1
|
Kılıç KD, Garipoğlu G, Çakar B, Uyanıkgil Y, Erbaş O. Antioxidant-Effective Quercetin Through Modulation of Brain Interleukin-13 Mitigates Autistic-Like Behaviors in the Propionic Acid-Induced Autism Model in Rats. J Neuroimmune Pharmacol 2025; 20:36. [PMID: 40220083 PMCID: PMC11993503 DOI: 10.1007/s11481-025-10190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
Overproduction of reactive oxygen species occurs when inflammation induces oxidative stress in macrophages and microglia, leading to a self-sustaining cycle of cellular damage and neuroinflammation. Oxidative stress and neuroinflammation are well-established contributors to the pathophysiology of autism spectrum disorders, which are associated with impaired neuronal function, neuronal loss, and behavioral deficits. Damaged cells, through microglial activation, release additional inflammatory mediators under conditions of oxidative stress, exacerbating neuronal damage. Quercetin, a powerful dietary antioxidant, has been shown to scavenge free radicals, reduce oxidative stress, and inhibit inflammatory pathways. Given these properties, we hypothesize that quercetin may improve learning and social skills in individuals with autism spectrum disorders by alleviating oxidative stress and reducing brain levels of inflammatory cytokines. In this study, an autism model was established in 30 rats by intraperitoneal injection of 250 mg/kg/day propionic acid (PPA) for five days. The study groups were as follows: Group 1: Normal ontrol (n = 10); Group 2: PPA + saline (PPAS, n = 10); Group 3: PPA + Quercetin (PPAQ, n = 10). All treatments were administered for 15 days. At the end of the treatment, histological and biochemical analyses of brain tissue and behavioral tests related to autistic-like behaviors were performed. Malondialdehyde, tumor necrosis factor-alpha, and interleukin-13 levels in brain homogenates were significantly higher in the PPAS group compared to the control group, indicating elevated oxidative stress and inflammation following PPA exposure. The PPAQ group significantly reduced oxidative stress parameters and inflammatory biomarkers, demonstrating its antioxidant and anti-inflammatory effects. This biochemical improvement was accompanied by preserving Purkinje cells and neuronal populations, significantly reduced in the PPAS group. Moreover, quercetin-treated rats exhibited improved social behavior and learning, which were severely impaired in the PPAS group. These findings, when interpreted together, suggest that quercetin exerts its neuroprotective effects by targeting oxidative stress and neuroinflammation, thereby preventing neuronal cell loss and alleviating behavioral deficits associated with autism spectrum disorders.
Collapse
Affiliation(s)
- Kubilay Doğan Kılıç
- Faculty of Medicine, Department of Histology and Embryology, Ege University, İzmir, Türkiye.
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Zentrum München, Munich, Germany.
- Museum Für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.
| | - Gökçen Garipoğlu
- Faculty of Health Sciences, Department of Nutrition and Dietetic, Bahçeşehir University, Istanbul, Türkiye
| | - Burak Çakar
- Faculty of Medicine, Department of Histology and Embryology, İstinye University, İstanbul, Türkiye
| | - Yiğit Uyanıkgil
- Faculty of Medicine, Department of Histology and Embryology, Ege University, İzmir, Türkiye
- Cord Blood Cell - Tissue Research and Application Center, Ege University, İzmir, Türkiye
| | - Oytun Erbaş
- Faculty of Medicine, Biruni Research Center (BAMER), Biruni University, Istanbul, Türkiye
| |
Collapse
|
2
|
Abdul-Razek N, Khalil RG, Abdel-Latif M, Kamel MM, Alhazza IM, Awad EM, Ebaid H, Abuelsaad ASA. Investigating the Tumor-Suppressive, Antioxidant Effects and Molecular Binding Affinity of Quercetin-Loaded Selenium Nanoparticles in Breast Cancer Cells. BIONANOSCIENCE 2025; 15:135. [DOI: 10.1007/s12668-024-01767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/03/2025]
Abstract
AbstractIn 2023, breast cancer is expected to have nearly 2 million new cases, making it the second most common cancer overall and the most prevalent among women. Multidrug resistance limits the effectiveness of chemotherapy; however, quercetin, a natural flavonoid, helps combat this issue. The goal of the current investigation is to determine the impact of a novel composite of quercetin and selenium nanoparticles (SeNPs) on the breast cancer cell lines MDA-MB-231 and MCF-7 in order to enhance quercetin’s tumor-suppressive action and decrease selenium (Se) toxicity. Particle size, zeta potential, FTIR, SEM, UV–VIS spectroscopy, and EDX were used to characterize quercetin-selenium nanoparticles (Que-SeNPs), in addition to evaluation of the antioxidant, apoptotic, and anticancer properties. Moreover, autophagy (Atg-13) protein receptors and PD-1/PD-L1 checkpoint were targeted using molecular docking modeling and molecular dynamics (MD) simulations to assess the interaction stability between Que-SeNPs and three targets: PDL-1, PD-1, and Atg-13HORMA domain. Que-SeNPs, synthesized with quercetin, were stable, semi-spherical (80–117 nm), and had a zeta potential of − 37.8 mV. They enhanced cytotoxicity, antioxidant activity, and apoptosis compared to quercetin alone in MCF-7 and MDA-MB-231 cells. Docking simulations showed strong binding to the PD-1/PD-L1 checkpoint and Atg-13HORMA protein receptors. Moreover, the molecular dynamics simulation revealed that the behavior of the PD-L1 intriguing insights into its structural dynamics, therefore, suggesting a stable phase where the complex is adjusting to the simulation environment. The present data confirmed that the stable formula of Que-SeNPs is cytotoxic, antioxidant, and has a potential activity to increase apoptosis in breast cancer cells, with the potential to inhibit PD-1/PD-L1 and Atg-13 proteins.
Graphical Abstract
Role of Que-SeNPs on breast cancer cells in vitro against two breast cancer cell lines MDA-MB-231 and MCF-7.
