1
|
Abushahba F, Algahawi A, Areid N, Vallittu PK, Närhi T. Efficacy of biofilm decontamination methods of dental implant surfaces: A systematic review of in vitro studies. Eur J Oral Sci 2025; 133:e70005. [PMID: 39980138 DOI: 10.1111/eos.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
This systematic review examines the decontamination techniques used to clean titanium (Ti) implant surfaces covered with in vitro bacterial biofilms. The selected studies were gathered from the PubMed and Web of Science databases. These include in vitro studies investigating decontamination methods used to clean Ti implant surfaces coated with bacterial biofilms until January 2024. The determined studies were filtered according to the PRISMA guidelines, and the Science in Risk Assessment and Policy (SciRAP) was used to assess the reporting and methodological quality of the included studies. A total of 634 full-length peer-reviewed articles were identified. After excluding duplicate papers between the databases and screening according to the predefined inclusion and exclusion criteria, 13 studies were included. The decontamination methods investigated included mechanical, chemical, and physical methods, either as a single or in a combined approach. Significant variability was observed among the included studies. Combining the mechanical and physical methods with a chemical yielded the most significant reduction in both single- and multiple-species biofilms. The current results do not indicate that any single decontamination technique is more effective than others in eradicating bacterial biofilm from Ti surfaces; the combined approach was more advantageous than the single ones.
Collapse
Affiliation(s)
- Faleh Abushahba
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Ahmed Algahawi
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Nagat Areid
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Wellbeing Services County of Southwest Finland, Turku, Finland
| | - Timo Närhi
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
- Wellbeing Services County of Southwest Finland, Turku, Finland
| |
Collapse
|
2
|
Eltawil Y, Molinos J, Molina B, Jiminez J, Romero P. Efficacy of a Surgical versus a Nonsurgical Approach in the Treatment of Peri-Implant Diseases: A Systematic Review and Meta-Analysis. J Long Term Eff Med Implants 2025; 35:67-103. [PMID: 39704602 DOI: 10.1615/jlongtermeffmedimplants.2024050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The objective of the study was to compare the surgical vs. the nonsurgical techniques in the treatment of peri-implant diseases and to obtain a comprehensive analysis of the effects on BOP/probing depths when applying either the surgical technique vs. a nonsurgical technique. Twenty-seven articles with a total of 29 trials were selected from PubMed, Medline, Embase and Cochrane library. The articles were published in the past 10 years and complied with the inclusion criteria. Three metanalyses were performed evaluating the effects of surgical and nonsurgical treatments on the reduction in probing depths as well as on bleeding on probing. Fifteen studies involved the treatment of peri-implant diseases with the surgical approach and 14 studies involved the application of the nonsurgical protocol (6 treating peri-implantitis and 8 treating mucositis). A mean reduction in probing depths of 2.31 mm were obtained when the surgical approach was applied for peri-implantitis and a mean of 57% reduction in bleeding on probing was obtained with the surgical protocols. Inflammation was significantly reduced when nonsurgical protocols were applied for mucositis. The highest reduction in probing depths and bleeding on probing was found when emdogain was used with allograft and resorbable membranes. Nonsurgical treatments with extensive hygiene measures were mainly indicated in the treatment of mucositis and do not present bone gain but lowers or maintains probing depths and reduced bleeding on probing. Further studies should be performed with a standardized definition of peri-implantitis with the same surgical or nonsurgical protocol applied as well as the same follow-up period in order to correctly identify the ideal treatment of choice.
Collapse
Affiliation(s)
| | - Jaime Molinos
- Universidad Europea de Madrid, Master of Oral Surgery and Advanced Implantology, Madrid, Spain, 28045
| | - Barbara Molina
- Universidad Europea de Madrid, Master of Oral Surgery and Advanced Implantology, Madrid, Spain, 28045
| | - Jaime Jiminez
- Universidad Europea de Madrid, Master of Oral Surgery and Advanced Implantology, Madrid, Spain, 28045
| | - Pablo Romero
- Universidad Europea de Madrid, Master of Oral Surgery and Advanced Implantology, Madrid, Spain, 28045
| |
Collapse
|
3
|
Jang KJ, Lyu A, Han SH, Kim NJ, Han SB, Song HJ, Park WJ, Park JB. Comparison of Air Abrasion and Mechanical Decontamination for Managing Inflammatory Reactions around Dental Implants: A Systematic Review and Meta-Analysis. APPLIED SCIENCES 2024; 14:7775. [DOI: 10.3390/app14177775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Background: A number of mechanical decontamination methods have been proposed, however, there is no agreed-upon gold standard among them. This study aims to conduct a meta-analysis to assess the differences in the management of an inflammatory reaction around dental implants between air abrasion and mechanical decontamination. Methods: A comprehensive search strategy was employed, incorporating controlled vocabulary (MeSH) and free-text terms. This search was conducted by two reviewers to identify published systematic reviews. Three major electronic databases, namely, Medline via PubMed, the Cochrane database, and Embase, were searched up to May 2024. Results: Initially, 300 articles were identified. After conducting a comprehensive search and applying strict inclusion criteria, a total of 13 studies were deemed eligible for inclusion in the meta-analysis. The results showed that the mean difference in probing depth between air abrasion and other mechanical decontamination was 0.28 (95% confidence interval, −0.20 to 0.76). The mean difference in probing depth of air abrasion compared with other mechanical decontamination in maintenance purposes was 1.05 (95% confidence interval, 0.18 to 1.91). The mean difference in bleeding on probing between air abrasion and other mechanical decontamination was 0.51 (95% confidence interval, 0.07 to 0.95). The mean difference in alveolar bone loss between air abrasion and other mechanical decontamination was −0.14 (95% confidence interval, −0.77 to 0.48). The mean difference in alveolar bone loss for surgical approaches of air abrasion compared with other mechanical decontamination was 0.32 (95% confidence interval, 0.03 to 0.61). Conclusions: The findings of the study indicate that the use of air abrasion was just as effective as other mechanical decontamination methods in reducing probing depth and alveolar bone loss. The subgroup analysis showed that air abrasion was less effective in reducing probing depth in maintenance purposes. Additionally, air abrasion was less effective in reducing alveolar bone loss in surgical approaches.
