1
|
Luu AH, Budi T, Singchat W, Nguyen CPT, Panthum T, Tanglertpaibul N, Thong T, Vangnai K, Chaiyes A, Yokthongwattana C, Sinthuvanich C, Han K, Muangmai N, Griffin DK, Romanov MN, Duengkae P, Trong NN, Srikulnath K. Comparison of unique Dong Tao chickens from Vietnam and Thailand: genetic background and differences for resource management. Genes Genomics 2025:10.1007/s13258-025-01644-9. [PMID: 40261571 DOI: 10.1007/s13258-025-01644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Rare Dong Tao (DT) chickens are a unique and highly productive poultry breed introduced from Vietnam to Thailand ~ 30 years ago. It has a very peculiar appearance, including enormously enlarged feet with reddish scales, and considered local and culturally significant to both countries. Their adaptability and distinct genetic traits have attracted global interest, underscoring their potential for breeding programs and a need for their thorough genetic makeup assessment. OBJECTIVE To assess the genetic diversity and differentiation within the Dong Tao chicken breed, comparing two populations introduced in Thailand with a native population in Vietnam. METHODS Three Dong Tao chicken populations from Thailand and Vietnam-along with 54 other indigenous, local chicken, and red junglefowl populations from Thailand, were analyzed using 28 microsatellite markers. RESULT High genetic variability and low inbreeding levels were observed in these populations, indicating their effective management despite historical bottlenecks. Genetic similarities between DT-U and DT-HY and indigenous breeds, as well as the closer alignment of DT-L with red junglefowl, highlighted existing introgression and adaptation processes. Two markers, MCW0098 and MCW0216, showed a variation pattern due to potential impact of directional selection, possibly driven by environmental adaptation pressures. These findings emphasize the importance of DT chickens as genetic resources for breeding programs that focus on climate resilience and productivity enhancement. CONCLUSION Dong Tao chickenshared genetic similarities with indigenous and local chicken breeds, and red junglefowl, with potential influence of directional selection driven by environmental adaptation pressures.
Collapse
Affiliation(s)
- Anh Huynh Luu
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- College of Agriculture, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho, 900000, Vietnam
| | - Trifan Budi
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
| | - Chien Phuoc Tran Nguyen
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Nivit Tanglertpaibul
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Thanyapat Thong
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Kanithaporn Vangnai
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Aingorn Chaiyes
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Chotika Yokthongwattana
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Chomdao Sinthuvanich
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Kyudong Han
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Microbiology, College of Bio-Convergence, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Korea
- Bio-Medical Engineering Core Facility Research Center, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Korea
- Smart Animal Bio Institute, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Korea
| | - Narongrit Muangmai
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Darren K Griffin
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Michael N Romanov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Oblast, Russia, 142132
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University", Pushkin, St. Petersburg, Russia, 196601
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Ngu Nguyen Trong
- College of Agriculture, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho, 900000, Vietnam
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Biodiversity Center, Kasetsart University (BDCKU), Bangkok, 10900, Thailand.
| |
Collapse
|
2
|
Yevshin IS, Shagimardanova EI, Ryabova AS, Pintus SS, Kolpakov FA, Gusev OA. Genome of Russian Snow-White Chicken Reveals Genetic Features Associated with Adaptations to Cold and Diseases. Int J Mol Sci 2024; 25:11066. [PMID: 39456845 PMCID: PMC11508066 DOI: 10.3390/ijms252011066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Russian Snow White (RSW) chickens are characterized by high egg production, extreme resistance to low temperatures, disease resistance, and by the snow-white color of the day-old chicks. Studying the genome of this unique chicken breed will reveal its evolutionary history and help to understand the molecular genetic mechanisms underlying the unique characteristics of this breed, which will open new breeding opportunities and support future studies. We have sequenced and made a de novo assembly of the whole RSW genome using deep sequencing (250×) by the short reads. The genome consists of 40 chromosomes with a total length of 1.1 billion nucleotide pairs. Phylogenetic analysis placed the RSW near the White Leghorn, Fayoumi, and Houdan breeds. Comparison with other chicken breeds revealed a wide pool of mutations unique to the RSW. The functional annotation of these mutations showed the adaptation of genes associated with the development of the nervous system, thermoreceptors, purine receptors, and the TGF-beta pathway, probably caused by selection for low temperatures. We also found adaptation of the immune system genes, likely driven by selection for resistance to viral diseases. Integration with previous genome-wide association studies (GWAS) suggested several causal single nucleotide polymorphisms (SNPs). Specifically, we identified an RSW-specific missense mutation in the RALYL gene, presumably causing the snow-white color of the day-old chicks, and an RSW-specific missense mutation in the TLL1 gene, presumably affecting the egg weight.
Collapse
Affiliation(s)
| | - Elena I. Shagimardanova
- Life Improvement by Future Technologies (LIFT) Center, 121205 Moscow, Russia
- Center of Genomics and Bioimaging Core Facility, 121205 Moscow, Russia
| | | | - Sergey S. Pintus
- Sirius University of Science and Technology, 354340 Sirius, Russia; (S.S.P.)
| | - Fedor A. Kolpakov
- Sirius University of Science and Technology, 354340 Sirius, Russia; (S.S.P.)