Collapse
|
3
|
Verma A, Anwer T, Iqbal M, Gahlot V, Khan R, Sharma M, Akhtar MS. Investigating the cardioprotective potential of quercetin against tacrolimus-induced cardiotoxicity in Wistar rats: A mechanistic insights. Open Med (Wars) 2025; 20:20241130. [PMID: 40028266 PMCID: PMC11868710 DOI: 10.1515/med-2024-1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 03/05/2025] Open
Abstract
Purpose The aim of this research study is to assess the ability of quercetin to protect the heart from the negative consequences of tacrolimus-induced cardiotoxicity. Methods A total of 30 rats were divided into 5 groups. Tacrolimus was used to induce cardiotoxicity, whereas quercetin was employed as a protective agent. Results Tacrolimus administration significantly raised the levels of serum cardiac biomarkers (Lactate dehydrogenase, creatine kinase-myocardial band, and troponin-I) as well as inflammatory biomarkers (tumor necrosis alpha and interleukin 6). The administration of quercetin reduced raised levels of cardiac and inflammatory biomarkers significantly. In addition, treatment with tacrolimus resulted in higher malondialdehyde (MDA) (lipid peroxidation marker) levels and falling in the levels of reduced glutathione (GSH) as well as antioxidant enzymes such as superoxide dismutase (SOD), glutathione reductase (GR), and catalase (CAT). Quercetin treatment significantly reduced MDA levels and increased GSH and antioxidant enzyme (SOD, GR, and CAT) levels. Moreover, the tacrolimus-administered group exhibited histological changes in cardiac tissue cited as vacuole formation, large and uncondensed nucleus, and cardiomyocyte hypertrophy. The quercetin treatment reduced the inflammatory cell infiltration in cardiac tissue and thus reduced vacuole formation and hypertrophy. Conclusions The outcome showed quercetin's cardioprotective potential against tacrolimus-administered cardiotoxicity. Consequently, it is concluded that quercetin may be used as add-on therapy with tacrolimus to reduce cardiac adverse effects.
Collapse
Affiliation(s)
- Ankit Verma
- HIMT College of Pharmacy, Dr. A.P.J Abdul Kalam Technical University (AKTU), Knowledge Park 1, Greater Noida, Gautam Budh Nagar, 201310, U.P, India
| | - Tarique Anwer
- HIMT College of Pharmacy, Dr. A.P.J Abdul Kalam Technical University (AKTU), Knowledge Park 1, Greater Noida, Gautam Budh Nagar, 201310, U.P, India
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Vinod Gahlot
- HIMT College of Pharmacy, Dr. A.P.J Abdul Kalam Technical University (AKTU), Knowledge Park 1, Greater Noida, Gautam Budh Nagar, 201310, U.P, India
| | - Roshi Khan
- HIMT College of Pharmacy, Dr. A.P.J Abdul Kalam Technical University (AKTU), Knowledge Park 1, Greater Noida, Gautam Budh Nagar, 201310, U.P, India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | | |
Collapse
|
4
|
Tanase Apetroaei V, Istrati DI, Vizireanu C. Plant-Derived Compounds in Hemp Seeds ( Cannabis sativa L.): Extraction, Identification and Bioactivity-A Review. Molecules 2024; 30:124. [PMID: 39795183 PMCID: PMC11722424 DOI: 10.3390/molecules30010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
The growing demand for plant-based protein and natural food ingredients has further fueled interest in exploring hemp seeds (Cannabis sativa L.) as a sustainable source of and nutrition. In addition to the content of proteins and healthy fats (linoleic acid and alpha-linolenic acid), hemp seeds are rich in phytochemical compounds, especially terpenoids, polyphenols, and phytosterols, which contribute to their bioactive properties. Scientific studies have shown that these compounds possess significant antioxidant, antimicrobial, and anti-inflammatory effects, making hemp seeds a promising ingredient for promoting health. Since THC (tetrahydrocannabinol) and CBD (cannabidiol) are found only in traces, hemp seeds can be used in food applications because the psychoactive effects associated with cannabis are avoided. Therefore, the present article reviews the scientific literature on traditional and modern extraction methods for obtaining active substances that meet food safety standards, enabling the transformation of conventional foods into functional foods that provide additional health benefits and promote a balanced and sustainable diet. Also, the identification methods of biologically active compounds extracted from hemp seeds and their bioactivity were evaluated. Mechanical pressing extraction, steam distillation, solvent-based methods (Soxhlet, maceration), and advanced techniques such as microwave-assisted and supercritical fluid extraction were evaluated. Identification methods such as high-performance liquid chromatography (HPLC) and mass spectrometry (MS) allowed for detailed chemical profiling of cannabinoids, terpenes, and phenolic substances. Optimizing extraction parameters, including solvent type, temperature, and time, is crucial for maximizing yield and purity, offering the potential for developing value-added foods with health benefits.
Collapse
Affiliation(s)
| | - Daniela Ionela Istrati
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (V.T.A.); (C.V.)
| | | |
Collapse
|
5
|
Mahmoud MM, El-Batran SA, Hegazy R, El-Sayed WM. Taurine and enzymatically modified isoquercitrin protected against methotrexate-induced deteriorations in the conductivity and rhythmicity of the heart in rats: Antioxidant, anti-inflammatory, and histological architecture approach. J Appl Toxicol 2024; 44:1924-1935. [PMID: 39135265 DOI: 10.1002/jat.4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 10/06/2024]
Abstract
Cardiotoxicity is one of the most devastating complications of cancer treatment by methotrexate (MTX). The present study aimed to investigate the potential anti-cardiotoxic efficacy of taurine (Tau) and enzymatically modified isoquercitrin (EMIQ) alone or combined against MTX-induced cardiotoxicity in adult male rats. A total of 36 rats were randomly divided into six groups (six animals each): control, MTX (a single i.p. dose of 20 mg/kg), EMIQ + MTX (26 mg/kg of EMIQ, p.o. for 16 days), Tau + MTX (500 mg/kg of Tau, p.o. for 16 days), EMIQ + Tau + MTX at the same previous doses, and (EMIQ + Tau)½ + MTX. MTX reduced the percentage of body weight change, the expression of dihydrofolate reductase (DHFR) and folypolyglutamyl synthetase (FPGS), the cleaved tumor necrosis factor alpha (TNF-α) level in the cardiac tissue, and the elevated serum TNF-α level. MTX extensively deteriorated the electrocardiography (ECG), inducing tachycardia with shortening of the time intervals between successive heartbeats (R-R interval), associated with elongation of ventricular depolarization (QRS interval), and the corrected total time for ventricular de- and repolarization (QTc) duration. Treatment with MTX resulted in a significant reduction in atrial depolarization (P amplitude) and rapid repolarization (T amplitude) and a significant elevation in plateau phase (ST height). MTX treatment resulted in swelling of cardiomyocytes with extensive vacuolization of sarcoplasm with numerous variably sized vacuoles in addition to apoptotic cells. Tau and EMIQ protected against MTX-induced deteriorations in the conductivity and rhythmicity of the heart through antioxidative, anti-inflammatory, and antiapoptotic activities. Treatment with tau and EMIQ combined at high or low doses offered superior protection to the heart than using each agent alone.
