy, have demonstrated extensive application potential in biomedical fields. Herein, the mechanism of the TE effect, recent developments in TE materials, and the biocompatibility assessment of TE materials are provided. In addition to the fundamentals of TEs, a timely and comprehensive review of the recent progress of advanced TE materials and their applications is presented, including wearable power generation, personal thermal management, and biosensing. In addition, the new-emerged medical applications of TE materials in wound healing, disease treatment, antimicrobial therapy, and anti-cancer therapy are thoroughly reviewed. Finally, the main challenges and future possibilities are outlined for TEs in biomedical fields, as well as their material selection criteria for specific application scenarios. Together, these advancements can provide innovative insights into the development of TEs for broader applications in biomedical fields.
Collapse
Affiliation(s)
- Shiyu Jia
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610017, China
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
2
|
Fang W, Wu J, Cheng M, Zhu X, Du M, Chen C, Liao W, Zhi K, Pan W. Diagnosis of invasive fungal infections: challenges and recent developments. J Biomed Sci 2023; 30:42. [PMID: 37337179 DOI: 10.1186/s12929-023-00926-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/13/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The global burden of invasive fungal infections (IFIs) has shown an upsurge in recent years due to the higher load of immunocompromised patients suffering from various diseases. The role of early and accurate diagnosis in the aggressive containment of the fungal infection at the initial stages becomes crucial thus, preventing the development of a life-threatening situation. With the changing demands of clinical mycology, the field of fungal diagnostics has evolved and come a long way from traditional methods of microscopy and culturing to more advanced non-culture-based tools. With the advent of more powerful approaches such as novel PCR assays, T2 Candida, microfluidic chip technology, next generation sequencing, new generation biosensors, nanotechnology-based tools, artificial intelligence-based models, the face of fungal diagnostics is constantly changing for the better. All these advances have been reviewed here giving the latest update to our readers in the most orderly flow. MAIN TEXT A detailed literature survey was conducted by the team followed by data collection, pertinent data extraction, in-depth analysis, and composing the various sub-sections and the final review. The review is unique in its kind as it discusses the advances in molecular methods; advances in serology-based methods; advances in biosensor technology; and advances in machine learning-based models, all under one roof. To the best of our knowledge, there has been no review covering all of these fields (especially biosensor technology and machine learning using artificial intelligence) with relevance to invasive fungal infections. CONCLUSION The review will undoubtedly assist in updating the scientific community's understanding of the most recent advancements that are on the horizon and that may be implemented as adjuncts to the traditional diagnostic algorithms.
Collapse
Affiliation(s)
- Wenjie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Mingrong Cheng
- Department of Anorectal Surgery, The Third Affiliated Hospital of Guizhou Medical University, Guizhou, 558000, China
| | - Xinlin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Mingwei Du
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Kangkang Zhi
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
3
|
Shupenev AE, Melnik SL, Korshunov IS, Karpoukhin SD, Sazonkin SG, Grigor’yants AG. Growth Features of Bi 2Te 3Sb 1.5 Films on Polyimide Substrates Obtained by Pulsed Laser Deposition. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8993. [PMID: 36556799 PMCID: PMC9788408 DOI: 10.3390/ma15248993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Thermoelectric materials in the form of thin films are used to create a wide variety of sensors and devices. The efficiency of these devices depends on the quality and efficiency of the thermoelectric materials obtained in the form of thin films. Earlier, we demonstrated that it is possible to obtain high-performance Bi2Te3Sb1.5 films less than 1 μm thick on polyimide substrates by using the PLD method, and determined optimal growth conditions. In the current work, the relationship between growth conditions and droplet fraction on the surface, microstructure, grain size, film thickness and chemical composition was studied. A power factor of 5.25 μW/cm×K2 was achieved with the reduction of droplet fraction on the film surface to 0.57%. The dependencies of the film thickness were studied, and the effect of the thickness on the efficiency of the material is shown. The general trend in the growth dynamics for Bi2Te3Sb1.5 films we obtained is the reduction of crystalline size with Pressure-Temperature (PT) criterion. The results of our work also show the possibility of a significant reduction of droplet phase with simultaneous management of crystalline features and thermoelectric efficiency of Bi2Te3Sb1.5 films grown on polyimide substrates by varying growth conditions.