| | - Oleg A. Gusev
- Life Improvement by Future Technologies (LIFT) Center, 121205 Moscow, Russia
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 13-8421, Japan
| |
Collapse
|
3
|
Volkova NA, Romanov MN, Vetokh AN, Larionova PV, Volkova LA, Abdelmanova AS, Sermyagin AA, Griffin DK, Zinovieva NA. Genome-Wide Association Study Reveals the Genetic Architecture of Growth and Meat Production Traits in a Chicken F 2 Resource Population. Genes (Basel) 2024; 15:1246. [PMID: 39457370 PMCID: PMC11507135 DOI: 10.3390/genes15101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES For genomic selection to enhance the efficiency of broiler production, finding SNPs and candidate genes that define the manifestation of main selected traits is essential. We conducted a genome-wide association study (GWAS) for growth and meat productivity traits of roosters from a chicken F2 resource population (n = 152). METHODS The population was obtained by crossing two breeds with contrasting phenotypes for performance indicators, i.e., Russian White (slow-growing) and Cornish White (fast-growing). The birds were genotyped using the Illumina Chicken 60K SNP iSelect BeadChip. After LD filtering of the data, 54,188 SNPs were employed for the GWAS analysis that allowed us to reveal significant specific associations for phenotypic traits of interest and economic importance. RESULTS At the threshold value of p < 9.2 × 10-7, 83 SNPs associated with body weight at the age of 28, 42, and 63 days were identified, as well as 171 SNPs associated with meat qualities (average daily gain, slaughter yield, and dressed carcass weight and its components). Moreover, 34 SNPs were associated with a group of three or more traits, including 15 SNPs significant for a group of growth traits and 5 SNPs for a group of meat productivity indicators. Relevant to these detected SNPs, nine prioritized candidate genes associated with the studied traits were revealed, including WNT2, DEPTOR, PPA2, UNC80, DDX51, PAPPA, SSC4D, PTPRU, and TLK2. CONCLUSIONS The found SNPs and candidate genes can serve as genetic markers for growth and meat performance characteristics in chicken breeding in order to achieve genetic improvement in broiler production.
Collapse
Affiliation(s)
- Natalia A. Volkova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Michael N. Romanov
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Anastasia N. Vetokh
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Polina V. Larionova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Ludmila A. Volkova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Alexandra S. Abdelmanova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| | - Alexander A. Sermyagin
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, St. Petersburg 196601, Russia;
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Natalia A. Zinovieva
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.N.V.); (P.V.L.); (L.A.V.); (A.S.A.)
| |
Collapse
|
4
|
Abdelmanova AA, Deniskova TE, Kharzinova VR, Chinarov RY, Boronetskaya OI, Sölkner J, Brem G, Ai H, Huang L, Trukhachev VI, Zinovieva NA. Tracing the Dynamical Genetic Diversity Changes of Russian Livni Pigs during the Last 50 Years with the Museum, Old, and Modern Samples. Animals (Basel) 2024; 14:1629. [PMID: 38891676 PMCID: PMC11171240 DOI: 10.3390/ani14111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The pig industry is usually considered an intensive livestock industry, mainly supported by hybrid breeding between commercial pig breeds. However, people's pursuit of a more natural environment and higher meat quality has led to an increasing demand for eco-friendly and diverse pig feeding systems. Therefore, the importance of rearing and conserving local pig breeds is increasing. The Livni pig is a local breed with good adaptability to the environmental and fodder conditions in central Russia. In this study, we aimed to analyze the genetic diversity and population structure of Livni pigs using whole-genome single nucleotide polymorphism (SNP) data. We utilized the Porcine GGP HD BeadChip on genotype samples from old (n = 32, 2004) and modern (n = 32, 2019) populations of Livni pigs. For the museum samples of Livni pigs (n = 3), we extracted DNA from their teeth, performed genomic sequencing, and obtained SNP genotypes from the whole-genome sequences. SNP genotypes of Landrace (n = 32) and Large White (n = 32) pigs were included for comparative analysis. We observed that the allelic richness of Livni pigs was higher than those of Landrace and Large White pigs (AR = 1.775-1.798 vs. 1.703 and 1.668, respectively). The effective population size estimates (NE5 = 108 for Livni pigs, NE5 = 59 for Landrace and Large White pigs) confirmed their genetic diversity tendency. This was further supported by the length and number of runs of homozygosity, as well as the genomic inbreeding coefficient (almost twofold lower in Livni pigs compared to Landrace and Large White pigs). These findings suggest that the Livni pig population exhibits higher genetic diversity and experiences lower selection pressure compared to commercial pig populations. Furthermore, both principal component and network tree analyses demonstrated a clear differentiation between Livni pigs and transboundary commercial pigs. The TreeMix results indicated gene flow from Landrace ancestors to Livni pigs (2019) and from Large White ancestors to Livni pigs (2004), which was consistent with their respective historical breeding backgrounds. The comparative analysis of museum, old, and modern Livni pigs indicated that the modern Livni pig populations have preserved their historical genomic components, suggesting their potential suitability for future design selection programs.
Collapse
Affiliation(s)
- Alexandra A. Abdelmanova
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk Municipal District, Moscow Region, Podolsk 142132, Russia; (A.A.A.); (V.R.K.); (R.Y.C.)
| | - Tatiana E. Deniskova
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk Municipal District, Moscow Region, Podolsk 142132, Russia; (A.A.A.); (V.R.K.); (R.Y.C.)
| | - Veronika R. Kharzinova
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk Municipal District, Moscow Region, Podolsk 142132, Russia; (A.A.A.); (V.R.K.); (R.Y.C.)
| | - Roman Yu Chinarov
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk Municipal District, Moscow Region, Podolsk 142132, Russia; (A.A.A.); (V.R.K.); (R.Y.C.)
| | - Oksana I. Boronetskaya
- Museum of Livestock, Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow 127550, Russia; (O.I.B.); (V.I.T.)
| | - Johann Sölkner
- Division of Livestock Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria;
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine (VMU), Veterinärplatz, 1210 Vienna, Austria;
| | - Huashui Ai
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang 330045, China; (H.A.); (L.H.)
| | - Lusheng Huang
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang 330045, China; (H.A.); (L.H.)
| | - Vladimir I. Trukhachev
- Museum of Livestock, Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow 127550, Russia; (O.I.B.); (V.I.T.)
| | - Natalia A. Zinovieva
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk Municipal District, Moscow Region, Podolsk 142132, Russia; (A.A.A.); (V.R.K.); (R.Y.C.)