Collapse
Affiliation(s)
- Marwa M Mahmoud
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Seham A El-Batran
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Rehab Hegazy
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
7
|
Almuhanna Y, Alshalani A, AlSudais H, Alanazi F, Alissa M, Asad M, Joseph B. Antibacterial, Antibiofilm, and Wound Healing Activities of Rutin and Quercetin and Their Interaction with Gentamicin on Excision Wounds in Diabetic Mice. BIOLOGY 2024; 13:676. [PMID: 39336103 PMCID: PMC11429020 DOI: 10.3390/biology13090676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Phytochemicals are effective and are gaining attention in fighting against drug-resistant bacterial strains. In the present study, rutin and quercetin were tested for antibacterial, antibiofilm, and wound healing activities on excision wounds infected with MDR-P. aeruginosa in diabetic mice. Antibacterial and antibiofilm activities were studied in vitro using broth dilution assay and crystal violet assay, respectively. These phytochemicals were tested alone for wound-healing activities at different concentrations (0.5% and 1% in ointment base) and in combination with gentamicin to evaluate any additive effects. Rutin and quercetin demonstrated effectiveness against MDR-P. aeruginosa at higher concentrations. Both phytochemicals inhibited biofilm formation in vitro and contributed to the healing of diabetic wounds by eradicating biofilm in the wounded tissue. Rutin at a low concentration (0.5%) had a lesser effect on reducing the epithelization period and regeneration of the epithelial layer compared to quercetin. When combined with gentamicin, quercetin (1%) displayed the maximum effect on epithelium regeneration, followed by rutin (1%) in combination with gentamicin. Both phytochemicals were found to be more effective in controlling biofilm and wound-healing activities when used as an additive with gentamicin. The study supports the traditional use of phytochemicals with antibacterial, antibiofilm, and wound-healing activities in managing diabetic infections.
Collapse
Affiliation(s)
- Yasir Almuhanna
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Abdulrahman Alshalani
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia; (A.A.); (H.A.)
| | - Hamood AlSudais
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia; (A.A.); (H.A.)
| | - Fuad Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohammed Asad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Babu Joseph
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia;
| |
Collapse
|
8
|
Zhou X, Wang H, Huang M, Chen J, Chen J, Cheng H, Ye X, Wang W, Liu D. Role of bitter contributors and bitter taste receptors: a comprehensive review of their sources, functions and future development. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:1806-1824. [DOI: 10.26599/fshw.2022.9250151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Ren Y, Meyer G, Anderson AT, Lauber KM, Gallucci JC, Gao G, Kinghorn AD. Development of Potential Therapeutic Agents from Black Elderberries (the Fruits of Sambucus nigra L.). Molecules 2024; 29:2971. [PMID: 38998923 PMCID: PMC11243002 DOI: 10.3390/molecules29132971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Elderberry (Sambucus nigra L.) is a widespread deciduous shrub, of which the fruits (elderberries) are used in the food industry to produce different types of dietary supplement products. These berries have been found to show multiple bioactivities, including antidiabetic, anti-infective, antineoplastic, anti-obesity, and antioxidant activities. An elderberry extract product, Sambucol®, has also been used clinically for the treatment of viral respiratory infections. As the major components, phenolic compounds, such as simple phenolic acids, anthocyanins and other flavonoids, and tannins, show promising pharmacological effects that could account for the bioactivities observed for elderberries. Based on these components, salicylic acid and its acetate derivative, aspirin, have long been used for the treatment of different disorders. Dapagliflozin, an FDA-approved antidiabetic drug, has been developed based on the conclusions obtained from a structure-activity relationship study for a simple hydrolyzable tannin, β-pentagalloylglucoside (β-PGG). Thus, the present review focuses on the development of therapeutic agents from elderberries and their small-molecule secondary metabolites. It is hoped that this contribution will support future investigations on elderberries.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (G.M.); (A.T.A.); (K.M.L.); (J.C.G.)
| | - Gunnar Meyer
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (G.M.); (A.T.A.); (K.M.L.); (J.C.G.)
| | - Andrew T. Anderson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (G.M.); (A.T.A.); (K.M.L.); (J.C.G.)
| | - Kaitlyn M. Lauber
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (G.M.); (A.T.A.); (K.M.L.); (J.C.G.)
| | - Judith C. Gallucci
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (G.M.); (A.T.A.); (K.M.L.); (J.C.G.)
| | - Gary Gao
- OSU South Centers, The Ohio State University, Piketon, OH 45661, USA;
- Department of Horticulture and Crop Science, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Alan Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (G.M.); (A.T.A.); (K.M.L.); (J.C.G.)
