1
|
Georgescu SR, Tocut SM, Matei C, Ene CD, Nicolae I, Tampa M. A Panel of Potential Serum Markers Related to Angiogenesis, Antioxidant Defense and Hypoxia for Differentiating Cutaneous Squamous Cell Carcinomas from Actinic Keratoses. J Pers Med 2024; 14:103. [PMID: 38248804 PMCID: PMC10820834 DOI: 10.3390/jpm14010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) arising from the malignant proliferation of epidermal keratinocytes is the second most common skin cancer. Actinic keratosis (AK), which is considered cSCC in situ, may progress into invasive tumors. Currently, there are no serum markers that can differentiate cSCC from AK. The aim of our study was to assess angiogenesis and oxidative stress in patients with cSCC and patients with AK and find reliable serum markers useful in the diagnosis of cSCC. We have determined the serum levels of a group of proangiogenic factors (MMP-2, MMP-9, VEGF, FGF2), the total antioxidative status/capacity (TAS/TAC), ImAnOx, a marker of oxidative stress, and HIF-1 alpha, an indicator of hypoxia. We have identified higher serum levels of MMP-2. MMP-9, VEGF, FGF2 and HIF-1 alpha and lower levels of ImAnOx in cSCC patients compared to AK patients and controls. There were no statistically significant differences between AK patients and controls. We have found positive correlations between proangiogenic markers and HIF-1 alpha and negative correlations between proangiogenic markers and ImAnOx. Our results suggest that MMP-2, MMP-9, VEGF, FGF2, ImAnOx and HIF-1 may be promising markers for differentiating AK from cSCC, and there is a link between angiogenesis, oxidative stress and hypoxia.
Collapse
Affiliation(s)
- Simona Roxana Georgescu
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (M.T.)
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Sandra Milena Tocut
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel;
- Department of Internal Medicine, “Wolfson Medical Center”, 61 Halochamim Street, 58100 Holon, Israel
| | - Clara Matei
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (M.T.)
| | - Corina Daniela Ene
- Department of Nephrology, ‘Carol Davila’ Nephrology Hospital, 010731 Bucharest, Romania
- Departments of Nephrology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ilinca Nicolae
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Mircea Tampa
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (M.T.)
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| |
Collapse
|
2
|
FGFR2c Upregulation Contributes to Cancer-Associated Fibroblast Program Activation and to Enhanced Autophagy in Actinic Keratosis-Derived Dermal Fibroblasts: A Possible Role in Precancerous Cell/Stromal Cell Crosstalk. BIOLOGY 2023; 12:biology12030463. [PMID: 36979155 PMCID: PMC10045898 DOI: 10.3390/biology12030463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Actinic keratosis (AK) is a preneoplastic skin disorder which can rapidly progress to cutaneous squamous cell carcinomas (SCCs). In light of our previous findings, indicating a possible oncogenic role of the mesenchymal isoform of FGFR2 (FGFR2c) aberrantly expressed in AK keratinocytes, we analyzed the possible tumor-promoting role of this receptor in the stromal AK counterpart in this work. Molecular analysis showed that, particularly in early AK lesions, FGFR2c dermal upregulation is accompanied by the downregulation of the cancer-associated fibroblasts (CAF) transcription repressor CSL, the upregulation of the CAF activator ULK3, and the consequent CAF gene induction. Immunofluorescence and molecular analysis, coupled with silencing approaches by siRNA, applied on primary cultures of KIN I-derived fibroblasts, indicated that FGFR2c upregulation contribute to CAF signature and the increased autophagy in response to FGF2. Magnetic bead-based multiplex assay, combined with FGFR2 signaling shut-off approaches, indicated that, especially in response to FGF2, IL-6 secretion could depend on FGFR2c high expression and signaling, suggesting the possible establishment of FGFR2c-dependent secretory autophagy, contributing to tumor-promoting factor release. Overall, our results identified FGFR2c as a signaling molecule involved in controlling precancerous/stromal cell oncogenic crosstalk, pointing to this receptor as a possible early molecular marker predictive for AK’s rapid malignant progression.