| |
Collapse
|
5
|
Romanov MN, Shakhin AV, Abdelmanova AS, Volkova NA, Efimov DN, Fisinin VI, Korshunova LG, Anshakov DV, Dotsev AV, Griffin DK, Zinovieva NA. Dissecting Selective Signatures and Candidate Genes in Grandparent Lines Subject to High Selection Pressure for Broiler Production and in a Local Russian Chicken Breed of Ushanka. Genes (Basel) 2024; 15:524. [PMID: 38674458 PMCID: PMC11050503 DOI: 10.3390/genes15040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Breeding improvements and quantitative trait genetics are essential to the advancement of broiler production. The impact of artificial selection on genomic architecture and the genetic markers sought remains a key area of research. Here, we used whole-genome resequencing data to analyze the genomic architecture, diversity, and selective sweeps in Cornish White (CRW) and Plymouth Rock White (PRW) transboundary breeds selected for meat production and, comparatively, in an aboriginal Russian breed of Ushanka (USH). Reads were aligned to the reference genome bGalGal1.mat.broiler.GRCg7b and filtered to remove PCR duplicates and low-quality reads using BWA-MEM2 and bcftools software; 12,563,892 SNPs were produced for subsequent analyses. Compared to CRW and PRW, USH had a lower diversity and a higher genetic distinctiveness. Selective sweep regions and corresponding candidate genes were examined based on ZFST, hapFLK, and ROH assessment procedures. Twenty-seven prioritized chicken genes and the functional projection from human homologs suggest their importance for selection signals in the studied breeds. These genes have a functional relationship with such trait categories as body weight, muscles, fat metabolism and deposition, reproduction, etc., mainly aligned with the QTLs in the sweep regions. This information is pivotal for further executing genomic selection to enhance phenotypic traits.
Collapse
Affiliation(s)
- Michael N. Romanov
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (A.V.S.); (A.S.A.); (N.A.V.); (A.V.D.)
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
| | - Alexey V. Shakhin
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (A.V.S.); (A.S.A.); (N.A.V.); (A.V.D.)
| | - Alexandra S. Abdelmanova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (A.V.S.); (A.S.A.); (N.A.V.); (A.V.D.)
| | - Natalia A. Volkova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (A.V.S.); (A.S.A.); (N.A.V.); (A.V.D.)
| | - Dmitry N. Efimov
- Federal State Budget Scientific Institution Federal Scientific Center “All-Russian Research and Technological Poultry Institute”, Sergiev Posad 141311, Moscow Oblast, Russia; (D.N.E.); (V.I.F.); (L.G.K.)
| | - Vladimir I. Fisinin
- Federal State Budget Scientific Institution Federal Scientific Center “All-Russian Research and Technological Poultry Institute”, Sergiev Posad 141311, Moscow Oblast, Russia; (D.N.E.); (V.I.F.); (L.G.K.)
| | - Liudmila G. Korshunova
- Federal State Budget Scientific Institution Federal Scientific Center “All-Russian Research and Technological Poultry Institute”, Sergiev Posad 141311, Moscow Oblast, Russia; (D.N.E.); (V.I.F.); (L.G.K.)
| | - Dmitry V. Anshakov
- Breeding and Genetic Center “Zagorsk Experimental Breeding Farm”—Branch of the Federal Research Center “All-Russian Poultry Research and Technological Institute”, Russian Academy of Sciences, Sergiev Posad 141311, Moscow Oblast, Russia;
| | - Arsen V. Dotsev
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (A.V.S.); (A.S.A.); (N.A.V.); (A.V.D.)
| | | | - Natalia A. Zinovieva
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (A.V.S.); (A.S.A.); (N.A.V.); (A.V.D.)
| |
Collapse
|
6
|
Dementieva NV, Shcherbakov YS, Stanishevskaya OI, Vakhrameev AB, Larkina TA, Dysin AP, Nikolaeva OA, Ryabova AE, Azovtseva AI, Mitrofanova OV, Peglivanyan GK, Reinbach NR, Griffin DK, Romanov MN. Large-scale genome-wide SNP analysis reveals the rugged (and ragged) landscape of global ancestry, phylogeny, and demographic history in chicken breeds. J Zhejiang Univ Sci B 2024; 25:324-340. [PMID: 38584094 PMCID: PMC11009443 DOI: 10.1631/jzus.b2300443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 04/09/2024]
Abstract
The worldwide chicken gene pool encompasses a remarkable, but shrinking, number of divergently selected breeds of diverse origin. This study was a large-scale genome-wide analysis of the landscape of the complex molecular architecture, genetic variability, and detailed structure among 49 populations. These populations represent a significant sample of the world's chicken breeds from Europe (Russia, Czech Republic, France, Spain, UK, etc.), Asia (China), North America (USA), and Oceania (Australia). Based on the results of breed genotyping using the Illumina 60K single nucleotide polymorphism (SNP) chip, a bioinformatic analysis was carried out. This included the calculation of heterozygosity/homozygosity statistics, inbreeding coefficients, and effective population size. It also included assessment of linkage disequilibrium and construction of phylogenetic trees. Using multidimensional scaling, principal component analysis, and ADMIXTURE-assisted global ancestry analysis, we explored the genetic structure of populations and subpopulations in each breed. An overall 49-population phylogeny analysis was also performed, and a refined evolutionary model of chicken breed formation was proposed, which included egg, meat, dual-purpose types, and ambiguous breeds. Such a large-scale survey of genetic resources in poultry farming using modern genomic methods is of great interest both from the viewpoint of a general understanding of the genetics of the domestic chicken and for the further development of genomic technologies and approaches in poultry breeding. In general, whole genome SNP genotyping of promising chicken breeds from the worldwide gene pool will promote the further development of modern genomic science as applied to poultry.