Collapse
Affiliation(s)
- Ki-Jung Jang
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ahrim Lyu
- Orthodontics, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung-Hoon Han
- Department of Orthodontics, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Na Jin Kim
- Medical Library, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Saet-Byeol Han
- Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hye-Jung Song
- Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Won-Jong Park
- Department of Oral and Maxillofacial Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Hashim A, Kheir El Din NH, El-Khazragy N, Almalahy HG. Comparison of the efficacy of Er,Cr:YSGG laser on oral biofilm removal from implant surfaces with various application times for the treatment of peri-implantitis defects: ex vivo study. BMC Oral Health 2024; 24:980. [PMID: 39174958 PMCID: PMC11342501 DOI: 10.1186/s12903-024-04698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
PURPOSE The major struggle in peri-implantitis therapy is the availability of successful decontamination of the infected implant surface. The main hypothesis of this study was the Er,Cr: YSGG laser decontamination efficacy investigation on the infected implant surfaces with various peri-implantitis defects. The primary objective of this study was to decide the efficacy of Er,Cr:YSGG laser as a decontamination tool at various peri-implantitis simulating defects. The secondary objective was to compare the efficacy of the Er,Cr: YSGG laser on oral biofilm removal between two protocols the first protocol (4 cycles at 2.5 min) and the second protocol (5 cycles at 5 min) at various peri-implantitis simulating defects. MATERIALS AND METHODS A total of 3 subjects whose plaque biofilms formed in-vivo on twenty-four tested implants were divided into four tested groups. Two native implants were tested as controls.The in vitro defect model was computer-aided designed and printed into a 3D-printed model with various anulations in peri-implant infrabony defects, which were 15,30,60,and 90 degrees. RESULTS Both Er, Cr: YSGG decontamination protocols at 50 mJ (1.5 W/30 Hz), 50% air, and 40% water were effective at reducing the total implant surface area/ biofilm ratio (%), but the second protocol had a markedly greater reduction in the duration of application (5 cycles at 5 min) than did the first protocol (4 cycles at 2.5 min). CONCLUSION The Er, Cr: YSGG laser is an effective decontamination device in various peri-implantitis defects. The second protocol(5 cycles at 5 min) with greater application time and circles is more effective than the first one. The defect angulation influence the decontamination capability in peri-implantitis therapy. CLINICAL RELEVANCE (SCIENTIFIC RATIONALE FOR STUDY) Clinicians anticipate that the exploration of suitable therapeutic modalities for peri-implantitis therapy is limited by the obvious heterogeneity of the available evidence in the literature and need for a pre-clinical theoretical basis setup. The major challenges associated with peri-implantitis therapy include the successful decontamination of the infected implant surface, the absence of any damage to the treated implant surface with adequate surface roughness, and the biocompatibility of the implant surface, which allows osteoblastic cells to grow on the treated surface and is the key for successful re-osseointegration. Therefore, these are the expected empirical triads that need to be respected for successful peri-implantitis therapy. Failure of one of the triads represents a peri-implantitis therapeutic failure. The Er, Cr: YSGG laser is regarded as one of the expected devices for achieving the required triad. TRIAL REGISTRATION "Efficacy of Er,Cr YSGG Laser in Treatment of Peri-implantitis". CLINICALTRIALS gov ID NCT05137821. First Posted date: 30 -11-2021.