Collapse
|
3
|
Zauner R, Wimmer M, Dorfer S, Ablinger M, Koller U, Piñón Hofbauer J, Guttmann-Gruber C, Bauer JW, Wally V. Transcriptome-Guided Drug Repurposing for Aggressive SCCs. Int J Mol Sci 2022; 23:ijms23021007. [PMID: 35055192 PMCID: PMC8780441 DOI: 10.3390/ijms23021007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Despite a significant rise in the incidence of cutaneous squamous cell carcinoma (SCC) in recent years, most SCCs are well treatable. However, against the background of pre-existing risk factors such as immunosuppression upon organ transplantation, or conditions such as recessive dystrophic epidermolysis bullosa (RDEB), SCCs arise more frequently and follow a particularly aggressive course. Notably, such SCC types display molecular similarities, despite their differing etiologies. We leveraged the similarities in transcriptomes between tumors from organ transplant recipients and RDEB-patients, augmented with data from more common head and neck (HN)-SCCs, to identify drugs that can be repurposed to treat these SCCs. The in silico approach used is based on the assumption that SCC-derived transcriptome profiles reflect critical tumor pathways that, if reversed towards healthy tissue, will attenuate the malignant phenotype. We determined tumor-specific signatures based on differentially expressed genes, which were then used to mine drug-perturbation data. By leveraging recent efforts in the systematic profiling and cataloguing of thousands of small molecule compounds, we identified drugs including selumetinib that specifically target key molecules within the MEK signaling cascade, representing candidates with the potential to be effective in the treatment of these rare and aggressive SCCs.
Collapse
Affiliation(s)
- Roland Zauner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
- Correspondence:
| | - Monika Wimmer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
| | - Sonja Dorfer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
| | - Michael Ablinger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
| | - Johann W. Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
| |
Collapse
|
4
|
Ranieri D, Guttieri L, Raffa S, Torrisi MR, Belleudi F. Role of FGFR2c and Its PKC ε Downstream Signaling in the Control of EMT and Autophagy in Pancreatic Ductal Adenocarcinoma Cells. Cancers (Basel) 2021; 13:4993. [PMID: 34638477 PMCID: PMC8508074 DOI: 10.3390/cancers13194993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a treatment-resistant malignancy characterized by a high malignant phenotype including acquired EMT signature and deregulated autophagy. Since we have previously described that the aberrant expression of the mesenchymal FGFR2c and the triggering of the downstream PKCε signaling are involved in epidermal carcinogenesis, the aim of this work has been to assess the contribution of these oncogenic events also in the pancreatic context. Biochemical, molecular and immunofluorescence approaches showed that FGFR2c expression impacts on PDAC cell responsiveness to FGF2 in terms of intracellular signaling activation, upregulation of EMT-related transcription factors and modulation of epithelial and mesenchymal markers compatible with the pathological EMT. Moreover, shut-off via specific protein depletion of PKCε signaling, activated by high expression of FGFR2c resulted in a reversion of EMT profile, as well as in a recovery of the autophagic process. The detailed biochemical analysis of the intracellular signaling indicated that PKCε, bypassing AKT and directly converging on ERK1/2, could be a signaling molecule downstream FGFR2c whose inhibition could be considered as possible effective therapeutic approach in counteracting aggressive phenotype in cancer.
