1
|
Elkelish A, Alqudah AM, Alhudhaibi AM, Alqahtani H, Börner A, Thabet SG. Inherited endurance: deciphering genetic associations of transgenerational and intergenerational heat stress memory in barley. PLANT MOLECULAR BIOLOGY 2025; 115:42. [PMID: 40064678 DOI: 10.1007/s11103-025-01571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/18/2025] [Indexed: 04/23/2025]
Abstract
Barley (Hordeum vulgare L.), a cornerstone of global cereal crops, is increasingly vulnerable to concurrent heat stress, a critical abiotic factor that is intensified by climate change. This study employed genome-wide association studies (GWAS) to investigate "stress memory," a phenomenon where prior stress exposure enhances a plant's response to subsequent stress events. In this study, we analyzed essential agronomic traits, including plant height, spike length, grain number, and thousand-kernel weight, in conjunction with biochemical markers such as chlorophyll content, proline, and soluble proteins. These assessments spanned three successive generations under heat stress, capturing transgenerational and intergenerational effects and uncovering the cumulative impacts of prolonged stress in the third generation. Markedly, our findings highlight the critical influence of heat stress on plant physiology across generational scales, showcasing significant reductions in chlorophyll content, which reflect stress-induced limitations on photosynthetic capacity. In contrast, the observed consistent and substantial increases in proline and soluble protein content across transgenerational, intergenerational, and third-generation stress memory stages underscore their vital roles in stress mitigation and cellular homeostasis. These results provide compelling evidence of generational stress memory, suggesting potential adaptive strategies that plants employ to cope with harsh environmental conditions. Interestingly, identifying significant SNP markers within key genomic regions using GWAS analysis further highlights the potential for harnessing these loci in breeding programs. These results shed light on the intricate mechanisms of barley's stress tolerance and underscore the potential of integrating genomic, epigenomic, and advanced phenotyping tools into breeding programs to develop heat-resilient cultivars.
Collapse
Affiliation(s)
- Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P. O. Box: 90950, Riyadh, 11623, Kingdom of Saudi Arabia
| | | | - Abdulrahman M Alhudhaibi
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P. O. Box: 90950, Riyadh, 11623, Kingdom of Saudi Arabia
| | - Hussain Alqahtani
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben,Corrensstr 3, 06466, Seeland, Germany
| | - Samar G Thabet
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt.
| |
Collapse
|
2
|
Liu T, Sharif R, Shi Z, Guo K, Zhang Z, Bao X, Ali A. Transcriptomic analysis reveals the crucial role of YABBY genes family in hormonal induced parthenocarpy in Cucumis sativus L. BMC PLANT BIOLOGY 2025; 25:45. [PMID: 39794697 PMCID: PMC11724556 DOI: 10.1186/s12870-024-06018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND The plant-specific YABBY transcription factor family plays several activities, including responding to abiotic stress, establishing dorsoventral polarity, and developing lateral organs. Cucumis sativus L. commonly referred to as cucumber and one of the first vegetable crops with a fully sequenced genome. RESULTS In this work, we examined the application of NAA, CPPU, and GA4 + 7 to inflict parthenocarpy in the cucumber ZK line. The expression pattern of YABBY genes throughout fruit development and performed a genomic census of cucumber (Cucumis sativus L.). Based on peptide classification, we discovered eight CsYABBY genes and divided them into five subfamilies. Similarities in motif composition and exon-intron structure were also observed. The cis-elements and gene ontology (GO) analysis revealed the involvement of CsYABBY genes in vegetative growth and the transition of vegetative to the reproductive phase. The expression analysis revealed the differential expression response to NAA, CPPU, and GA4 + 7. In particular, the CsYABBY1 was induced sharply by NAA and CPPU but not GA4 + 7. The transient expression of CsCRC disclosed that it is localized in the nucleus. CONCLUSION These findings point to the possibility that CsYABBY1 and CsCRC may positively affect fruit development and could be utilized to generate parthenocarpic cucumber fruits.
Collapse
Affiliation(s)
- Tingting Liu
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China.