Collapse
Affiliation(s)
- Alaa Hashim
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.
| | - Nevine H Kheir El Din
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Nashwa El-Khazragy
- Department of Clinical Pathology-Hematology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Ain Shams Medical Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hadeel Gamal Almalahy
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Łobacz M, Wieczorek K, Mertowska P, Mertowski S, Kos M, Grywalska E, Hajduk G, Rahnama-Hezavah M. Evaluation of Peri-Implantitis Bone Defect Healing: Comparing the Efficacy of Small-Particle Dentin and Bio-Oss in Bone Density Attenuation. J Clin Med 2024; 13:4638. [PMID: 39200780 PMCID: PMC11354878 DOI: 10.3390/jcm13164638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Introduction: Peri-implantitis is a serious complication in dental implantology that, if left untreated, may lead to implant loss and systemic diseases. Effective regeneration of bone defects resulting from peri-implantitis is crucial to maintaining the functionality of dental implants. Purpose of the Study: The study aimed to compare the effectiveness of fine-particle dentin and Bio-Oss in the reconstruction of bone defects caused by peri-implantitis. Materials and Methods: The study included a comprehensive radiological assessment of changes in bone density over time. Bone density was assessed using Hounsfield Units (HUs) as a measure of bone attenuation, with radiological assessments performed at 8- and 12-week intervals during the healing process. The study included participants ranging in age from 30 to 65 years. Fifty-seven patients were divided into three groups: 22 patients received small-particle dentin, 15 received Bio-Oss, and 20 controls without bone substitute material. Results: The fine-dentin group showed a 20% increase in bone density after 8 weeks (p < 0.05), while the Bio-Oss group showed a 15% increase after 12 weeks (p < 0.05). The control group showed minimal changes in bone density (5% after 12 weeks), which was not statistically significant. Clinical evaluations showed 95% successful integration in the fine dentin group, 85% in the Bio-Oss group, and 70% in the control group. The fine-dentin group showed a 20% increase in bone density after 8 weeks (p < 0.05), while the Bio-Oss group showed a 15% increase after 12 weeks (p < 0.05). The control group showed minimal changes in bone density (5% after 12 weeks), which was not statistically significant. Clinical evaluations showed 95% successful integration in the fine-dentin group, 85% in the Bio-Oss group, and 70% in the control group. Conclusions: Both fine-particle dentin and Bio-Oss significantly improved bone density compared to the control group. Fine-particle dentin is suitable for immediate bone regeneration due to its rapid initial regeneration, while Bio-Oss provides long-term support, ideal for maintaining implant stability over a longer period of time. The results highlight the importance of selecting appropriate bone replacement materials depending on the clinical scenario to improve patient outcomes after dental implant placement.
Collapse
Affiliation(s)
- Michał Łobacz
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland (G.H.); (M.R.-H.)
| | - Katarzyna Wieczorek
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland (G.H.); (M.R.-H.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (S.M.); (E.G.)
| | - Marek Kos
- Department of Public Health, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (S.M.); (E.G.)
| | - Grzegorz Hajduk
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland (G.H.); (M.R.-H.)
| | - Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland (G.H.); (M.R.-H.)
| |
Collapse
|
6
|
Shahbazi S, Esmaeili S, Shirvani A, Amid R, Kadkhodazadeh M. Surgical regenerative methods for peri-implantitis treatment: A systematic review and meta-analysis. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2024; 16:144-159. [PMID: 39758267 PMCID: PMC11699266 DOI: 10.34172/japid.2024.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/12/2024] [Indexed: 01/07/2025]
Abstract
Background The purpose of this study was to review the literature on the efficacy of different surgical regenerative methods for peri-implantitis treatment. Methods A preliminary search was conducted in seven electronic databases. The studies included in the analysis implemented surgical regenerative treatment in at least one study group. Baseline and follow-up values for bleeding on probing (BoP), pocket depth (PD), plaque index (PI), bone level (BL), and bone gain (BG) were extracted. The standardized mean difference (SMD) was calculated using Cohen's d or Hedges' g, and a random-effects-restricted maximum likelihood (REML) method was applied for the meta-analysis. Results Fifteen studies were included in the qualitative synthesis. The meta-analysis was performed on six studies comparing regenerative techniques that involved bone grafts with those that did not. The overall effect size for using bone grafts at the one-year follow-up was 0.04 (95% CI: -0.26‒0.35; P=0.78) for BoP, -0.08 (95% CI: -0.42‒0.27; P=0.66) for PD, 0.37 (95% CI: 0.08‒0.65; P=0.01) for PI, -0.44 (95% CI: -0.84 to -0.03; P=0.03) for BL, and 0.16 (95% CI: -0.68‒1.01; P=0.70) for BG. Conclusion Various materials have been employed for peri-implant defect filling and coverage. A bone substitute did not significantly improve BoP, PD, and BG values, while PI and BL were significantly ameliorated at one-year follow-up. However, recommending a single unified protocol as the most effective for surgical regenerative treatment of peri-implantitis was not feasible.