| |
Collapse
|
10
|
Emran TB, Eva TA, Zehravi M, Islam F, Khan J, Kareemulla S, Arjun UVNV, Balakrishnan A, Taru PP, Nainu F, Salim E, Rab SO, Nafady MH, Wilairatana P, Park MN, Kim B. Polyphenols as Therapeutics in Respiratory Diseases: Moving from Preclinical Evidence to Potential Clinical Applications. Int J Biol Sci 2024; 20:3236-3256. [PMID: 38904027 PMCID: PMC11186353 DOI: 10.7150/ijbs.93875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/04/2024] [Indexed: 06/22/2024] Open
Abstract
Respiratory diseases are the most common and severe health complication and a leading cause of death worldwide. Despite breakthroughs in diagnosis and treatment, few safe and effective therapeutics have been reported. Phytochemicals are gaining popularity due to their beneficial effects and low toxicity. Polyphenols are secondary metabolites with high molecular weights found at high levels in natural food sources such as fruits, vegetables, grains, and citrus seeds. Over recent decades, polyphenols and their beneficial effects on human health have been the subject of intense research, with notable successes in preventing major chronic non-communicable diseases. Many respiratory syndromes can be treated effectively with polyphenolic supplements, including acute lung damage, pulmonary fibrosis, asthma, pulmonary hypertension, and lung cancer. This review summarizes the role of polyphenols in respiratory conditions with sufficient experimental data, highlights polyphenols with beneficial effects for each, and identifies those with therapeutic potential and their underlying mechanisms. Moreover, clinical studies and future research opportunities in this area are discussed.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Taslima Akter Eva
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Shaik Kareemulla
- Department of Pharmacy Practice, M. M. College of Pharmacy (Maharishi Markandeshwar Deemed University), Mullana-Ambala, Haryana 133207, India
| | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology, and Advanced Studies (VISTAS), Tamil Nadu, India
| | - Anitha Balakrishnan
- Department of Pharmaceutics, GRT Institute of Pharmaceutical Education and Research, Tiruttani, India
| | - Poonam Popatrao Taru
- Department of Pharmacognosy, School of Pharmacy, Vishwakarma University, Kondhwa, Pune, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Emil Salim
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea
| |
Collapse
|
11
|
Zamanian MY, Soltani A, Khodarahmi Z, Alameri AA, Alwan AMR, Ramírez-Coronel AA, Obaid RF, Abosaooda M, Heidari M, Golmohammadi M, Anoush M. Targeting Nrf2 signaling pathway by quercetin in the prevention and treatment of neurological disorders: An overview and update on new developments. Fundam Clin Pharmacol 2023; 37:1050-1064. [PMID: 37259891 DOI: 10.1111/fcp.12926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Neurological disorders (NLDs) are widely acknowledged as a significant public health concern worldwide. Stroke, Alzheimer's disease (AD), and traumatic brain injury (TBI) are three of these disorders that have sparked major study attention. Neurological dysfunction, protein buildup, oxidation and neuronal injury, and aberrant mitochondria are all prevalent neuropathological hallmarks of these disorders. The signaling cascade of nuclear factor erythroid 2 related factor 2 (Nrf2) shares all of them as a common target. Several studies have found that overexpression of Nrf2 is a promising treatment method in NLDs. Effective treatment of these disorders continues to be a universal concern regardless of various medicines. In order to treat a variety of neurological problems, organic remedies may provide an alternative treatment. It has been demonstrated that polyphenols like quercetin (Que) offer considerable capabilities for treating NLDs. One of Que's greatest key targets, Nrf2, has the capacity to control the production of a number of cytoprotective enzymes that exhibit neuroprotective, detoxifying, and antioxidative effects. Additionally, Que enhanced the expression of Nrf2 and inhibited alterations in the shape and death of neurons in the hippocampus. OBJECTIVE In this review, we have focused on Que's medicinal prospects as a neuroprotective drug. METHODS PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS The findings of this research demonstrate that (1) Que protected the blood-brain barrier via stimulating Nrf2 in animal stroke, which alleviated ischemic reperfusion and motor dysfunction. (2) By triggering the Nrf2 pathway, Que reduced the neuroinflammation and oxidative damage brought on by TBI in the cortex. (3) In an experimental model of AD, Que enhanced cognitive function by decreasing A1-4, antioxidant activity, and Nrf2 levels in the brain. CONCLUSION We discuss recent research on Que-mediated Nrf2 expression in the management of several NLDs in this paper.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afsaneh Soltani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Khodarahmi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Athemar M R Alwan
- Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Doctorate in Psychology, University of Palermo, Buenos Aires, Argentina
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - Munther Abosaooda
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Anoush
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
12
|
Bappi MH, Prottay AAS, Kamli H, Sonia FA, Mia MN, Akbor MS, Hossen MM, Awadallah S, Mubarak MS, Islam MT. Quercetin Antagonizes the Sedative Effects of Linalool, Possibly through the GABAergic Interaction Pathway. Molecules 2023; 28:5616. [PMID: 37513487 PMCID: PMC10384931 DOI: 10.3390/molecules28145616] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Sedatives promote calmness or sleepiness during surgery or severely stressful events. In addition, depression is a mental health issue that negatively affects emotional well-being. A group of drugs called anti-depressants is used to treat major depressive illnesses. The aim of the present work was to evaluate the effects of quercetin (QUR) and linalool (LIN) on thiopental sodium (TS)-induced sleeping mice and to investigate the combined effects of these compounds using a conventional co-treatment strategy and in silico studies. For this, the TS-induced sleeping mice were monitored to compare the occurrence, latency, and duration of the sleep-in response to QUR (10, 25, 50 mg/kg), LIN (10, 25, 50 mg/kg), and diazepam (DZP, 3 mg/kg, i.p.). Moreover, an in silico investigation was undertaken to assess this study's putative modulatory sedation mechanism. For this, we observed the ability of test and standard medications to interact with various gamma-aminobutyric acid A receptor (GABAA) subunits. Results revealed that QUR and LIN cause dose-dependent antidepressant-like and sedative-like effects in animals, respectively. In addition, QUR-50 mg/kg and LIN-50 mg/kg and/or DZP-3 mg/kg combined were associated with an increased latency period and reduced sleeping times in animals. Results of the in silico studies demonstrated that QUR has better binding interaction with GABAA α3, β1, and γ2 subunits when compared with DZP, whereas LIN showed moderate affinity with the GABAA receptor. Taken together, the sleep duration of LIN and DZP is opposed by QUR in TS-induced sleeping mice, suggesting that QUR may be responsible for providing sedation-antagonizing effects through the GABAergic interaction pathway.
Collapse
Affiliation(s)
- Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Nayem Mia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Munnaf Hossen
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
13
|
Fawzy MA, Nasr G, Ali FEM, Fathy M. Quercetin potentiates the hepatoprotective effect of sildenafil and/or pentoxifylline against intrahepatic cholestasis: Role of Nrf2/ARE, TLR4/NF-κB, and NLRP3/IL-1β signaling pathways. Life Sci 2023; 314:121343. [PMID: 36592787 DOI: 10.1016/j.lfs.2022.121343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
AIM Intrahepatic cholestasis is a common pathological condition of several types of liver disorders. In this study, we aimed to investigate the regulatory effects of quercetin (QU) on selected phosphodiesterase inhibitors against alpha-naphthyl isothiocyanate (ANIT)-induced acute intrahepatic cholestasis. METHODS Cholestasis was induced in Wistar albino rats by ANIT as a single dose (60 mg/kg; P·O.). QU (50 mg/kg, daily, P·O.), sildenafil (Sild; 10 mg/kg, twice daily, P·O.), and pentoxifylline (PTX; 50 mg/kg, daily, P.O.) were evaluated either alone or in combinations for 10 days for their antioxidant, anti-inflammatory, and anti-pyroptotic effects. RESULTS ANIT produced a prominent intrahepatic cholestasis as evidenced by a significant alteration in liver functions, histological structure, inflammatory response, and oxidative stress biomarkers. Furthermore, up-regulation of NF-κB-p65, TLR4, NLRP3, cleaved caspase-1, IKK-β, and IL-1β concurrently with down-regulation of Nrf-2, HO-1, and PPAR-γ expressions were observed after ANIT. QU, Sild, or PTX treatment significantly alleviated the disturbance induced by ANIT. These findings were further supported by the improvement in histopathological features. Additionally, co-administration of QU with Sild or PTX significantly improved liver defects due to ANIT as compared to the individual drugs. SIGNIFICANCE Combined QU with Sild or PTX exhibited promising hepatoprotective effects and anti-cholestatic properties through modulation of Nrf2/ARE, TLR4/NF- κB, and NLRP3/IL-1β signaling pathways.