- Department of Science and Technology, Shanxi Datong University, Datong, Shanxi, 037009, China.
| | - Rahat Sharif
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zetao Shi
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Kehong Guo
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Zhisen Zhang
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Xueping Bao
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Ahmad Ali
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sugarcane Research Center, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, Hainan, 571101, China.
| |
Collapse
|
3
|
Sharif R, Zhu Y, Huang Y, Sohail H, Li S, Chen X, Qi X. microRNA regulates cytokinin induced parthenocarpy in cucumber (Cucumis sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108681. [PMID: 38776825 DOI: 10.1016/j.plaphy.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Parthenocarpy is one of the most important agronomic traits for fruit yield in cucumbers. However, the precise gene regulation and the posttranscriptional mechanism are elusive. In the presented study, one parthenocarpic line DDX and non-parthenocarpic line ZK were applied to identify the microRNAs (miRNAs) involved in parthenocarpic fruit formation. The differential expressed miRNAs among parthenocarpic fruit of forchlorfenuron (CPPU) treated ZK (ZK-CPPU), pollinated ZK (ZK-P), non-pollinated DDX (DDX-NP) were compared with the non-parthenocarpic fruits of non-pollinated ZK (ZK-NP). It indicated 98 miRNAs exhibited differential expression were identified. Notably, a significant proportion of these miRNAs were enriched in the signal transduction pathway of plant hormones, as identified by the KEGG pathway analysis. qRT-PCR validation indicated that CsmiR156 family was upregulated in the ZK-NP while downregulated in ZK-CPPU, ZK-P, and DDX-NP at 1 day after anthesis. Meanwhile, the opposite trend was observed for CsmiR164a. In ZK-CPPU, ZK-P, and DDX-NP, CsmiRNA156 genes (CsSPL16 and CsARR9-like) were upregulated while CsmiRNA164a genes (CsNAC6, CsCUC1, and CsNAC100) were downregulated. The GUS and dual luciferase assay validated that CsmiR156a inhibited while CsmiR164a induced their target genes' transcription. This study presents novel insights into the involvement of CsmiR156a and CsmiR164a in the CK-mediated posttranscriptional regulation of cucumber parthenocarpy, which will aid future breeding programs.
Collapse
Affiliation(s)
- Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Yamei Zhu
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Yaoyue Huang
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Hamza Sohail
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Su Li
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China.
| | - Xiaohua Qi
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
4
|
Ahmad S, Khan K, Saleh IA, Okla MK, Alaraidh IA, AbdElgawad H, Naeem M, Ahmad N, Fahad S. TALE gene family: identification, evolutionary and expression analysis under various exogenous hormones and waterlogging stress in Cucumis sativus L. BMC PLANT BIOLOGY 2024; 24:564. [PMID: 38879470 PMCID: PMC11179211 DOI: 10.1186/s12870-024-05274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND Three Amino acid Loop Extension (TALE) belongs to the homeobox group of genes that are important constituents of plant systems. The TALE gene family is instrumental not only in growth and development but also plays an essential role in regulating plant response to environmental adversaries. RESULTS In the present study, we isolated 21 CsTALE genes from the cucumber (Cucumis sativus L.) genome database. Bioinformatics tools were put in place to understand the structural and functional components of the CsTALE gene family. The evolutionary analysis dissected them into seven subclades (KNOX-I, KNOX-II, and BELL-I to BELL-V). The cis-acting elements in the promoter region of CsTALE genes disclosed that they are key regulators of hormonal and stress-related processes. Additionally, the STRING database advocated the concerting role of CsTALE proteins with other key transcription factors potent in plant developmental biology. The CsmiR319 and CsmiR167a-3p targeting the CsTALE15 and CsTALE16, respectively, further assert the importance of the CsTALE gene family posttranscriptional-related processes. Tissue-specific gene expression unfolded the fundamental involvement of CsTALE genes as they were expressed throughout the developmental stages. Under waterlogging stress, the CsTALE17 expressed significantly higher values in WL, WL-NAA, and WL-ETH but not in WL-MeJA-treated samples. CONCLUSIONS The present study reveals the evolution and functions of the CsTALE gene family in cucumber. Our work will provide a platform that will help future researchers address the issue of waterlogging stress in the Yangtze River Delta.
