1
|
Ivantcova PM, Sungatullina AR, Pidgirnaya KV, Nikitin MP. Exploring the synergy between bioluminescence and nanomaterials: Innovations in analytical and therapeutic applications. Colloids Surf B Biointerfaces 2025; 251:114631. [PMID: 40127545 DOI: 10.1016/j.colsurfb.2025.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/26/2025]
Abstract
The application of bioluminescent luciferin-luciferase systems for visualizing and stimulating various processes in living systems is of great interest due to its specific nature and high signal-to-noise ratio. Nanomaterials can finely manipulate multiple parameters of the bioluminescent systems, including the enzyme stability, intensity, and duration of the irradiation. Also, bioluminescence can affect the properties of a nanomaterial, namely, to carry out BRET, to trigger cascades of various photochemical transformations. Here we summarize cases of the interplay between nanomaterials and various bioluminescent systems to improve various biosensors, biovisualization in cellulo, in vivo, and for therapy over the past twenty years. We reviewed interactions between a wide range of nanomaterials and bioluminescent systems, including bacterial and genetically encoded luciferases. This review aims to serve as a comprehensive guide for developing bioluminescent multimodal nanoplatforms for analytic applications and therapy.
Collapse
Affiliation(s)
- Polina M Ivantcova
- Sirius University of Science and Technology, 1 Olimpiyskiy Ave, 354340, Sirius, Krasnodar region, Russia.
| | - Adilya R Sungatullina
- Sirius University of Science and Technology, 1 Olimpiyskiy Ave, 354340, Sirius, Krasnodar region, Russia; Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russian Federation
| | - Kristina V Pidgirnaya
- Sirius University of Science and Technology, 1 Olimpiyskiy Ave, 354340, Sirius, Krasnodar region, Russia
| | - Maxim P Nikitin
- Sirius University of Science and Technology, 1 Olimpiyskiy Ave, 354340, Sirius, Krasnodar region, Russia; Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russian Federation
| |
Collapse
|
2
|
Stepin EA, Sushko ES, Vnukova NG, Churilov GN, Rogova AV, Tomilin FN, Kudryasheva NS. Effects of Endohedral Gd-Containing Fullerenols with a Different Number of Oxygen Substituents on Bacterial Bioluminescence. Int J Mol Sci 2024; 25:708. [PMID: 38255785 PMCID: PMC10815327 DOI: 10.3390/ijms25020708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Gadolinium (Gd)-containing fullerenols are perspective agents for magnetic resonance imaging and cancer research. They combine the unique paramagnetic properties of Gd with solubility in water, low toxicity and antiradical activity of fullerenols. We compared the bioeffects of two Gd-containing fullerenols with a different number of oxygen groups-20 and 42: Gd@C82O20H14 and Gd@C82O42H32. The bioluminescent bacteria-based assay was applied to monitor the toxicity of fullerenols, bioluminescence was applied as a signal physiological parameter, and bacterial enzyme-based assay was used to evaluate the fullerenol effects on enzymatic intracellular processes. Chemiluminescence luminol assay was applied to monitor the content of reactive oxygen species (ROS) in bacterial and enzymatic media. It was shown that Gd@C82O42H32 and Gd@C82O20H14 inhibited bacterial bioluminescence at >10-1 and >10-2 gL-1, respectively, revealing a lower toxicity of Gd@C82O42H32. Low-concentration (10-3-10-1 gL-1) bacterial bioluminescence activation by Gd@C82O42H32 was observed, while this activation was not found under exposure to Gd@C82O20H14. Additional carboxyl groups in the structure of Gd@C82O42H32 were determined by infrared spectroscopy and confirmed by quantum chemical calculations. The groups were supposed to endow Gd@C82O42H32 with higher penetration ability through the cellular membrane, activation ability, lower toxicity, balancing of the ROS content in the bacterial suspensions, and lower aggregation in aqueous media.
Collapse
Affiliation(s)
- Evsei A. Stepin
- Biophysics Department, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.A.S.); (E.S.S.)
| | - Ekaterina S. Sushko
- Biophysics Department, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.A.S.); (E.S.S.)
- Institute of Biophysics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia
- Institute of Physics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.); (F.N.T.)
| | - Natalia G. Vnukova
- Institute of Physics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.); (F.N.T.)
- Department of Solid State Physics and Nanotechnology, School of Engineering Physics and Radioelectronics, Siberian Federal University, 660074 Krasnoyarsk, Russia
| | - Grigoriy N. Churilov
- Institute of Physics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.); (F.N.T.)