Collapse
Affiliation(s)
- Natalia V Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding ‒ Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, St. Petersburg, 196601, Russia.
| | - Yuri S Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding ‒ Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, St. Petersburg, 196601, Russia
| | - Olga I Stanishevskaya
- Russian Research Institute of Farm Animal Genetics and Breeding ‒ Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, St. Petersburg, 196601, Russia
| | - Anatoly B Vakhrameev
- Russian Research Institute of Farm Animal Genetics and Breeding ‒ Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, St. Petersburg, 196601, Russia
| | - Tatiana A Larkina
- Russian Research Institute of Farm Animal Genetics and Breeding ‒ Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, St. Petersburg, 196601, Russia
| | - Artem P Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding ‒ Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, St. Petersburg, 196601, Russia
| | - Olga A Nikolaeva
- Russian Research Institute of Farm Animal Genetics and Breeding ‒ Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, St. Petersburg, 196601, Russia
| | - Anna E Ryabova
- Russian Research Institute of Farm Animal Genetics and Breeding ‒ Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, St. Petersburg, 196601, Russia
| | - Anastasiia I Azovtseva
- Russian Research Institute of Farm Animal Genetics and Breeding ‒ Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, St. Petersburg, 196601, Russia
| | - Olga V Mitrofanova
- Russian Research Institute of Farm Animal Genetics and Breeding ‒ Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, St. Petersburg, 196601, Russia
| | - Grigoriy K Peglivanyan
- Russian Research Institute of Farm Animal Genetics and Breeding ‒ Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, St. Petersburg, 196601, Russia
| | - Natalia R Reinbach
- Russian Research Institute of Farm Animal Genetics and Breeding ‒ Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, St. Petersburg, 196601, Russia
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK. ,
| | - Michael N Romanov
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK. ,
- L K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Oblast, 142132, Russia. ,
| |
Collapse
|
7
|
Yu C, Lin Z, Song X, Hu C, Qiu M, Yang L, Zhang Z, Pen H, Chen J, Xiong X, Xia B, Jiang X, Du H, Li Q, Zhu S, Liu S, Yang C, Liu Y. Whole transcriptome analysis reveals the key genes and noncoding RNAs related to follicular atresia in broilers. Anim Biotechnol 2023; 34:3144-3153. [PMID: 36306258 DOI: 10.1080/10495398.2022.2136680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Broodiness, a maternal behavior, is accompanied by the atresia of follicles and the serious degradation of poultry reproductive performance. The comparison of follicles between brooding and laying hens is usually an ideal model for exploring the regulation mechanism of follicle atresia. In this study, we selected three brooding hens and three laying hens to collect their follicles for whole transcriptome sequencing. The results demonstrated different expression patterns between the follicles of brooding hens and laying hens. In the top 10 differentially expressed genes with the highest expression, MMP10 was relatively low expressed in the follicles of brooding hens, but other nine genes were relatively highly expressed, including LRR1, RACK1, SPECC1L, ABHD2, COL6A3, RPS17, ATRN, BIRC6, PGAM1 and SPECC1L. While miR-21-3p, miR-146a-5p, miR-142-5p and miR-1b-3p were highly expressed in the follicles of brooding hen, miR-106-5p, miR-451, miR-183, miR-7, miR-2188-5p and miR-182-5p were lowly expressed in brooding hen. In addition, we identified 124 lncRNAs specifically expressed in the follicles of brooding hens and 147 lncRNAs specifically expressed in the follicles of laying hens. Our results may provide a theoretical basis for further exploration of the molecular mechanism of broodiness in broilers.
Collapse
Affiliation(s)
- Chunlin Yu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyan Song
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Chenming Hu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Mohan Qiu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Li Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zengrong Zhang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Han Pen
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Jialei Chen
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Xia Xiong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Bo Xia
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Xiaosong Jiang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Huarui Du
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Qingyun Li
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Shiliang Zhu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Siyang Liu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Tarasova EI, Frolov AN, Lebedev SV, Romanov MN. Landmark native breed of the Orenburg goats: progress in its breeding and genetics and future prospects. Anim Biotechnol 2023; 34:5139-5154. [PMID: 36495096 DOI: 10.1080/10495398.2022.2154221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This paper reviews information about a unique and iconic breed of the Orenburg Oblast, the homeland and the only place where the best herds of Orenburg down-hair goats in Russia are concentrated. Three types of these small ruminant animals are widespread on the territory of the region: Orenburg purebred gray goats, Orenburg purebred white goats, as well as crossbred white goats of F1 White Don × White Orenburg. Currently, at the farms of the Orenburg region, animals are selected according to their phenotype, with selected traits being color, weight and length of down hair. In recent years, the Orenburg goat breed has become an object of genetic research using various marker systems including immunogenetic, microsatellite, mtDNA and SNP markers. Overall, these studies evidence about the uniqueness of the allele pool in the landmark native breed of the Orenburg goats, which is a complex dynamic genetic system, prioritizing its further in-depth genome research and breeding applications.
Collapse
Affiliation(s)
- Ekaterina I Tarasova
- Federal Research Center for Biological Systems and Agrotechnologies, Orenburg, Russia
| | - Alexey N Frolov
- Federal Research Center for Biological Systems and Agrotechnologies, Orenburg, Russia
| | - Svyatoslav V Lebedev
- Federal Research Center for Biological Systems and Agrotechnologies, Orenburg, Russia
| | | |
Collapse
|
9
|
Volkova NA, Romanov MN, Abdelmanova AS, Larionova PV, German NY, Vetokh AN, Shakhin AV, Volkova LA, Anshakov DV, Fisinin VI, Narushin VG, Griffin DK, Sölkner J, Brem G, McEwan JC, Brauning R, Zinovieva NA. Genotyping-by-Sequencing Strategy for Integrating Genomic Structure, Diversity and Performance of Various Japanese Quail ( Coturnix japonica) Breeds. Animals (Basel) 2023; 13:3439. [PMID: 38003057 PMCID: PMC10668688 DOI: 10.3390/ani13223439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Traces of long-term artificial selection can be detected in genomes of domesticated birds via whole-genome screening using single-nucleotide polymorphism (SNP) markers. This study thus examined putative genomic regions under selection that are relevant to the development history, divergence and phylogeny among Japanese quails of various breeds and utility types. We sampled 99 birds from eight breeds (11% of the global gene pool) of egg (Japanese, English White, English Black, Tuxedo and Manchurian Golden), meat (Texas White and Pharaoh) and dual-purpose (Estonian) types. The genotyping-by-sequencing analysis was performed for the first time in domestic quails, providing 62,935 SNPs. Using principal component analysis, Neighbor-Net and Admixture algorithms, the studied breeds were characterized according to their genomic architecture, ancestry and direction of selective breeding. Japanese and Pharaoh breeds had the smallest number and length of homozygous segments indicating a lower selective pressure. Tuxedo and Texas White breeds showed the highest values of these indicators and genomic inbreeding suggesting a greater homozygosity. We revealed evidence for the integration of genomic and performance data, and our findings are applicable for elucidating the history of creation and genomic variability in quail breeds that, in turn, will be useful for future breeding improvement strategies.