Collapse
Affiliation(s)
- Michael A Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Gehad Nasr
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
14
|
Gurung P, Shrestha R, Lim J, Thapa Magar TB, Kim HH, Kim YW. Euonymus alatus Twig Extract Protects against Scopolamine-Induced Changes in Brain and Brain-Derived Cells via Cholinergic and BDNF Pathways. Nutrients 2022; 15:nu15010128. [PMID: 36615789 PMCID: PMC9823662 DOI: 10.3390/nu15010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
In the current study, the therapeutic and preventive effects of Euonymus alatus (EA) twig extract were investigated in a mouse model of cognitive deficit and B35 cells. Twig extract 1 was extracted with 70% ethanol and later twig extract 2 was extracted through liquid-liquid extraction with 70% ethanol and hexane. EA twig 2 (300 mg/kg) along with the standard drug donepezil (5 mg/kg) were orally administered to the mice for 34 days. Scopolamine was given intraperitoneally for 7 days. Administration of EA twig extract 2 significantly improved the passive avoidance test (PAT) in mice. EA twigs extract also restored the scopolamine-reduced brain-derived neurotrophic factor (BDNF)/extracellular regulated kinase (ERK)/cyclic AMP responsive element binding protein (CREB) signaling in B35 cells and the mouse hippocampus. In addition, EA twig extract significantly inhibited the acetylcholine esterase (AChE) activity in B35 cells in a dose-dependent manner. Chromatography and ESI MS analysis of EA twig extract revealed the presence of flavonoids; epicatechin, taxifolin, aromadendrin, and naringenin with catechin being the most abundant. These flavonoids exerted protective effects alone and had the possibility of synergistic effects in combination. Our work unmasks the ameliorating effect of EA twig extract 2 on scopolamine-associated cognitive impairments through the restoration of cholinergic systems and the BDNF/ERK/CREB pathway.
Collapse
Affiliation(s)
- Pallavi Gurung
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
| | - Rajeev Shrestha
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
| | - Junmo Lim
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
| | | | - Han-Hyuk Kim
- Medical Convergence Textile Center, Gyeongbuk Technopark, Gyeongsan 38412, Republic of Korea
| | - Yong-Wan Kim
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
- Correspondence:
| |
Collapse
|
15
|
Shabir I, Kumar Pandey V, Shams R, Dar AH, Dash KK, Khan SA, Bashir I, Jeevarathinam G, Rusu AV, Esatbeyoglu T, Pandiselvam R. Promising bioactive properties of quercetin for potential food applications and health benefits: A review. Front Nutr 2022; 9:999752. [PMID: 36532555 PMCID: PMC9748429 DOI: 10.3389/fnut.2022.999752] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 07/22/2023] Open
Abstract
Naturally occurring phytochemicals with promising biological properties are quercetin and its derivatives. Quercetin has been thoroughly studied for its antidiabetic, antibacterial, anti-inflammatory, anti-Alzheimer's, anti-arthritic, antioxidant, cardiovascular, and wound-healing properties. Anticancer activity of quercetin against cancer cell lines has also recently been revealed. The majority of the Western diet contains quercetin and its derivatives, therefore consuming them as part of a meal or as a food supplement may be sufficient for people to take advantage of their preventive effects. Bioavailability-based drug-delivery systems of quercetin have been heavily studied. Fruits, seeds, vegetables, bracken fern, coffee, tea, and other plants all contain quercetin, as do natural colors. One naturally occurring antioxidant is quercetin, whose anticancer effects have been discussed in detail. It has several properties that could make it an effective anti-cancer agent. Numerous researches have shown that quercetin plays a substantial part in the suppression of cancer cells in the breast, colon, prostate, ovary, endometrial, and lung tumors. The current study includes a concise explanation of quercetin's action mechanism and potential health applications.
Collapse
Affiliation(s)
- Irtiqa Shabir
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Pulwama, India
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur, Uttar Pradesh, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Pulwama, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET), Malda, West Bengal, India
| | - Shafat Ahmad Khan
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Pulwama, India
| | - Iqra Bashir
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Kashmir, India
| | - G. Jeevarathinam
- Department of Food Technology, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - R. Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, Kerala, India
| |
Collapse
|
16
|
Peixoto FB, Raimundini Aranha AC, Nardino DA, Defendi RO, Suzuki RM. Extraction and encapsulation of bioactive compounds: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fernanda Barroso Peixoto
- Chemical Engineering Graduate Program (PPGEQ‐AP) Federal Technological University of Paraná (UTFPR) Apucarana Brazil
| | | | | | - Rafael Oliveira Defendi
- Chemical Engineering Graduate Program (PPGEQ‐AP) Federal Technological University of Paraná (UTFPR) Apucarana Brazil
| | - Rúbia Michele Suzuki
- Chemical Engineering Graduate Program (PPGEQ‐AP) Federal Technological University of Paraná (UTFPR) Apucarana Brazil
| |
Collapse
|
17
|
The Beneficial Effect of a Healthy Dietary Pattern on Androgen Deprivation Therapy-Related Metabolic Abnormalities in Patients with Prostate Cancer: A Meta-Analysis Based on Randomized Controlled Trials and Systematic Review. Metabolites 2022; 12:metabo12100969. [PMID: 36295871 PMCID: PMC9611951 DOI: 10.3390/metabo12100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic abnormalities as side effects of androgen-deprivation therapy (ADT) can accelerate progression of prostate cancer (PCa) and increase risks of cardiovascular diseases. A healthy dietary pattern (DP) plays an important role in regulating glycolipid metabolism, while evidence about DP on ADT-related metabolic abnormalities is still controversial. To explore the effect of DP on metabolic outcomes in PCa patients with ADT, PubMed, Embase, Cochrane, and CINAHL were searched from inception to 10 September 2022. Risk of biases was evaluated through Cochrane Collaboration’s Tool. If heterogeneity was low, the fixed-effects model was carried out; otherwise, the random-effects model was used. Data were determined by calculating mean difference (MD) or standardized MD (SMD) with 95% confidence intervals (CIs). Nine studies involving 421 patients were included. The results showed that healthy DP significantly improved glycated hemoglobin (MD: −0.13; 95% CI: −0.24, −0.02; p = 0.020), body mass index (MD: −1.02; 95% CI: −1.29, −0.75; p < 0.001), body fat mass (MD: −1.78; 95% CI: −2.58, −0.97; p < 0.001), triglyceride (MD: −0.28; 95% CI: −0.51, −0.04; p = 0.020), systolic blood pressure (MD: −6.30; 95% CI: −11.15, −1.44; p = 0.010), and diastolic blood pressure (MD: −2.94; 95% CI: −5.63, −0.25; p = 0.030), although its beneficial effects on other glycolipid metabolic indicators were not found. Additionally, a healthy DP also lowered the level of PSA (MD: −1.79; 95% CI: −2.25, −1.33; p < 0.001). The meta-analysis demonstrated that a healthy DP could improve ADT-related metabolic abnormalities and be worthy of being recommended for PCa patients with ADT.