Collapse
Affiliation(s)
- Sheraz Ahmad
- College of Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China.
| | - Khushboo Khan
- Faculty of Crop Production Sciences, The University of Agriculture Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | | | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ibrahim A Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| |
Collapse
|
5
|
Wang Q, Wang Y, Zhang F, Han C, Wang Y, Ren M, Qi K, Xie Z, Zhang S, Tao S, Shiratake K. Genome-wide characterisation of HD-Zip transcription factors and functional analysis of PbHB24 during stone cell formation in Chinese white pear (Pyrus bretschneideri). BMC PLANT BIOLOGY 2024; 24:444. [PMID: 38778247 PMCID: PMC11112822 DOI: 10.1186/s12870-024-05138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The homodomain-leucine zipper (HD-Zip) is a conserved transcription factor family unique to plants that regulate multiple developmental processes including lignificaion. Stone cell content is a key determinant negatively affecting pear fruit quality, which causes a grainy texture of fruit flesh, because of the lignified cell walls. RESULTS In this study, a comprehensive bioinformatics analysis of HD-Zip genes in Chinese white pear (Pyrus bretschneideri) (PbHBs) was performed. Genome-wide identification of the PbHB gene family revealed 67 genes encoding PbHB proteins, which could be divided into four subgroups (I, II, III, and IV). For some members, similar intron/exon structural patterns support close evolutionary relationships within the same subgroup. The functions of each subgroup of the PbHB family were predicted through comparative analysis with the HB genes in Arabidopsis and other plants. Cis-element analysis indicated that PbHB genes might be involved in plant hormone signalling and external environmental responses, such as light, stress, and temperature. Furthermore, RNA-sequencing data and quantitative real-time PCR (RT-qPCR) verification revealed the regulatory roles of PbHB genes in pear stone cell formation. Further, co-expression network analysis revealed that the eight PbHB genes could be classified into different clusters of co-expression with lignin-related genes. Besides, the biological function of PbHB24 in promoting stone cell formation has been demonstrated by overexpression in fruitlets. CONCLUSIONS This study provided the comprehensive analysis of PbHBs and highlighted the importance of PbHB24 during stone cell development in pear fruits.
Collapse
Affiliation(s)
- Qi Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Horticultural Science, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yueyang Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fanhang Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengyang Han
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanling Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mei Ren
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shutian Tao
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Katsuhiro Shiratake
- Laboratory of Horticultural Science, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
6
|
Yan W, Sharif R, Sohail H, Zhu Y, Chen X, Xu X. Surviving a Double-Edged Sword: Response of Horticultural Crops to Multiple Abiotic Stressors. Int J Mol Sci 2024; 25:5199. [PMID: 38791235 PMCID: PMC11121501 DOI: 10.3390/ijms25105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Climate change-induced weather events, such as extreme temperatures, prolonged drought spells, or flooding, pose an enormous risk to crop productivity. Studies on the implications of multiple stresses may vary from those on a single stress. Usually, these stresses coincide, amplifying the extent of collateral damage and contributing to significant financial losses. The breadth of investigations focusing on the response of horticultural crops to a single abiotic stress is immense. However, the tolerance mechanisms of horticultural crops to multiple abiotic stresses remain poorly understood. In this review, we described the most prevalent types of abiotic stresses that occur simultaneously and discussed them in in-depth detail regarding the physiological and molecular responses of horticultural crops. In particular, we discussed the transcriptional, posttranscriptional, and metabolic responses of horticultural crops to multiple abiotic stresses. Strategies to breed multi-stress-resilient lines have been presented. Our manuscript presents an interesting amount of proposed knowledge that could be valuable in generating resilient genotypes for multiple stressors.
Collapse
Affiliation(s)
- Wenjing Yan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Rahat Sharif
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Hamza Sohail
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Yu Zhu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Feng YY, Du H, Huang KY, Ran JH, Wang XQ. Reciprocal expression of MADS-box genes and DNA methylation reconfiguration initiate bisexual cones in spruce. Commun Biol 2024; 7:114. [PMID: 38242964 PMCID: PMC10799047 DOI: 10.1038/s42003-024-05786-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
The naturally occurring bisexual cone of gymnosperms has long been considered a possible intermediate stage in the origin of flowers, but the mechanisms governing bisexual cone formation remain largely elusive. Here, we employed transcriptomic and DNA methylomic analyses, together with hormone measurement, to investigate the molecular mechanisms underlying bisexual cone development in the conifer Picea crassifolia. Our study reveals a "bisexual" expression profile in bisexual cones, especially in expression patterns of B-class, C-class and LEAFY genes, supporting the out of male model. GGM7 could be essential for initiating bisexual cones. DNA methylation reconfiguration in bisexual cones affects the expression of key genes in cone development, including PcDAL12, PcDAL10, PcNEEDLY, and PcHDG5. Auxin likely plays an important role in the development of female structures of bisexual cones. This study unveils the potential mechanisms responsible for bisexual cone formation in conifers and may shed light on the evolution of bisexuality.