Collapse
Affiliation(s)
- Natalia A. Volkova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.)
| | - Michael N. Romanov
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.)
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK;
| | - Alexandra S. Abdelmanova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.)
| | - Polina V. Larionova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.)
| | - Nadezhda Yu. German
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.)
| | - Anastasia N. Vetokh
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.)
| | - Alexey V. Shakhin
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.)
| | - Ludmila A. Volkova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.)
| | - Dmitry V. Anshakov
- Breeding and Genetic Center Zagorsk Experimental Breeding Farm—Branch of the Federal Research Centre, All-Russian Poultry Research and Technological Institute, Russian Academy of Sciences, Sergiev Posad 141311, Moscow Oblast, Russia;
| | - Vladimir I. Fisinin
- Federal Research Center “All-Russian Poultry Research and Technological Institute” of the Russian Academy of Sciences, Sergiev Posad 141311, Moscow Oblast, Russia;
| | - Valeriy G. Narushin
- Research Institute for Environment Treatment, 69032 Zaporizhya, Ukraine;
- Vita-Market Co., Ltd., 69032 Zaporizhya, Ukraine
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK;
| | - Johann Sölkner
- Institute of Livestock Sciences (NUWI), University of Natural Resources and Life Sciences Vienna, 1180 Vienna, Austria;
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - John C. McEwan
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand; (J.C.M.); (R.B.)
| | - Rudiger Brauning
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand; (J.C.M.); (R.B.)
| | - Natalia A. Zinovieva
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.)
| |
Collapse
|
10
|
Dementieva N, Nikitkina E, Shcherbakov Y, Nikolaeva O, Mitrofanova O, Ryabova A, Atroshchenko M, Makhmutova O, Zaitsev A. The Genetic Diversity of Stallions of Different Breeds in Russia. Genes (Basel) 2023; 14:1511. [PMID: 37510415 PMCID: PMC10378902 DOI: 10.3390/genes14071511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The specifics of breeding and selection significantly affect genetic diversity and variability within a breed. We present the data obtained from the genetic analysis of 21 thoroughbred and warmblood horse breeds. The most detailed information is described from the following breeds: Arabian, Trakehner, French Trotter, Standardbred, and Soviet Heavy Horse. The analysis of 509,617 SNP variants in 87 stallions from 21 populations made it possible to estimate the genetic diversity at the genome-wide level and distinguish the studied horse breeds from each other. In this study, we searched for heterozygous and homozygous ROH regions, evaluated inbreeding using FROH analysis, and generated a population structure using Admixture 1.3 software. Our findings indicate that the Arabian breed is an ancestor of many horse breeds. The study of the full-genome architectonics of breeds is of great practical importance for preserving the genetic characteristics of breeds and managing breeding. Studies were carried out to determine homozygous regions in individual breeds and search for candidate genes in these regions. Fifty-six candidate genes for the influence of selection pressure were identified. Our research reveals genetic diversity consistent with breeding directions and the breeds' history of origin.
Collapse
Affiliation(s)
- Natalia Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Elena Nikitkina
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Yuri Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Olga Nikolaeva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Olga Mitrofanova
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Anna Ryabova
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Mikhail Atroshchenko
- All-Russian Research Institute of Horse Breeding (ARRIH), Ryazan Region, Divovo, Rybnovskij District 391105, Russia
| | - Oksana Makhmutova
- All-Russian Research Institute of Horse Breeding (ARRIH), Ryazan Region, Divovo, Rybnovskij District 391105, Russia
| | - Alexander Zaitsev
- All-Russian Research Institute of Horse Breeding (ARRIH), Ryazan Region, Divovo, Rybnovskij District 391105, Russia
| |
Collapse
|
11
|
Romanov MN, Abdelmanova AS, Fisinin VI, Gladyr EA, Volkova NA, Anshakov DV, Stanishevskaya OI, Vakhrameev AB, Dotsev AV, Griffin DK, Zinovieva NA. Whole Genome Screening Procures a Holistic Hold of the Russian Chicken Gene Pool Heritage and Demographic History. BIOLOGY 2023; 12:979. [PMID: 37508409 PMCID: PMC10376169 DOI: 10.3390/biology12070979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
A study for genomic variation that may reflect putative selective signaling and be associated with economically important traits is instrumental for obtaining information about demographic and selection history in domestic animal species and populations. A rich variety of the Russian chicken gene pool breeds warrants a further detailed study. Specifically, their genomic features can derive implications from their genome architecture and selective footprints for their subsequent breeding and practical efficient exploitation. In the present work, whole genome genotyping of 19 chicken breeds (20 populations with up to 71 samples each) was performed using the Chicken 50 K BeadChip DNA chip. The studied breed sample included six native Russian breeds of chickens developed in the 17th-19th centuries, as well as eight Russian chicken breeds, including the Russian White (RW), created in the 20th century on the basis of improving local chickens using breeds of foreign selection. Five specialized foreign breeds of chickens, including the White Leghorn (WL), were used along with other breeds representing the Russian gene pool. The characteristics of the genetic diversity and phylogenetic relationships of the native breeds of chickens were represented in comparison with foreign breeds. It was established that the studied native breeds demonstrate their own genetic structure that distinguishes them from foreign breeds, and from each other. For example, we previously made an assumption on what could cause the differences between two RW populations, RW1 and RW2. From the data obtained here, it was verified that WL was additionally crossed to RW2, unlike RW1. Thus, inherently, RW1 is a purer population of this improved Russian breed. A significant contribution of the gene pool of native breeds to the global genetic diversity of chickens was shown. In general, based on the results of a multilateral survey of this sample of breeds, it can be concluded that phylogenetic relationships based on their genetic structure and variability robustly reflect the known, previously postulated and newly discovered patterns of evolution of native chickens. The results herein presented will aid selection and breeding work using this gene pool.