Collapse
|
18
|
Simonetti G, Buiarelli F, Bernardini F, Filippo PD, Riccardi C, Pomata D. Profile of free and conjugated quercetin content in different Italian wines. Food Chem 2022; 382:132377. [PMID: 35158269 DOI: 10.1016/j.foodchem.2022.132377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 11/04/2022]
Abstract
Quercetin and its structural derivatives are natural compounds belonging to the flavonoid class, widely distributed in plants. Beneficial physiological activities have been attributed to them, but some require deeper investigation. In this paper the content of quercetin and five analogues (quercetin-3-glucoside, quercetin-3-rutinoside, quercetin-3-ramnoside, quercetin-3-arabinoglucoside, 4'-O-methylquercetin) were determined by HPLC-ESI-MS/MS in wines made of different varieties of red and white vines. The aim was a comparative study focusing on quercetin and on the contribution of related compounds in twenty wines coming from different part of Italy. Wines produced from Sangiovese and Nero d'Avola, monovarietal grapes, were richest in quercetin compounds and our results were compared to our previous study and to other investigations. The proposed method resulted simple, fast, economical, and suitable for the analysis of quercetin analogues without the need of hydrolysis and falls in the optic of a 360° characterization of active wine compounds, with nutraceutical properties.
Collapse
Affiliation(s)
- Giulia Simonetti
- Department of Chemistry University "La Sapienza", P. le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Buiarelli
- Department of Chemistry University "La Sapienza", P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Flaminia Bernardini
- Department of Economics University "La Sapienza", Via del Castro Laurenziano 9, 00161 Rome Italy
| | | | | | | |
Collapse
|
19
|
Delving the Role of Caralluma fimbriata: An Edible Wild Plant to Mitigate the Biomarkers of Metabolic Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5720372. [PMID: 35770046 PMCID: PMC9236770 DOI: 10.1155/2022/5720372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 12/20/2022]
Abstract
Metabolic syndrome (MS), commonly known as syndrome X or insulin resistance syndrome, is a collection of risk factors for cardiovascular diseases and type II diabetes. MS is believed to impact over a billion individuals worldwide. It is a medical condition defined by visceral obesity, insulin resistance, high blood pressure, and abnormal cholesterol levels, according to the World Health Organization. The current dietary trends are more focused on the use of functional foods and nutraceuticals that are well known for their preventive and curative role against such pathological disorders. Caralluma fimbriata is one such medicinal plant that is gaining popularity. It is a wild, edible, succulent roadside shrub with cactus-like leaves. Besides its main nutrient contents, various bioactive constituents have been identified and linked with positive health outcomes of appetite-suppressing, hypolipidemic, antioxidant, hepatoprotective, and anticancer potentials. Hence, such properties make C. fimbriata an invaluable plant against MS. The current review compiles recent available literature on C. fimbriata's nutritional composition, safety parameters, and therapeutic potential for MS. Summarized data in this review reveals that C. fimbriata remains a neglected plant with limited food and therapeutic applications. Yet various studies explored here do prove its positive health-ameliorating outcomes.
Collapse
|
20
|
Pilařová V, Kuda L, Vlčková HK, Nováková L, Gupta S, Kulkarni M, Švec F, Van Staden J, Doležal K. Carbon dioxide expanded liquid: an effective solvent for the extraction of quercetin from South African medicinal plants. PLANT METHODS 2022; 18:87. [PMID: 35739596 PMCID: PMC9219150 DOI: 10.1186/s13007-022-00919-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Quercetin is one of the most important bioflavonoids having positive effects on the biological processes and human health. Typically, it is extracted from plant matrices using conventional methods such as maceration, sonication, infusion, and Soxhlet extraction with high solvent consumption. Our study aimed to optimize the environmentally friendly carbon dioxide-based method for the extraction of quercetin from quince fruit with an emphasis on extraction yield, repeatability, and short extraction time. RESULTS A two-step design of experiments was used for the optimization of the key parameters affecting physicochemical properties, including CO2/co-solvent ratio, co-solvent type, temperature, and pressure. Finally, gas expanded liquid combining CO2/ethanol/H2O in a ratio of 10/81/9 (v/v/v) provided the best extraction yield. Extraction temperature 66 °C and pressure 22.3 MPa were the most suitable conditions after careful optimization, although both parameters did not significantly affect the process. It was confirmed by experiments in various pressure and temperature conditions and statistical comparison of obtained data. The optimized extraction procedure at a flow rate of 3 mL/min took 30 min. The repeatability of the extraction method exhibited an RSD of 20.8%. CONCLUSIONS The optimized procedure enabled very fast extraction in 30 min using environmentally friendly solvents and it was successfully applied to 16 different plant samples, including 14 bulbs and 2 fruits from South Africa. The quercetin content in extracts was quantified using ultra-high performance liquid chromatography (UHPLC) with tandem mass spectrometry. UHPLC hyphenated with high-resolution mass spectrometry was used to confirm chemical identity of quercetin in the analyzed samples. We quantified quercetin in 11 samples of all 16 tested plants. The quercetin was found in Agapanthus praecox from the Amaryllidaceae family and its presence in this specie was reported for the first time.