Collapse
Affiliation(s)
- Soheil Shahbazi
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saharnaz Esmaeili
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Shirvani
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Amid
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Kadkhodazadeh
- Department of Periodontics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Zhang Y, Gao T, Fan X. Minocycline hydrochloride plus metronidazole versus metronidazole alone for peri-implantitis: a comparative study. Am J Transl Res 2024; 16:2122-2131. [PMID: 38883360 PMCID: PMC11170610 DOI: 10.62347/pygw1604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/13/2023] [Indexed: 06/18/2024]
Abstract
OBJECTIVE To evaluate the efficacy of minocycline hydrochloride combined with metronidazole versus metronidazole alone in treating peri-implantitis and their impact on specific inflammatory markers. METHODS A retrospective review was undertaken of 107 patients with peri-implantitis from January 2018 to January 2021. Patients were treated either with metronidazole alone (Con group, n = 57) or with additional minocycline hydrochloride (Exp group, n = 50). Inflammatory markers, including interleukin-6 (IL-6), interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and matrix metalloproteinase-8 (MMP-8) were determined before and after treatment. Clinical outcomes were determined using the plaque index (PLI), gingival sulcus bleeding index (SBI), and periodontal probing depth (PD). Furthermore, receiver operator characteristic (ROC) curves analyzed the clinical relevance of the markers. Logistic regression was conducted to analyze the risk factors affecting efficacy in patients. RESULTS The Exp group exhibited more favorable clinical outcomes and showed lower levels of IL-6, IL-1β, TNF-α, and MMP-8 than the Con group. IL-1β, TNF-α, and MMP-8 levels were significantly correlated with treatment success (P < 0.05), but IL-6 was not (P > 0.05). The ROC curves for IL-1β and TNF-α significantly outperformed those for IL-6 and MMP-8 (P < 0.05). Logistic regression analysis showed that only IL-1β and TNF-α were independent risk factors affecting efficacy in patients. CONCLUSION Combining minocycline hydrochloride with metronidazole yields better outcomes for peri-implantitis compared to metronidazole alone. Of the factors analyzed, only IL-1β and TNF-α emerged as dependable independent efficacy indicators.
Collapse
Affiliation(s)
- Yonghong Zhang
- Dental Department, 980 Hospital, Joint Logistics Support Force of The People's Liberation Army Shijiazhuang 050082, Hebei, P. R. China
| | - Tianyan Gao
- Dental Department, 980 Hospital, Joint Logistics Support Force of The People's Liberation Army Shijiazhuang 050082, Hebei, P. R. China
| | - Xiaoyu Fan
- Dental Department, 980 Hospital, Joint Logistics Support Force of The People's Liberation Army Shijiazhuang 050082, Hebei, P. R. China
| |
Collapse
|
8
|
Yu YM, Lu YP, Zhang T, Zheng YF, Liu YS, Xia DD. Biomaterials science and surface engineering strategies for dental peri-implantitis management. Mil Med Res 2024; 11:29. [PMID: 38741175 DOI: 10.1186/s40779-024-00532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Peri-implantitis is a bacterial infection that causes soft tissue inflammatory lesions and alveolar bone resorption, ultimately resulting in implant failure. Dental implants for clinical use barely have antibacterial properties, and bacterial colonization and biofilm formation on the dental implants are major causes of peri-implantitis. Treatment strategies such as mechanical debridement and antibiotic therapy have been used to remove dental plaque. However, it is particularly important to prevent the occurrence of peri-implantitis rather than treatment. Therefore, the current research spot has focused on improving the antibacterial properties of dental implants, such as the construction of specific micro-nano surface texture, the introduction of diverse functional coatings, or the application of materials with intrinsic antibacterial properties. The aforementioned antibacterial surfaces can be incorporated with bioactive molecules, metallic nanoparticles, or other functional components to further enhance the osteogenic properties and accelerate the healing process. In this review, we summarize the recent developments in biomaterial science and the modification strategies applied to dental implants to inhibit biofilm formation and facilitate bone-implant integration. Furthermore, we summarized the obstacles existing in the process of laboratory research to reach the clinic products, and propose corresponding directions for future developments and research perspectives, so that to provide insights into the rational design and construction of dental implants with the aim to balance antibacterial efficacy, biological safety, and osteogenic property.
Collapse
Affiliation(s)
- Ya-Meng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yu-Pu Lu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu-Feng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Yun-Song Liu
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Dan-Dan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
| |
Collapse
|
9
|
Suzumura T, Matsuura T, Komatsu K, Sugita Y, Maeda H, Ogawa T. Vacuum Ultraviolet (VUV) Light Photofunctionalization to Induce Human Oral Fibroblast Transmigration on Zirconia. Cells 2023; 12:2542. [PMID: 37947620 PMCID: PMC10647316 DOI: 10.3390/cells12212542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Soft tissue adhesion and sealing around dental and maxillofacial implants, related prosthetic components, and crowns are a clinical imperative to prevent adverse outcomes of periodontitis and periimplantitis. Zirconia is often used to fabricate implant components and crowns. Here, we hypothesized that UV treatment of zirconia would induce unique behaviors in fibroblasts that favor the establishment of a soft tissue seal. Human oral fibroblasts were cultured on zirconia specimens to confluency before placing a second zirconia specimen (either untreated or treated with one minute of 172 nm vacuum UV (VUV) light) next to the first specimen separated by a gap of 150 µm. After seven days of culture, fibroblasts only transmigrated onto VUV-treated zirconia, forming a 2.36 mm volume zone and 5.30 mm leading edge. Cells migrating on VUV-treated zirconia were enlarged, with robust formation of multidirectional cytoplastic projections, even on day seven. Fibroblasts were also cultured on horizontally placed and 45° and 60° tilted zirconia specimens, with the latter configurations compromising initial attachment and proliferation. However, VUV treatment of zirconia mitigated the negative impact of tilting, with higher tilt angles increasing the difference in cellular behavior between control and VUV-treated specimens. Fibroblast size, perimeter, and diameter on day seven were greater than on day one exclusively on VUV-treated zirconia. VUV treatment reduced surface elemental carbon and induced superhydrophilicity, confirming the removal of the hydrocarbon pellicle. Similar effects of VUV treatment were observed on glazed zirconia specimens with silica surfaces. One-minute VUV photofunctionalization of zirconia and silica therefore promotes human oral fibroblast attachment and proliferation, especially under challenging culture conditions, and induces specimen-to-specimen transmigration and sustainable photofunctionalization for at least seven days.