Collapse
Affiliation(s)
- Michael N Romanov
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK
| | - Alexandra S Abdelmanova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia
| | - Vladimir I Fisinin
- Center "All-Russian Poultry Research and Technological Institute" of the Russian Academy of Sciences, Sergiev Posad 141311, Moscow Oblast, Russia
| | - Elena A Gladyr
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia
| | - Natalia A Volkova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia
| | - Dmitry V Anshakov
- Breeding and Genetic Center "Zagorsk Experimental Breeding Farm"-Branch of the Federal Research Centre "All-Russian Poultry Research and Technological Institute" of the Russian Academy of Sciences, Sergiev Posad 141311, Moscow Oblast, Russia
| | - Olga I Stanishevskaya
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L. K. Ernst Federal Research Center for Animal Husbandry, Pushkin, Saint Petersburg 196601, Russia
| | - Anatoly B Vakhrameev
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L. K. Ernst Federal Research Center for Animal Husbandry, Pushkin, Saint Petersburg 196601, Russia
| | - Arsen V Dotsev
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK
| | - Natalia A Zinovieva
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia
| |
Collapse
|
12
|
Integrative comparative analysis of avian chromosome evolution by in-silico mapping of the gene ontology of homologous synteny blocks and evolutionary breakpoint regions. Genetica 2023:10.1007/s10709-023-00185-x. [PMID: 36940055 DOI: 10.1007/s10709-023-00185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 03/21/2023]
Abstract
Avian chromosomes undergo more intra- than interchromosomal rearrangements, which either induce or are associated with genome variations among birds. Evolving from a common ancestor with a karyotype not dissimilar from modern chicken, two evolutionary elements characterize evolutionary change: homologous synteny blocks (HSBs) constitute common conserved parts at the sequence level, while evolutionary breakpoint regions (EBRs) occur between HSBs, defining the points where rearrangement occurred. Understanding the link between the structural organization and functionality of HSBs and EBRs provides insight into the mechanistic basis of chromosomal change. Previously, we identified gene ontology (GO) terms associated with both; however, here we revisit our analyses in light of newly developed bioinformatic algorithms and the chicken genome assembly galGal6. We aligned genomes available for six birds and one lizard species, identifying 630 HSBs and 19 EBRs. We demonstrate that HSBs hold vast functionality expressed by GO terms that have been largely conserved through evolution. Particularly, we found that genes within microchromosomal HSBs had specific functionalities relevant to neurons, RNA, cellular transport and embryonic development, and other associations. Our findings suggest that microchromosomes may have conserved throughout evolution due to the specificity of GO terms within their HSBs. The detected EBRs included those found in the genome of the anole lizard, meaning they were shared by all saurian descendants, with others being unique to avian lineages. Our estimate of gene richness in HSBs supported the fact that microchromosomes contain twice as many genes as macrochromosomes.
Collapse
|
13
|
Balog K, Mizeranschi AE, Wanjala G, Sipos B, Kusza S, Bagi Z. Application potential of chicken DNA chip in domestic pigeon species - Preliminary results. Saudi J Biol Sci 2023; 30:103594. [PMID: 36874200 PMCID: PMC9975693 DOI: 10.1016/j.sjbs.2023.103594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Introducing the SNP technology to pigeon breeding will enhance the competitiveness of a sector that produces one of the healthiest and best quality meats. The present study aimed to test the applicability of the Illumina Chicken_50K_CobbCons array on 24 domestic pigeon individuals from the Mirthys hybrids and Racing pigeon breeds. A total of 53,313 SNPs were genotyped. Principal component analysis shows a significant overlap between the two groups. The chip performed poorly in this data set, with a call rate per sample of 0.474 (49%). The low call rate was likely due to an increase in the evolutionary distance. A total of 356 SNPs were retained after a relatively strict quality control. We have demonstrated that it is technically feasible to use a chicken microarray chip on pigeon samples. Presumably, with a larger sample size and by assigning phenotypic data, efficiency would be improved, allowing more thorough analyses, such as genome-wide association studies.
Collapse
Affiliation(s)
- Katalin Balog
- University of Debrecen, Doctoral School of Animal Science, Böszörményi út 138, 4032, Debrecen, Hungary.,Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4002 Debrecen, Hungary
| | | | - George Wanjala
- University of Debrecen, Doctoral School of Animal Science, Böszörményi út 138, 4032, Debrecen, Hungary.,Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4002 Debrecen, Hungary
| | - Bíborka Sipos
- University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Böszörményi út 138, 4032, Debrecen, Hungary
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4002 Debrecen, Hungary
| | - Zoltán Bagi
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4002 Debrecen, Hungary
| |
Collapse
|
14
|
Disentangling clustering configuration intricacies for divergently selected chicken breeds. Sci Rep 2023; 13:3319. [PMID: 36849504 PMCID: PMC9971033 DOI: 10.1038/s41598-023-28651-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/23/2023] [Indexed: 03/01/2023] Open
Abstract
Divergently selected chicken breeds are of great interest not only from an economic point of view, but also in terms of sustaining diversity of the global poultry gene pool. In this regard, it is essential to evaluate the classification (clustering) of varied chicken breeds using methods and models based on phenotypic and genotypic breed differences. It is also important to implement new mathematical indicators and approaches. Accordingly, we set the objectives to test and improve clustering algorithms and models to discriminate between various chicken breeds. A representative portion of the global chicken gene pool including 39 different breeds was examined in terms of an integral performance index, i.e., specific egg mass yield relative to body weight of females. The generated dataset was evaluated within the traditional, phenotypic and genotypic classification/clustering models using the k-means method, inflection points clustering, and admixture analysis. The latter embraced SNP genotype datasets including a specific one focused on the performance-associated NCAPG-LCORL locus. The k-means and inflection points analyses showed certain discrepancies between the tested models/submodels and flaws in the produced cluster configurations. On the other hand, 11 core breeds were identified that were shared between the examined models and demonstrated more adequate clustering and admixture patterns. These findings will lay the foundation for future research to improve methods for clustering as well as genome- and phenome-wide association/mediation analyses.