Collapse
Affiliation(s)
- Yuan-Yuan Feng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Du
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Kai-Yuan Huang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Hua Ran
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Amin N, Ahmad N, Khalifa MAS, Du Y, Mandozai A, Khattak AN, Piwu W. Identification and Molecular Characterization of RWP-RK Transcription Factors in Soybean. Genes (Basel) 2023; 14:369. [PMID: 36833296 PMCID: PMC9956977 DOI: 10.3390/genes14020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The RWP-RK is a small family of plant-specific transcription factors that are mainly involved in nitrate starvation responses, gametogenesis, and root nodulation. To date, the molecular mechanisms underpinning nitrate-regulated gene expression in many plant species have been extensively studied. However, the regulation of nodulation-specific NIN proteins during nodulation and rhizobial infection under nitrogen starvation in soybean still remain unclear. Here, we investigated the genome-wide identification of RWP-RK transcription factors and their essential role in nitrate-inducible and stress-responsive gene expression in soybean. In total, 28 RWP-RK genes were identified from the soybean genome, which were unevenly distributed on 20 chromosomes from 5 distinct groups during phylogeny classification. The conserved topology of RWP-RK protein motifs, cis-acting elements, and functional annotation has led to their potential as key regulators during plant growth, development, and diverse stress responses. The RNA-seq data revealed that the up-regulation of GmRWP-RK genes in the nodules indicated that these genes might play crucial roles during root nodulation in soybean. Furthermore, qRT-PCR analysis revealed that most GmRWP-RK genes under Phytophthora sojae infection and diverse environmental conditions (such as heat, nitrogen, and salt) were significantly induced, thus opening a new window of possibilities into their regulatory roles in adaptation mechanisms that allow soybean to tolerate biotic and abiotic stress. In addition, the dual luciferase assay indicated that GmRWP-RK1 and GmRWP-RK2 efficiently bind to the promoters of GmYUC2, GmSPL9, and GmNIN, highlighting their possible involvement in nodule formation. Together, our findings provide novel insights into the functional role of the RWP-RK family during defense responses and root nodulation in soybean.
Collapse
Affiliation(s)
- Nooral Amin
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mohamed A. S. Khalifa
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Yeyao Du
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Ajmal Mandozai
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Aimal Nawaz Khattak
- Institute of Crop Science Chinese Academy of Agriculture Sciences, Beijing 100000, China
| | - Wang Piwu
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
9
|
Ahmad S, Zhang J, Wang H, Zhu H, Dong Q, Zong S, Wang T, Chen Y, Ge L. The Phosphoserine Phosphatase Alters the Free Amino Acid Compositions and Fecundity in Cyrtorhinus lividipennis Reuter. Int J Mol Sci 2022; 23:ijms232315283. [PMID: 36499611 PMCID: PMC9740327 DOI: 10.3390/ijms232315283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The mirid bug Cyrtorhinus lividipennis (Reuter) is an important predator that consumes eggs and young nymphs of the brown planthopper Nilaparvata lugens as a primary food source and thus becomes an important member of the rice ecosystem. We identified and characterized the ClPSP gene in C. lividipennis encoding the phosphoserine phosphatase enzyme. The ClPSP has an open reading frame (ORF) of 957 bp encoding a protein with a length of 294bp and it possesses a haloacid dehalogenase-like (HAD) hydrolase, phosphoserine phosphatase, eukaryotic-like (HAD_PSP_eu) conserved domain. Furthermore, the in silico analysis of the ClPSP gene unveiled its distinct characteristics and it serves as a key player in the modulation of amino acids. The ClPSP showed expression in all developmental stages, with higher expression observed in the ovary and fat body. Silencing the ClPSP by RNA interference (RNAi) significantly decreased PSP enzyme activity and expression compared to dsGFP at two days after emergence (2DAE). The dsPSP treatment altered free hemolymph amino acid compositions, resulting in a significant reduction of serine (Ser) and Arginine (Arg) proportions and a significant increase of Threonine (Thr), Cystine (Cys), and Tyrosine (Tyr) in the C. lividipennis female at 2 DAE. Additionally, a hindered total protein concentration in the ovary and fat body, and reduced vitellogenin (Vg) expression, body weight, and number of laid eggs, were also observed. The same treatment also prolonged the preoviposition period and hindered ovarian development. Our data, for the first time, demonstrated the influential role of the PSP gene in modulating the fecundity of C. lividipennis and provide a platform for future insect pest control programs using the PSP gene in modulating fecundity.
Collapse
|