Collapse
Affiliation(s)
- Toshikatsu Suzumura
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral Pathology/Forensic Odontology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Yoshihiko Sugita
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral Pathology/Forensic Odontology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Hatsuhiko Maeda
- Department of Oral Pathology/Forensic Odontology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| |
Collapse
|
10
|
Papa S, Maalouf M, Claudel P, Sedao X, Di Maio Y, Hamzeh-Cognasse H, Thomas M, Guignandon A, Dumas V. Key topographic parameters driving surface adhesion of Porphyromonas gingivalis. Sci Rep 2023; 13:15893. [PMID: 37741851 PMCID: PMC10518006 DOI: 10.1038/s41598-023-42387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/09/2023] [Indexed: 09/25/2023] Open
Abstract
Dental implant failure is primarily due to peri-implantitis, a consequence of bacterial biofilm formation. Bacterial adhesion is strongly linked to micro-/nano-topographies of a surface; thus an assessment of surface texture parameters is essential to understand bacterial adhesion. In this study, mirror polished titanium samples (Ti6Al4V) were irradiated with a femtosecond laser (fs-L) at a wavelength of 1030 nm (infrared) with variable laser parameters (laser beam polarization, number, spacing and organization of the impacts). Images of 3-D topographies were obtained by focal variation microscopy and analyzed with MountainsMap software to measure surface parameters. From bacteria associated with peri-implantitis, we selected Porphyromonas gingivalis to evaluate its adhesion on Ti6Al4V surfaces in an in vitro study. Correlations between various surface parameters and P. gingivalis adhesion were investigated. We discovered that Sa value, a common measure of surface roughness, was not sufficient in describing the complexity of these fs-L treated surfaces and their bacterial interaction. We found that Sku, density and mean depths of the furrows, were the most accurate parameters for this purpose. These results provide important information that could help anticipate the bacterial adhesive properties of a surface based on its topographic parameters, thus the development of promising laser designed biofunctional implants.
Collapse
Affiliation(s)
- Steve Papa
- INSERM, SAINBIOSE U1059, Mines Saint-Etienne, Université Jean Monnet Saint-Étienne, 42023, Saint-Étienne, France.
| | - Mathieu Maalouf
- INSERM, SAINBIOSE U1059, Mines Saint-Etienne, Université Jean Monnet Saint-Étienne, 42023, Saint-Étienne, France
| | - Pierre Claudel
- GIE Manutech-USD, 20 Rue Benoît Lauras, 42000, Saint-Étienne, France
| | - Xxx Sedao
- GIE Manutech-USD, 20 Rue Benoît Lauras, 42000, Saint-Étienne, France
- Laboratory Hubert Curien, UMR 5516 CNRS, Jean Monnet University, University of Lyon, 42000, Saint-Étienne, France
| | - Yoan Di Maio
- GIE Manutech-USD, 20 Rue Benoît Lauras, 42000, Saint-Étienne, France
| | - Hind Hamzeh-Cognasse
- INSERM, SAINBIOSE U1059, Mines Saint-Etienne, Université Jean Monnet Saint-Étienne, 42023, Saint-Étienne, France
| | - Mireille Thomas
- INSERM, SAINBIOSE U1059, Mines Saint-Etienne, Université Jean Monnet Saint-Étienne, 42023, Saint-Étienne, France
| | - Alain Guignandon
- INSERM, SAINBIOSE U1059, Mines Saint-Etienne, Université Jean Monnet Saint-Étienne, 42023, Saint-Étienne, France
| | - Virginie Dumas
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, UMR5513, ENISE, Univ Lyon, 42023, Saint-Étienne, France
| |
Collapse
|
11
|
Shiba T, Komatsu K, Watanabe T, Takeuchi Y, Nemoto T, Ohsugi Y, Katagiri S, Shimogishi M, Marukawa E, Iwata T. Peri-implantitis management by resective surgery combined with implantoplasty and Er:YAG laser irradiation, accompanied by free gingival graft: a case report. Ther Adv Chronic Dis 2023; 14:20406223231174816. [PMID: 37324409 PMCID: PMC10265339 DOI: 10.1177/20406223231174816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/24/2023] [Indexed: 06/17/2023] Open
Abstract
The optimal method for decontamination of implant surfaces for peri-implantitis treatment remains controversial. In recent years, erbium-doped yttrium aluminum garnet (Er:YAG) laser irradiation and implantoplasty (IP) (i.e. mechanical modification of the implant) have been reported to be effective in decontaminating implant surfaces during the surgical treatment. Also, a lack of adequate keratinized mucosa (KM) around the implant is known to be associated with more plaque accumulation, tissue inflammation, attachment loss, and mucosal recession, increasing the risk of peri-implantitis. Therefore, free gingival graft (FGG) has been recommended for gaining adequate KM around the implant. However, the necessity of acquiring KM for the treatment of peri-implantitis using FGG remains unclear. In this report, we applied the apically positioned flap (APF) as resective surgery for peri-implantitis treatment in conjunction with IP and Er:YAG laser irradiation to polish/clean the implant surface. Furthermore, FGG was conducted simultaneously to create additional KM, which increased the tissue stability and contributed to the positive results. The two patients were 64 and 63 years old with a history of periodontitis. The removal of granulation tissue and debridement of contaminated implant surfaces were performed with Er:YAG laser irradiation post flap elevation and then modified smooth surfaces mechanically using IP. Er:YAG laser irradiation was also utilized to remove the titanium particles. In addition, we performed FGG to increase the width of KM as a vestibuloplasty. Peri-implant tissue inflammation and progressive bone resorption were not observed, and both patients maintained good oral hygiene conditions until the 1-year follow-up appointment. Bacterial analysis via high-throughput sequencing revealed proportional decreases in bacteria associated with periodontitis (Porphyromonas, Treponema, and Fusobacterium). To the best of our knowledge, this study is the first to describe peri-implantitis management and bacterial change before and after procedures by resective surgery combined with IP and Er:YAG laser irradiation for peri-implantitis treatment, accompanied by FGG for increasing KM around the implants.