Collapse
|
15
|
Romanov MN, Abdelmanova AS, Fisinin VI, Gladyr EA, Volkova NA, Koshkina OA, Rodionov AN, Vetokh AN, Gusev IV, Anshakov DV, Stanishevskaya OI, Dotsev AV, Griffin DK, Zinovieva NA. Selective footprints and genes relevant to cold adaptation and other phenotypic traits are unscrambled in the genomes of divergently selected chicken breeds. J Anim Sci Biotechnol 2023; 14:35. [PMID: 36829208 PMCID: PMC9951459 DOI: 10.1186/s40104-022-00813-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/27/2022] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND The genomes of worldwide poultry breeds divergently selected for performance and other phenotypic traits may also be affected by, and formed due to, past and current admixture events. Adaptation to diverse environments, including acclimation to harsh climatic conditions, has also left selection footprints in breed genomes. RESULTS Using the Chicken 50K_CobbCons SNP chip, we genotyped four divergently selected breeds: two aboriginal, cold tolerant Ushanka and Orloff Mille Fleur, one egg-type Russian White subjected to artificial selection for cold tolerance, and one meat-type White Cornish. Signals of selective sweeps were determined in the studied breeds using three methods: (1) assessment of runs of homozygosity islands, (2) FST based population differential analysis, and (3) haplotype differentiation analysis. Genomic regions of true selection signatures were identified by two or more methods or in two or more breeds. In these regions, we detected 540 prioritized candidate genes supplemented them with those that occurred in one breed using one statistic and were suggested in other studies. Amongst them, SOX5, ME3, ZNF536, WWP1, RIPK2, OSGIN2, DECR1, TPO, PPARGC1A, BDNF, MSTN, and beta-keratin genes can be especially mentioned as candidates for cold adaptation. Epigenetic factors may be involved in regulating some of these important genes (e.g., TPO and BDNF). CONCLUSION Based on a genome-wide scan, our findings can help dissect the genetic architecture underlying various phenotypic traits in chicken breeds. These include genes representing the sine qua non for adaptation to harsh environments. Cold tolerance in acclimated chicken breeds may be developed following one of few specific gene expression mechanisms or more than one overlapping response known in cold-exposed individuals, and this warrants further investigation.
Collapse
Affiliation(s)
- Michael N. Romanov
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia ,grid.9759.20000 0001 2232 2818School of Biosciences, University of Kent, Canterbury, UK
| | - Alexandra S. Abdelmanova
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Vladimir I. Fisinin
- grid.4886.20000 0001 2192 9124Federal State Budget Scientific Institution Federal Research Centre “All-Russian Poultry Research and Technological Institute” of the Russian Academy of Sciences, Sergiev Posad, Moscow Region Russia
| | - Elena A. Gladyr
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Natalia A. Volkova
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Olga A. Koshkina
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Andrey N. Rodionov
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Anastasia N. Vetokh
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Igor V. Gusev
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Dmitry V. Anshakov
- grid.4886.20000 0001 2192 9124Breeding and Genetic Centre “Zagorsk Experimental Breeding Farm” – Branch of the Federal Research Centre “All-Russian Poultry Research and Technological Institute” of the Russian Academy of Sciences, Sergiev Posad, Moscow Region Russia
| | - Olga I. Stanishevskaya
- grid.473314.6Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L.K. Ernst Federal Research Centre for Animal Husbandry, St. Petersburg, Russia
| | - Arsen V. Dotsev
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Darren K. Griffin
- grid.9759.20000 0001 2232 2818School of Biosciences, University of Kent, Canterbury, UK
| | - Natalia A. Zinovieva
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| |
Collapse
|
16
|
Kochish II, Titov VY, Nikonov IN, Brazhnik EA, Vorobyov NI, Korenyuga MV, Myasnikova OV, Dolgorukova AM, Griffin DK, Romanov MN. Unraveling signatures of chicken genetic diversity and divergent selection in breed-specific patterns of early myogenesis, nitric oxide metabolism and post-hatch growth. Front Genet 2023; 13:1092242. [PMID: 36712856 PMCID: PMC9874007 DOI: 10.3389/fgene.2022.1092242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction: Due to long-term domestication, breeding and divergent selection, a vast genetic diversity in poultry currently exists, with various breeds being characterized by unique phenotypic and genetic features. Assuming that differences between chicken breeds divergently selected for economically and culturally important traits manifest as early as possible in development and growth stages, we aimed to explore breed-specific patterns and interrelations of embryo myogenesis, nitric oxide (NO) metabolism and post-hatch growth rate (GR). Methods: These characteristics were explored in eight breeds of different utility types (meat-type, dual purpose, egg-type, game, and fancy) by incubating 70 fertile eggs per breed. To screen the differential expression of seven key myogenesis associated genes (MSTN, GHR, MEF2C, MYOD1, MYOG, MYH1, and MYF5), quantitative real-time PCR was used. Results: We found that myogenesis associated genes expressed in the breast and thigh muscles in a coordinated manner showing breed specificity as a genetic diversity signature among the breeds studied. Notably, coordinated ("accord") expression patterns of MSTN, GHR, and MEFC2 were observed both in the breast and thigh muscles. Also, associated expression vectors were identified for MYOG and MYOD1 in the breast muscles and for MYOG and MYF5 genes in the thigh muscles. Indices of NO oxidation and post-hatch growth were generally concordant with utility types of breeds, with meat-types breeds demonstrating higher NO oxidation levels and greater GR values as compared to egg-type, dual purpose, game and fancy breeds. Discussion: The results of this study suggest that differences in early myogenesis, NO metabolism and post-hatch growth are breed-specific; they appropriately reflect genetic diversity and accurately capture the evolutionary history of divergently selected chicken breeds.