- Department of Solid State Physics and Nanotechnology, School of Engineering Physics and Radioelectronics, Siberian Federal University, 660074 Krasnoyarsk, Russia
| | - Anastasia V. Rogova
- Department of Physical and Inorganic Chemistry, School of Non-Ferrous Metals and Materials Science, Siberian Federal University, 660025 Krasnoyarsk, Russia;
- Laboratory for Digital Controlled Drugs and Theranostics, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia
| | - Felix N. Tomilin
- Institute of Physics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.); (F.N.T.)
- Department of Physical and Inorganic Chemistry, School of Non-Ferrous Metals and Materials Science, Siberian Federal University, 660025 Krasnoyarsk, Russia;
- Laboratory for Digital Controlled Drugs and Theranostics, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia
| | - Nadezhda S. Kudryasheva
- Biophysics Department, School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.A.S.); (E.S.S.)
- Institute of Biophysics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia
| |
Collapse
|
3
|
Sushko ES, Vnukova NG, Churilov GN, Kudryasheva NS. Endohedral Gd-Containing Fullerenol: Toxicity, Antioxidant Activity, and Regulation of Reactive Oxygen Species in Cellular and Enzymatic Systems. Int J Mol Sci 2022; 23:ijms23095152. [PMID: 35563539 PMCID: PMC9106034 DOI: 10.3390/ijms23095152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 01/20/2023] Open
Abstract
The Gd-containing metallofullerene derivatives are perspective magnetic resonance imaging contrast agents. We studied the bioeffects of a water-soluble fullerene derivative, gadolinium-endohedral fullerenol, with 40−42 oxygen groups (Gd@Fln). Bioluminescent cellular and enzymatic assays were applied to monitor toxicity and antioxidant activity of Gd@Fln in model solutions; bioluminescence was applied as a signaling physiological parameter. The Gd@Fln inhibited bioluminescence at high concentrations (>2·10−1 gL−1), revealing lower toxicity as compared to the previously studied fullerenols. Efficient activation of bioluminescence (up to almost 100%) and consumption of reactive oxygen species (ROS) in bacterial suspension were observed under low-concentration exposure to Gd@Fln (10−3−2·10−1 gL−1). Antioxidant capability of Gd@Fln was studied under conditions of model oxidative stress (i.e., solutions of model organic and inorganic oxidizers); antioxidant coefficients of Gd@Fln were determined at different concentrations and times of exposure. Contents of ROS were evaluated and correlations with toxicity/antioxidant coefficients were determined. The bioeffects of Gd@Fln were explained by hydrophobic interactions, electron affinity, and disturbing of ROS balance in the bioluminescence systems. The results contribute to understanding the molecular mechanism of “hormetic” cellular responses. Advantages of the bioluminescence assays to compare bioeffects of fullerenols based on their structural characteristics were demonstrated.
Collapse
Affiliation(s)
- Ekaterina S. Sushko
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia;
- Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.)
- Correspondence: ; Tel.: +7-3912-494-242
| | - Natalia G. Vnukova
- Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.)
- Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Grigoriy N. Churilov
- Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia; (N.G.V.); (G.N.C.)
- Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Nadezhda S. Kudryasheva
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, 660036 Krasnoyarsk, Russia;
- Siberian Federal University, 660041 Krasnoyarsk, Russia
| |
Collapse
|
4
|
Abstract
Tritium is a byproduct of many radiochemical reactions in the nuclear industry, and its effects on aquatic organisms, particularly low-dose effects, deserve special attention. The low-dose effects of tritium on aquatic microbiota have been intensively studied using luminous marine bacteria as model microorganisms. Low-dose physiological activation has been demonstrated and explained by the signaling role of reactive oxygen species through the “bystander effect” in bacterial suspensions. The activation of microbial functions in natural reservoirs by low tritium concentrations can cause unpredictable changes in food chains and imbalances in the natural equilibrium. The incorporation of tritium from the free form into organically bound compounds mainly occurs in the dark and at a temperature of 25 °C. When tritium is ingested by marine animals, up to 56% of tritium is accumulated in the muscle tissue and up to 36% in the liver. About 50% of tritium in the liver is bound in non-exchangeable forms. Human ingestion of water and food products contaminated with background levels of tritium does not significantly contribute to the total dose load on the human body.
Collapse
|