Collapse
Affiliation(s)
- Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku 1138510, Tokyo, Japan
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Keiji Komatsu
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Takayasu Watanabe
- Department of Chemistry, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Yasuo Takeuchi
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Bunkyo-ku 1138510, Tokyo, Japan
| | - Takashi Nemoto
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Masahiro Shimogishi
- Department of Regenerative and Reconstructive Dentistry, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Eriko Marukawa
- Department of Regenerative and Reconstructive Dentistry, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| |
Collapse
|
12
|
Hwang S, Lee HM, Yun PY, Kim YK. Survival analysis of implants after surgical treatment of peri-implantitis based on bone loss severity and surgical technique: a retrospective study. BMC Oral Health 2023; 23:308. [PMID: 37217906 DOI: 10.1186/s12903-023-02981-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Few trials have compared the results of surgical treatment for peri-implantitis based on severity of peri-implantitis and surgical method. This study investigated the survival rate of implants based on type of surgical method used and initial severity of peri-implantitis. Classification of severity was determined based on bone loss rate relative to fixture length. METHODS Medical records of patients who underwent peri-implantitis surgery from July 2003 to April 2021 were identified. Classification of peri-implantitis was divided into 3 groups (stage 1: bone loss < 25% (of fixture length), stage 2: 25% < bone loss < 50%, stage 3: bone loss > 50%) and performance of resective or regenerative surgery was investigated. Kaplan-Meier survival curves and Cox hazards proportional models were used to analyze the cumulative survival rate of implants. Median survival time, predicted mean survival time, hazard ratio (HR), and 95% confidence interval (CI) were calculated. RESULTS Based on Kaplan-Meier analysis, 89 patients and 227 implants were included, and total median postoperative survival duration was 8.96 years. Cumulative survival rates for stage 1, 2, and 3 were 70.7%, 48.9%, and 21.3%, respectively. The mean survival time for implants in stage 1, 2, and 3 was 9.95 years, 7.96 years, and 5.67 years, respectively, with statistically significant difference (log-rank p-value < 0.001). HRs for stage 2 and stage 3 were 2.25 and 4.59, respectively, with stage 1 as reference. Significant difference was not found in survival time between resective and regenerative surgery groups in any peri-implantitis stage. CONCLUSIONS The initial bone loss rate relative to the fixture length significantly correlated with the outcome after peri-implantitis surgery, demonstrating a notable difference in the long-term survival rate. Difference was not found between resective surgery and regenerative surgery in implant survival time. Bone loss rate could be utilized as a reliable diagnostic tool for evaluating prognosis after surgical treatment, regardless of surgical method used. TRIAL REGISTRATION Retrospectively registered. (KCT0008225).
Collapse
Affiliation(s)
- Sooshin Hwang
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, 82 Gumi‑ro 173beon‑gil, Bundang‑gu, 13620, Seongnam, Korea
| | - Hee-Min Lee
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, 82 Gumi‑ro 173beon‑gil, Bundang‑gu, 13620, Seongnam, Korea
| | - Pil-Young Yun
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, 82 Gumi‑ro 173beon‑gil, Bundang‑gu, 13620, Seongnam, Korea
- Department of Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro Jongno-gu, Seoul, 03080, Korea
| | - Young-Kyun Kim
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, 82 Gumi‑ro 173beon‑gil, Bundang‑gu, 13620, Seongnam, Korea.
| |
Collapse
|
13
|
Anesi A, Cavani F. Editorial for the Special Issue on "Multidisciplinary Insights on Bone Healing". BIOLOGY 2022; 11:biology11121776. [PMID: 36552285 PMCID: PMC9774746 DOI: 10.3390/biology11121776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Animal and human bone damage can be considered differently according to a macro- or micro-level analysis [...].