Collapse
Affiliation(s)
- Danilo Ranieri
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Luisa Guttieri
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Salvatore Raffa
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Laboratory of Ultrastructural Pathology, Unit of Medical Genetics and Advanced Cellular Diagnostics,Department of Diagnostic Sciences, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Maria Rosaria Torrisi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Laboratory of Ultrastructural Pathology, Unit of Medical Genetics and Advanced Cellular Diagnostics,Department of Diagnostic Sciences, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Francesca Belleudi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
5
|
Santiago JL, Muñoz-Rodriguez JR, de la Cruz-Morcillo MA, Villar-Rodriguez C, Gonzalez-Lopez L, Aguado C, Nuncia-Cantarero M, Redondo-Calvo FJ, Perez-Ortiz JM, Galan-Moya EM. Characterization of Permeability Barrier Dysfunction in a Murine Model of Cutaneous Field Cancerization Following Chronic UV-B Irradiation: Implications for the Pathogenesis of Skin Cancer. Cancers (Basel) 2021; 13:cancers13163935. [PMID: 34439089 PMCID: PMC8394893 DOI: 10.3390/cancers13163935] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary In the present work, we developed an experimental preclinical model of skin with cutaneous field cancerization after chronic UV-B light exposure in an immunologically intact mouse model (SKH1 aged mice). We observed impairments in the transepidermal water loss, stratum corneum hydration, and surface pH. We also detected a marked hyperkeratotic hyperplasia of the epidermis, induction of keratinocyte hyperproliferation, incidental actinic keratosis, and in situ squamous cell carcinomas in the UV-B light-irradiated groups. In this context, the association between the permeability barrier impairment and keratinocyte hyperproliferation might be considered a new target in the management of skin with cutaneous field cancerization. As current therapeutic approaches to actinic keratosis and cutaneous field cancerization only focus on the direct antineoplastic, immunomodulatory, or photodynamic effects of approved topical drugs, this mouse model of skin with cutaneous field cancerization might be helpful for both the identification and screening of potentially new preventive strategies or treatments (e.g., skin barrier therapies). Abstract Chronic ultraviolet B (UV-B) irradiation is known to be one of the most important hazards acting on the skin and poses a risk of developing photoaging, skin with cutaneous field cancerization (CFC), actinic keratosis (AKs), and squamous cell carcinomas (SCCs). Most of the UV-B light is absorbed in the epidermis, affecting the outermost cell layers, the stratum corneum, and the stratum granulosum, which protects against this radiation and tries to maintain the permeability barrier. In the present work, we show an impairment in the transepidermal water loss, stratum corneum hydration, and surface pH after chronic UV-B light exposure in an immunologically intact mouse model (SKH1 aged mice) of skin with CFC. Macroscopic lesions of AKs and SCCs may develop synchronically or over time on the same cutaneous surface due to both the presence of subclinical AKs and in situ SCC, but also the accumulation of different mutations in keratinocytes. Focusing on skin with CFC, yet without the pathological criteria of AKs or SCC, the presence of p53 immunopositive patches (PIPs) within the epidermis is associated with these UV-B-induced mutations. Reactive epidermis to chronic UV-B exposure correlated with a marked hyperkeratotic hyperplasia, hypergranulosis, and induction of keratinocyte hyperproliferation, while expressing an upregulation of filaggrin, loricrin, and involucrin immunostaining. However, incidental AKs and in situ SCC might show neither hypergranulosis nor upregulation of differentiation markers in the upper epidermis. Despite the overexpression of filaggrin, loricrin, involucrin, lipid enzymes, and ATP-binding cassette subfamily A member 12 (ABCA12) after chronic UV-B irradiation, the permeability barrier, stratum corneum hydration, and surface pH were severely compromised in the skin with CFC. We interpret these results as an attempt to restore the permeability barrier homeostasis by the reactive epidermis, which fails due to ultrastructural losses in stratum corneum integrity, higher pH on skin surface, abundant mast cells in the dermis, and the common presence of incidental AKs and in situ SCC. As far as we know, this is the first time that the permeability barrier has been studied in the skin with CFC in a murine model of SCC induced after chronic UV-B irradiation at high doses. The impairment in the permeability barrier and the consequent keratinocyte hyperproliferation in the skin of CFC might play a role in the physiopathology of AKs and SCCs.