Collapse
Affiliation(s)
- Alexander E. Shupenev
- Department of Laser Technology in Engineering, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Svetlana L. Melnik
- Department of Laser Technology in Engineering, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Ivan S. Korshunov
- Department of Laser Technology in Engineering, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Sergey D. Karpoukhin
- Department of Materials Science, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Stanislav G. Sazonkin
- Scientific and Educational Center “Photonics and IR Technology”, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Alexander G. Grigor’yants
- Department of Laser Technology in Engineering, Bauman Moscow State Technical University, 105005 Moscow, Russia
| |
Collapse
|
4
|
K. Hussain K, Malavia D, M. Johnson E, Littlechild J, Winlove CP, Vollmer F, Gow NAR. Biosensors and Diagnostics for Fungal Detection. J Fungi (Basel) 2020; 6:E349. [PMID: 33302535 PMCID: PMC7770582 DOI: 10.3390/jof6040349] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Early detection is critical to the successful treatment of life-threatening infections caused by fungal pathogens, as late diagnosis of systemic infection almost always equates with a poor prognosis. The field of fungal diagnostics has some tests that are relatively simple, rapid to perform and are potentially suitable at the point of care. However, there are also more complex high-technology methodologies that offer new opportunities regarding the scale and precision of fungal diagnosis, but may be more limited in their portability and affordability. Future developments in this field are increasingly incorporating new technologies provided by the use of new format biosensors. This overview provides a critical review of current fungal diagnostics and the development of new biophysical technologies that are being applied for selective new sensitive fungal biosensors to augment traditional diagnostic methodologies.
Collapse
Affiliation(s)
- Khalil K. Hussain
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (E.M.J.)
| | - Dhara Malavia
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (E.M.J.)
| | - Elizabeth M. Johnson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (E.M.J.)
- UK National Mycology Reference Laboratory (MRL), Public Health England South-West, Science Quarter Southmead Hospital, Southmead, Bristol BS10 5NB, UK
| | - Jennifer Littlechild
- Biocatalysis Centre, University of Exeter, The Henry Wellcome Building for Biocatalysis, Stocker Road, Exeter EX4 4QD, UK;
| | - C. Peter Winlove
- Department of Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QD, UK;
| | - Frank Vollmer
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK;
| | - Neil A. R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (E.M.J.)
| |
Collapse
|
5
|
Moon JM, Thapliyal N, Hussain KK, Goyal RN, Shim YB. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review. Biosens Bioelectron 2017; 102:540-552. [PMID: 29220802 DOI: 10.1016/j.bios.2017.11.069] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/25/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Neurotransmitters are important biochemical molecules that control behavioral and physiological functions in central and peripheral nervous system. Therefore, the analysis of neurotransmitters in biological samples has a great clinical and pharmaceutical importance. To date, various methods have been developed for their assay. Of the various methods, the electrochemical sensors demonstrated the potential of being robust, selective, sensitive, and real time measurements. Recently, conducting polymers (CPs) and their composites have been widely employed in the fabrication of various electrochemical sensors for the determination of neurotransmitters. Hence, this review presents a brief introduction to the electrochemical biosensors, with the detailed discussion on recent trends in the development and applications of electrochemical neurotransmitter sensors based on CPs and their composites. The review covers the sensing principle of prime neurotransmitters, including glutamate, aspartate, tyrosine, epinephrine, norepinephrine, dopamine, serotonin, histamine, choline, acetylcholine, nitrogen monoxide, and hydrogen sulfide. In addition, the combination with other analytical techniques was also highlighted. Detection challenges and future prospective of the neurotransmitter sensors were discussed for the development of biomedical and healthcare applications.
Collapse
Affiliation(s)
- Jong-Min Moon
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea
| | - Neeta Thapliyal
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Khalil Khadim Hussain
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea
| | - Rajendra N Goyal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
6
|
Aziz AUR, Geng C, Fu M, Yu X, Qin K, Liu B. The Role of Microfluidics for Organ on Chip Simulations. Bioengineering (Basel) 2017; 4:E39. [PMID: 28952518 PMCID: PMC5590458 DOI: 10.3390/bioengineering4020039] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022] Open
Abstract
A multichannel three-dimensional chip of a microfluidic cell culture which enables the simulation of organs is called an "organ on a chip" (OC). With the integration of many other technologies, OCs have been mimicking organs, substituting animal models, and diminishing the time and cost of experiments which is better than the preceding conventional in vitro models, which make them imperative tools for finding functional properties, pathological states, and developmental studies of organs. In this review, recent progress regarding microfluidic devices and their applications in cell cultures is discussed to explain the advantages and limitations of these systems. Microfluidics is not a solution but only an approach to create a controlled environment, however, other supporting technologies are needed, depending upon what is intended to be achieved. Microfluidic platforms can be integrated with additional technologies to enhance the organ on chip simulations. Besides, new directions and areas are mentioned for interested researchers in this field, and future challenges regarding the simulation of OCs are also discussed, which will make microfluidics more accurate and beneficial for biological applications.
Collapse
Affiliation(s)
- Aziz Ur Rehman Aziz
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, China.
| | - Chunyang Geng
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, China.
| | - Mengjie Fu
- Dalian Institute of Maternal and Child Health Care. Dalian 116024, Liaoning Province, China.
| | - Xiaohui Yu
- Dalian Institute of Maternal and Child Health Care. Dalian 116024, Liaoning Province, China.
| | - Kairong Qin
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, China.
| | - Bo Liu
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, China.
| |
Collapse
|
7
|
|