Collapse
Affiliation(s)
- Alexandre Anesi
- Department of Medical and Surgical Sciences for Children and Adults, Cranio-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-059-422-4552
| | - Francesco Cavani
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy
| |
Collapse
|
14
|
Mijiritsky E, Assaf HD, Kolerman R, Mangani L, Ivanova V, Zlatev S. Autologous Platelet Concentrates (APCs) for Hard Tissue Regeneration in Oral Implantology, Sinus Floor Elevation, Peri-Implantitis, Socket Preservation, and Medication-Related Osteonecrosis of the Jaw (MRONJ): A Literature Review. BIOLOGY 2022; 11:biology11091254. [PMID: 36138733 PMCID: PMC9495871 DOI: 10.3390/biology11091254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Autologous platelet concentrates with high growth factor levels are used in many fields of dentistry. In recent years, the critical role of blood-derived materials in bone and soft tissue engineering has become apparent. After tooth extraction, the alveolar bone is exposed to progressive bone resorption, which can lead to difficulties in implant placement. Hence, many studies have demonstrated that APCs have the potential for soft tissue and bone regeneration. Furthermore, no inflammatory reactions occur, and they may be used alone or in combination with bone grafts, promoting bone growth and maturation. Moreover, the released growth factors and the presence of fibrin structures can induce osteogenesis. This review aims to provide information regarding the applications, indications, advantages, and disadvantages of three APC techniques in hard tissue regeneration. Abstract Over recent years, the usage of autologous platelet concentrates (APCs) has risen in hard tissue regeneration and oral implantology. The purpose of the present review is to offer an overview of the use of three APC techniques in dentistry: platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and concentrated growth factor (CGF). A narrative summary of articles published between January 2011 and April 2022 is provided. The PubMed, Cochrane Library, Scopus, and Embase databases were used to conduct the search. The following keywords were used in the preliminary: “VEGF”, “TGF-b1”, “PRP”, “PRF”, “CGF”, AND “sinus augmentation” OR “implants” OR “peri-implantitis” OR “socket preservation” OR “MRONJ”. A total of 82 articles was finally included. The review then takes into account the application of the three techniques in different areas of treatment—including oral implantology, sinus floor elevation, peri-implantitis, socket preservation, and medication-related osteonecrosis of the jaw (MRONJ)—as well as their advantages and disadvantages.
Collapse
Affiliation(s)
- Eitan Mijiritsky
- Head and Neck Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Department of Otolaryngology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 699350, Israel
| | - Haya Drora Assaf
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Roni Kolerman
- Department of Periodontology and Oral Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Luca Mangani
- Department of Translational Medicine and Clinical Science, University of Tor Vegata, 00133 Rome, Italy
| | - Vasilena Ivanova
- Oral Surgery Department, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Correspondence:
| | - Stefan Zlatev
- CAD/CAM Center of Dental Medicine at the Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
15
|
Asperuloside Prevents Peri-Implantitis via Suppression of NF-κB and ERK1/2 on Rats. Pharmaceuticals (Basel) 2022; 15:ph15081027. [PMID: 36015175 PMCID: PMC9412302 DOI: 10.3390/ph15081027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Peri-implantitis is characterized by inflammatory cell infiltration and hyperactivation of the osteoclasts surrounding dental implants which can result in bone resorption and ultimately implant failure. Therefore, coordinating the activity of inflammatory response and bone-resorbing osteoclasts is crucial for the prevention of peri-implantitis. Asperuloside (ASP), an iridoid glycoside, has significant anti-inflammatory activities, suggesting the great potential in attenuating peri-implantitis bone resorption. A ligature-induced peri-implantitis model in the maxilla of rats was established, and the effects of ASP on preventing peri-implantitis were evaluated after four weeks of ligation using micro-CT and histological staining. RT-PCR, western blotting, tartrate-resistant acid phosphatase (TRAP), and immunofluorescent staining were conducted on osteoclasts to confirm the mechanisms of ASP on osteoclastogenesis. The results show that ASP could lead to attenuation of alveolar bone resorption in peri-implantitis by inhibiting osteoclast formation and decreasing pro-inflammatory cytokine levels in vivo. Furthermore, ASP could inhibit osteoclastogenesis by downregulating expression levels of transcription factors nuclear factor of activated T-cell (NFATc1) via restraining the activations of nuclear factor kappa beta (NF-κB) and the phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2). In conclusion, ASP could significantly attenuate bone resorption in peri-implantitis via inhibition of osteoclastogenesis by suppressing NF-κB and ERK1/2 signaling pathways activations.