Collapse
Affiliation(s)
- Juan Luis Santiago
- Department of Dermatology, University General Hospital, 13004 Ciudad Real, Spain;
- Translational Research Unit, University General Hospital, 13004 Ciudad Real, Spain; (J.R.M.-R.); (M.A.d.l.C.-M.); (C.V.-R.)
| | - Jose Ramon Muñoz-Rodriguez
- Translational Research Unit, University General Hospital, 13004 Ciudad Real, Spain; (J.R.M.-R.); (M.A.d.l.C.-M.); (C.V.-R.)
- Faculty of Medicine, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | | | - Clara Villar-Rodriguez
- Translational Research Unit, University General Hospital, 13004 Ciudad Real, Spain; (J.R.M.-R.); (M.A.d.l.C.-M.); (C.V.-R.)
| | - Lucia Gonzalez-Lopez
- Faculty of Medicine, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain;
- Department of Pathological Anatomy, University General Hospital, 13004 Ciudad Real, Spain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, 02008 Albacete, Spain;
| | - Miriam Nuncia-Cantarero
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.N.-C.); (E.M.G.-M.)
| | - Francisco Javier Redondo-Calvo
- Translational Research Unit, University General Hospital, 13004 Ciudad Real, Spain; (J.R.M.-R.); (M.A.d.l.C.-M.); (C.V.-R.)
- Faculty of Medicine, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain;
- Correspondence: (F.J.R.-C.); (J.M.P.-O.); Tel.: +34-926-278-000 (J.M.P.-O.)
| | - Jose Manuel Perez-Ortiz
- Translational Research Unit, University General Hospital, 13004 Ciudad Real, Spain; (J.R.M.-R.); (M.A.d.l.C.-M.); (C.V.-R.)
- Faculty of Medicine, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain;
- Correspondence: (F.J.R.-C.); (J.M.P.-O.); Tel.: +34-926-278-000 (J.M.P.-O.)
| | - Eva Maria Galan-Moya
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.N.-C.); (E.M.G.-M.)
- Faculty of Nursing, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| |
Collapse
|
6
|
Expression of the E5 Oncoprotein of HPV16 Impacts on the Molecular Profiles of EMT-Related and Differentiation Genes in Ectocervical Low-Grade Lesions. Int J Mol Sci 2021; 22:ijms22126534. [PMID: 34207106 PMCID: PMC8235634 DOI: 10.3390/ijms22126534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Infection with human papillomavirus type 16 (HPV16) is one of the major risk factors for the development of cervical cancer. Our previous studies have demonstrated the involvement of the early oncoprotein E5 of HPV16 (16E5) in the altered isoform switch of fibroblast growth factor receptor 2 (FGFR2) and the consequent expression in human keratinocytes of the mesenchymal FGFR2c isoform, whose aberrant signaling leads to EMT, invasiveness, and dysregulated differentiation. Here, we aimed to establish the possible direct link between these pathological features or the appearance of FGFR2c and the expression of 16E5 in low-grade squamous intraepithelial lesions (LSILs). Molecular analysis showed that the FGFR2c expression displayed a statistically significant positive correlation with that of the viral oncoprotein, whereas the expression values of the epithelial FGR2b variant, as well as those of the differentiation markers keratin 10 (K10), loricrin (LOR) and involucrin (INV), were inversely linked to the 16E5 expression. In contrast, the expression of EMT-related transcription factors Snail1 and ZEB1 overlapped with that of 16E5, becoming a statistically significant positive correlation in the case of Snail2. Parallel analysis performed in human cervical LSIL-derived W12 cells, containing episomal HPV16, revealed that the depletion of 16E5 by siRNA was able to counteract these molecular events, proving to represent an effective strategy to identify the specific role of this viral oncoprotein in determining LSIL oncogenic and more aggressive profiles. Overall, coupling in vitro approaches to the molecular transcript analysis in ectocervical early lesions could significantly contribute to the characterization of specific gene expression profiles prognostic for those LSILs with a greater probability of direct neoplastic progression.
Collapse
|