Collapse
Affiliation(s)
- Veronika Pilařová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| | - Lukáš Kuda
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Hana Kočová Vlčková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Shubhpriya Gupta
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Manoj Kulkarni
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Karel Doležal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| |
Collapse
|
21
|
The Therapeutic and Prophylactic Potential of Quercetin against COVID-19: An Outlook on the Clinical Studies, Inventive Compositions, and Patent Literature. Antioxidants (Basel) 2022; 11:antiox11050876. [PMID: 35624740 PMCID: PMC9137692 DOI: 10.3390/antiox11050876] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
Quercetin is a phenolic flavonol compound with established antioxidant, anti-inflammatory, and immuno-stimulant properties. Recent studies demonstrate the potential of quercetin against COVID-19. This article highlighted the prophylactic/therapeutic potential of quercetin against COVID-19 in view of its clinical studies, inventions, and patents. The literature for the subject matter was collected utilizing different databases, including PubMed, Sci-Finder, Espacenet, Patentscope, and USPTO. Clinical studies expose the potential of quercetin monotherapy, and also its combination therapy with other compounds, including zinc, vitamin C, curcumin, vitamin D3, masitinib, hydroxychloroquine, azithromycin, and ivermectin. The patent literature also examines claims that quercetin containing nutraceuticals, pharmaceuticals, and dietary supplements, alone or in combination with other drugs/compounds, including favipiravir, remdesivir, molnupiravir, navitoclax, dasatinib, disulfiram, rucaparib, tamarixin, iota-carrageenan, and various herbal extracts (aloe, poria, rosemary, and sphagnum) has potential for use against COVID-19. The literature reveals that quercetin exhibits anti-COVID-19 activity because of its inhibitory effect on the expression of the human ACE2 receptors and the enzymes of SARS-CoV-2 (MPro, PLPro, and RdRp). The USFDA designated quercetin as a “Generally Recognized as Safe” substance for use in the food and beverage industries. It is also an inexpensive and readily available compound. These facts increase the possibility and foreseeability of making novel and economical drug combinations containing quercetin to prevent/treat COVID-19. Quercetin is an acidic compound and shows metabolic interaction with some antivirals, antibiotics, and anti-inflammatory agents. Therefore, the physicochemical and metabolic drug interactions between quercetin and the combined drugs/compounds must be better understood before developing new compositions.
Collapse
|
22
|
Kozłowska A, Szostak-Węgierek D. Targeting Cardiovascular Diseases by Flavonols: An Update. Nutrients 2022; 14:1439. [PMID: 35406050 PMCID: PMC9003055 DOI: 10.3390/nu14071439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Flavonols are one of the most plentiful flavonoid subclasses found in natural products and are extensively used as dietary supplements. Numerous in vitro and in vivo studies have shown the cardioprotective properties of flavonols, especially quercetin. This group of substances exerts positive impacts primarily due to their antiatherogenic, antithrombotic, and antioxidant activities. The potential of flavonols to promote vasodilation and regulation of apoptotic processes in the endothelium are other beneficial effects on the cardiovascular system. Despite promising experimental findings, randomized controlled trials and meta-analyses have yielded inconsistent results on the influence of these substances on human cardiovascular parameters. Thus, this review aims to summarize the most recent clinical data on the intake of these substances and their effects on the cardiovascular system. The present study will help clinicians and other healthcare workers understand the value of flavonol supplementation in both subjects at risk for cardiovascular disease and patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Aleksandra Kozłowska
- Department of Social Medicine and Public Health, Medical University of Warsaw, Oczki Str. 3, 02-007 Warsaw, Poland;
| | - Dorota Szostak-Węgierek
- Department of Clinical Dietetics, Faculty of Health Sciences, Medical University of Warsaw, E Ciołka Str. 27, 01-445 Warsaw, Poland
| |
Collapse
|
23
|
Madhav H, Jameel E, Rehan M, Hoda N. Recent advancements in chromone as a privileged scaffold towards the development of small molecules for neurodegenerative therapeutics. RSC Med Chem 2022; 13:258-279. [PMID: 35434628 PMCID: PMC8942243 DOI: 10.1039/d1md00394a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/27/2022] [Indexed: 02/02/2023] Open
Abstract
Neurodegenerative disorders, i.e., Alzheimer's or Parkinson's disease, involve progressive degeneration of the central nervous system, resulting in memory loss and cognitive impairment. The intensification of neurodegenerative research in recent years put some molecules into clinical trials, but still there is an urgent need to develop effective therapeutic molecules to combat these diseases. Chromone is a well-identified privileged structure for the design of well-diversified therapeutic molecules of potential pharmacological interest, particularly in the field of neurodegeneration. In this short review, we focused on the recent advancements and developments of chromones for neurodegenerative therapeutics. Different small molecules were reviewed as multi-target-directed ligands (MTDLs) with potential inhibition of AChE, BuChE, MAO-A, MAO-B, Aβ plaque formation and aggregation. Recently developed MTDLs emphasized that the chromone scaffold has the potential to develop new molecules for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hari Madhav
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia IslamiaNew Delhi110025India
| | - Ehtesham Jameel
- College of Pharmaceutical Sciences, Zhejiang UniversityHangzhouPR China
| | - Mohammad Rehan
- Max-Planck-Institute für Molekulare Physiologie, Abteilung Chemische BiologieOtto-Hahn-Straße 1144227 DortmundGermany
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia IslamiaNew Delhi110025India
| |
Collapse
|
24
|
Waseem M, Kaushik P, Dutta S, Chakraborty R, Hassan MI, Parvez S. Modulatory Role of Quercetin in Mitochondrial Dysfunction in Titanium Dioxide Nanoparticle-Induced Hepatotoxicity. ACS OMEGA 2022; 7:3192-3202. [PMID: 35128232 PMCID: PMC8811893 DOI: 10.1021/acsomega.1c04740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/25/2021] [Indexed: 05/28/2023]
Abstract
Background : Titanium dioxide (TiO2) nanoparticles are among the largely manmade nanomaterials worldwide and are broadly used as both industrial and user products. The primary target site for several nanoparticles is the liver, including TiO2 nanoparticles (TNPs), exposed directly or indirectly through ingestion of contaminated water, food, or animals and elevated environmental contamination. Oxidative stress is a known facet of nanoparticle-induced toxicity, including TNPs. Mitochondria are potential targets for nanoparticles in several types of toxicity, such as hepatotoxicity. Nevertheless, its causal mechanism is still controversial due to scarcity of literature linking the role of mitochondria-mediated TNP-induced hepatotoxicity. Aim : The objective of the current study was to evaluate the relation of mitochondrial oxidative stress and respiratory chain mechanisms with TNP-induced mitochondrial dysfunction in vitro, and explore the hepatoprotective effect of quercetin (QR), which is a polyphenolic flavonoid abundant in fruits and vegetables with known antioxidant properties, on TNP-induced mitochondrial oxidative stress and disturbance in respiratory chain complex enzymes in the liver of rats. Results: Enzymatic and non-enzymatic antioxidant levels, oxidative stress markers, and mitochondrial complexes were assessed with regard to TNP-induced hepatotoxicity. The depleted lipid peroxidation levels and protein carbonyl content, in mitochondria, induced by TNPs were restored significantly by pretreatment with QR. QR modulated the altered non-enzymatic and enzymatic antioxidants and mitochondrial complex enzymes. Conclusion : Based on the findings, we conclude that QR, which mitigates oxidative stress caused by mitochondrial dysfunction, holds promising capability to potentially diminish TNP-induced adverse effects in the liver.