Collapse
Affiliation(s)
- Ivan I. Kochish
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
| | - Vladimir Yu. Titov
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
- Federal Scientific Center “All-Russian Poultry Research and Technological Institute” of the Russian Academy of Sciences, Sergiev Posad, Moscow Oblast, Russia
| | - Ilya N. Nikonov
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
| | | | - Nikolai I. Vorobyov
- All-Russia Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - Maxim V. Korenyuga
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
| | - Olga V. Myasnikova
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
| | - Anna M. Dolgorukova
- Federal Scientific Center “All-Russian Poultry Research and Technological Institute” of the Russian Academy of Sciences, Sergiev Posad, Moscow Oblast, Russia
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Michael N. Romanov
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
17
|
Dementieva NV, Shcherbakov YS, Tyshchenko VI, Terletsky VP, Vakhrameev AB, Nikolaeva OA, Ryabova AE, Azovtseva AI, Mitrofanova OV, Peglivanyan GK, Reinbah NR, Griffin DK, Romanov MN. Comparative Analysis of Molecular RFLP and SNP Markers in Assessing and Understanding the Genetic Diversity of Various Chicken Breeds. Genes (Basel) 2022; 13:genes13101876. [PMID: 36292761 PMCID: PMC9601448 DOI: 10.3390/genes13101876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022] Open
Abstract
Monitoring the genetic diversity of small populations is important with respect to conserving rare and valuable chicken breeds, as well as discovery and innovation in germplasm research and application. Restriction fragment length polymorphisms (RFLPs), the molecular markers that underlie multilocus DNA fingerprinting (MLDF), have historically been employed for this purpose, but over the past two decades, there has been an irreversible shift toward high-throughput single-nucleotide polymorphisms (SNPs). In this study, we conducted a comparative analysis of archived MLDF results and new data from whole-genome SNP genotyping (SNPg) among 18 divergently selected breeds representing a large sample of the world gene pool. As a result, we obtained data that fit the general concept of the phylogenetic distribution of the studied breeds and compared them with RFLP and SNP markers. RFLPs were found to be useful markers for retrospective assessment of changes in the genetic architecture and variability underlying the phenotypic variation in chicken populations, especially when samples from previous generations used for MLDF are unavailable for SNPg. These results can facilitate further research necessary to assess the possibility of extrapolating previous MLDF results to study the long-term dynamics of genetic diversity in various small chicken germplasm populations over time. In general, the whole-genome characterization of populations and breeds by multiple SNP loci will further form the basis for the development and implementation of genomic selection with the aim of effective use of the genetic potential of the domestic gene pool in the poultry industry.
Collapse
Affiliation(s)
- Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
- Correspondence: (N.V.D.); (M.N.R.)
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Valentina I. Tyshchenko
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | | | - Anatoly B. Vakhrameev
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Olga A. Nikolaeva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Anna E. Ryabova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Anastasiia I. Azovtseva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Olga V. Mitrofanova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Grigoriy K. Peglivanyan
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Natalia R. Reinbah
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L.K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | | | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- Correspondence: (N.V.D.); (M.N.R.)
| |
Collapse
|
18
|
Vakhrameev AB, Narushin VG, Larkina TA, Barkova OY, Peglivanyan GK, Dysin AP, Dementieva NV, Makarova AV, Shcherbakov YS, Pozovnikova MV, Bondarenko YV, Griffin DK, Romanov MN. Selection-driven chicken phenome and phenomenon of pectoral angle variation across different chicken phenotypes. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Identification of Key Candidate Genes in Runs of Homozygosity of the Genome of Two Chicken Breeds, Associated with Cold Adaptation. BIOLOGY 2022; 11:biology11040547. [PMID: 35453746 PMCID: PMC9026094 DOI: 10.3390/biology11040547] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary The search for genomic regions related to adaptive abilities preserved in the chicken gene pool of two breeds, which have not been under intensive selection pressure, is of great importance for breeding in the future. This study aimed to identify key candidate genes associated with the adaptation of chickens to cold environments (using the example of the Russian White breed) by using molecular genetic methods. A total of 12 key genes on breed-specific ROH (runs of homozygosity) islands were identified, which may be potential candidate genes associated with the high level of adaptability of chickens to cold environments in the early postnatal period. These genes were associated with lipid metabolism, maintaining body temperature in cold environments, non-shivering thermogenesis and muscle development and are perspectives for further research. Abstract It is well known that the chicken gene pools have high adaptive abilities, including adaptation to cold environments. This research aimed to study the genomic distribution of runs of homozygosity (ROH) in a population of Russian White (RW) chickens as a result of selection for adaptation to cold environments in the early postnatal period, to perform a structural annotation of the discovered breed-specific regions of the genome (compared to chickens of the Amroks breed) and to suggest key candidate genes associated with the adaptation of RW chickens to cold environments. Genotyping of individual samples was performed using Illumina Chicken 60K SNP BeadChip® chips. The search for homozygous regions by individual chromosomes was carried out using the PLINK 1.9 program and the detectRuns R package. Twelve key genes on breed-specific ROH islands were identified. They may be considered as potential candidate genes associated with the high adaptive ability of chickens in cold environments in the early postnatal period. Genes associated with lipid metabolism (SOCS3, NDUFA4, TXNRD2, IGFBP 1, IGFBP 3), maintaining body temperature in cold environments (ADIPOQ, GCGR, TRPM2), non-shivering thermogenesis (RYR2, CAMK2G, STK25) and muscle development (METTL21C) are perspectives for further research. This study contributes to our understanding of the mechanisms of adaptation to cold environments in chickens and provides a molecular basis for selection work.
Collapse
|