Collapse
|
16
|
Matthes R, Jablonowski L, Pitchika V, Holtfreter B, Eberhard C, Seifert L, Gerling T, Vilardell Scholten L, Schlüter R, Kocher T. Efficiency of biofilm removal by combination of water jet and cold plasma: an in-vitro study. BMC Oral Health 2022; 22:157. [PMID: 35524324 PMCID: PMC9074283 DOI: 10.1186/s12903-022-02195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Peri-implantitis therapy is a major problem in implantology. Because of challenging rough implant surface and implant geometry, microorganisms can hide and survive in implant microstructures and impede debridement. We developed a new water jet (WJ) device and a new cold atmospheric pressure plasma (CAP) device to overcome these problems and investigated aspects of efficacy in vitro and safety with the aim to create the prerequisites for a clinical pilot study with these medical devices. Methods We compared the efficiency of a single treatment with a WJ or curette and cotton swab (CC) without or with adjunctive use of CAP (WJ + CAP, CC + CAP) to remove biofilm in vitro from rough titanium discs. Treatment efficacy was evaluated by measuring turbidity up to 72 h for bacterial re-growth or spreading of osteoblast-like cells (MG-63) after 5 days with scanning electron microscopy. With respect to application safety, the WJ and CAP instruments were examined according to basic regulations for medical devices. Results After 96 h of incubation all WJ and CC treated disks were turbid but 67% of WJ + CAP and 46% CC + CAP treated specimens were still clear. The increase in turbidity after WJ treatment was delayed by about 20 h compared to CC treatment. In combination with CAP the cell coverage significantly increased to 82% (WJ + CAP) or 72% (CC + CAP), compared to single treatment 11% (WJ) or 10% (CC). Conclusion The newly developed water jet device effectively removes biofilm from rough titanium surfaces in vitro and, in combination with the new CAP device, biologically acceptable surfaces allow osteoblasts to grow. WJ in combination with CAP leads to cleaner surfaces than the usage of curette and cotton swabs with or without subsequent plasma treatment. Our next step will be a clinical pilot study with these new devices to assess the clinical healing process. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02195-1.
Collapse
Affiliation(s)
- Rutger Matthes
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Pedodontics, Dental School, University Medicine Greifswald, Fleischmannstr. 42, 17475, Greifswald, Germany
| | - Lukasz Jablonowski
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Pedodontics, Dental School, University Medicine Greifswald, Fleischmannstr. 42, 17475, Greifswald, Germany
| | - Vinay Pitchika
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Pedodontics, Dental School, University Medicine Greifswald, Fleischmannstr. 42, 17475, Greifswald, Germany
| | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Pedodontics, Dental School, University Medicine Greifswald, Fleischmannstr. 42, 17475, Greifswald, Germany
| | | | - Leo Seifert
- Sirona Dental Systems GmbH, Bensheim, Germany
| | - Torsten Gerling
- ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology e.V. (INP), Greifswald, Germany
| | - Laura Vilardell Scholten
- ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology e.V. (INP), Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Pedodontics, Dental School, University Medicine Greifswald, Fleischmannstr. 42, 17475, Greifswald, Germany.
| |
Collapse
|
17
|
Kajikawa T, Mastellos DC, Hasturk H, Kotsakis GA, Yancopoulou D, Lambris JD, Hajishengallis G. C3-targeted host-modulation approaches to oral inflammatory conditions. Semin Immunol 2022; 59:101608. [PMID: 35691883 DOI: 10.1016/j.smim.2022.101608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Periodontitis is an inflammatory disease caused by biofilm accumulation and dysbiosis in subgingival areas surrounding the teeth. If not properly treated, this oral disease may result in tooth loss and consequently poor esthetics, deteriorated masticatory function and compromised quality of life. Epidemiological and clinical intervention studies indicate that periodontitis can potentially aggravate systemic diseases, such as, cardiovascular disease, type 2 diabetes mellitus, rheumatoid arthritis, and Alzheimer disease. Therefore, improvements in the treatment of periodontal disease may benefit not only oral health but also systemic health. The complement system is an ancient host defense system that plays pivotal roles in immunosurveillance and tissue homeostasis. However, complement has unwanted consequences if not controlled appropriately or excessively activated. Complement overactivation has been observed in patients with periodontitis and in animal models of periodontitis and drives periodontal inflammation and tissue destruction. This review places emphasis on a promising periodontal host-modulation therapy targeting the complement system, namely the complement C3-targeting drug, AMY-101. AMY-101 has shown safety and efficacy in reducing gingival inflammation in a recent Phase 2a clinical study. We also discuss the potential of AMY-101 to treat peri-implant inflammatory conditions, where complement also seems to be involved and there is an urgent unmet need for effective treatment.
Collapse
Affiliation(s)
- Tetsuhiro Kajikawa
- University of Pennsylvania, Penn Dental Medicine, Department of Basic and Translational Sciences, Philadelphia, PA, USA; Tohoku University Graduate School of Dentistry, Department of Periodontology and Endodontology, Sendai, Miyagi, Japan
| | - Dimitrios C Mastellos
- National Center for Scientific Research 'Demokritos', Division of Biodiagnostic Sciences and Technologies, INRASTES, Athens, Greece
| | - Hatice Hasturk
- The Forsyth Institute, Center for Clinical and Translational Research, Cambridge, MA, USA
| | - Georgios A Kotsakis
- University of Texas Health Science Center at San Antonio, School of Dentistry, Department of Periodontics, San Antonio, TX, USA
| | | | - John D Lambris
- University of Pennsylvania, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, PA, USA
| | - George Hajishengallis
- University of Pennsylvania, Penn Dental Medicine, Department of Basic and Translational Sciences, Philadelphia, PA, USA.
| |
Collapse
|