Collapse
Affiliation(s)
- Mohd Waseem
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Shamita Dutta
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rohan Chakraborty
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Md Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Suhel Parvez
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
25
|
Bhat R. Emerging trends and sustainability challenges in the global agri-food sector. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Caballero S, Mereles L, Burgos-Edwards A, Alvarenga N, Coronel E, Villalba R, Heinichen O. Nutritional and Bioactive Characterization of Sicana odorifera Naudim Vell. Seeds By-Products and Its Potential Hepatoprotective Properties in Swiss Albino Mice. BIOLOGY 2021; 10:1351. [PMID: 34943266 PMCID: PMC8698658 DOI: 10.3390/biology10121351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
The "Kurugua" (Sicana odorifera) is a native fruit that demonstrates attractive nutritional, coloring, flavoring, and antioxidant properties. The main by-products from the processing and consumption of kurugua fruit are epicarp and seeds. In this work, the properties of the seeds of S. odorifera were evaluated. The nutritional composition of the fruit seeds was determined through AOAC official methods and UHPLC-ESI-MS/MS profiling. The antioxidant activities were determined using in vitro methods, and the acute toxicity and hepatoprotective properties were investigated in Swiss albino mice. Quercetin derivatives and cucurbitacins were the main phytochemicals in the seeds' methanolic extract and demonstrated some biological activities. GC-MS analysis revealed the essential fatty acids linolenic and linoleic as the main compounds present in seeds oil. The methanolic extract significantly reduced the serum levels of glutamic-pyruvic transaminase (GPT) and glutamic-oxaloacetic transaminase (GOT) in mice with induced hepatotoxicity (GPT p < 0.05; GOT p < 0.001) at the minor concentration tested (100 mg/kg EMSo). The results suggest that the S. odorifera seeds as by-products show potential use as a source of phytochemicals and in the production of oils with application in food supplements and nutraceuticals. Their integral use could contribute to waste reduction from kurugua fruits processing within the food safety and environmental sustainability framework.
Collapse
Affiliation(s)
| | - Laura Mereles
- Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo P.O. Box 1055, Paraguay; (S.C.); (A.B.-E.); (N.A.); (E.C.); (R.V.)
| | | | | | | | | | - Olga Heinichen
- Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo P.O. Box 1055, Paraguay; (S.C.); (A.B.-E.); (N.A.); (E.C.); (R.V.)
| |
Collapse
|
27
|
Mihailovic V, Katanic Stankovic JS, Selakovic D, Rosic G. An Overview of the Beneficial Role of Antioxidants in the Treatment of Nanoparticle-Induced Toxicities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7244677. [PMID: 34820054 PMCID: PMC8608524 DOI: 10.1155/2021/7244677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
Nanoparticles (NPs) are used in many products and materials for humans such as electronics, in medicine for drug delivery, as biosensors, in biotechnology, and in agriculture, as ingredients in cosmetics and food supplements. Besides that, NPs may display potentially hazardous properties on human health and the environment as a consequence of their abundant use in life nowadays. Hence, there is increased interest of researchers to provide possible therapeutic agents or dietary supplements for the amelioration of NP-induced toxicity. This review summarizes the new findings in the research of the use of antioxidants as supplements for the prevention and alleviation of harmful effects caused by exposure of organisms to NPs. Also, mechanisms involved in the formation of NP-induced oxidative stress and protective mechanisms using different antioxidant substances have also been elaborated. This review also highlights the potential of naturally occurring antioxidants for the enhancement of the antioxidant defense systems in the prevention and mitigation of organism damage caused by NP-induced oxidative stress. Based on the presented results of the most recent studies, it may be concluded that the role of antioxidants in the prevention and treatment of nanoparticle-induced toxicity is unimpeachable. This is particularly important in terms of oxidative stress suppression.
Collapse
Affiliation(s)
- Vladimir Mihailovic
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Jelena S. Katanic Stankovic
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|
28
|
Mihailovic V, Katanic Stankovic JS, Selakovic D, Rosic G. An Overview of the Beneficial Role of Antioxidants in the Treatment of Nanoparticle-Induced Toxicities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: https://doi.org/10.1155/2021/7244677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nanoparticles (NPs) are used in many products and materials for humans such as electronics, in medicine for drug delivery, as biosensors, in biotechnology, and in agriculture, as ingredients in cosmetics and food supplements. Besides that, NPs may display potentially hazardous properties on human health and the environment as a consequence of their abundant use in life nowadays. Hence, there is increased interest of researchers to provide possible therapeutic agents or dietary supplements for the amelioration of NP-induced toxicity. This review summarizes the new findings in the research of the use of antioxidants as supplements for the prevention and alleviation of harmful effects caused by exposure of organisms to NPs. Also, mechanisms involved in the formation of NP-induced oxidative stress and protective mechanisms using different antioxidant substances have also been elaborated. This review also highlights the potential of naturally occurring antioxidants for the enhancement of the antioxidant defense systems in the prevention and mitigation of organism damage caused by NP-induced oxidative stress. Based on the presented results of the most recent studies, it may be concluded that the role of antioxidants in the prevention and treatment of nanoparticle-induced toxicity is unimpeachable. This is particularly important in terms of oxidative stress suppression.
Collapse
Affiliation(s)
- Vladimir Mihailovic
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Jelena S. Katanic Stankovic
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|