1
|
Vidjak K, Hessinger C, Cavagnaro M. Broadband Dielectric Spectroscopy with a Microwave Ablation Antenna. SENSORS (BASEL, SWITZERLAND) 2023; 23:2579. [PMID: 36904783 PMCID: PMC10007348 DOI: 10.3390/s23052579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Microwave ablation is a technique used to treat tumorous tissue. Its clinical use has been greatly expanding in the last few years. Because the design of the ablation antenna and the success of the treatment greatly depend on the accurate knowledge of the dielectric properties of the tissue being treated, it is highly valuable to have a microwave ablation antenna that is also able to perform in-situ dielectric spectroscopy. In this work, an open-ended coaxial slot ablation antenna design operating at 5.8 GHz is adopted from previous work, and its sensing abilities and limitations are investigated in respect of the dimensions of the material under test. Numerical simulations were performed to investigate the functionality of the floating sleeve of the antenna and to find the optimal de-embedding model and calibration option for obtaining accurate dielectric properties of the area of interest. Results show that, as in the case of the open-ended coaxial probe, the accuracy of the measurement greatly depends on the likeness between the calibration standards' dielectric properties and the material under test. Finally, the results of this paper clarify to which extent the antenna can be used to measure dielectric properties and paves the way to future improvements and the introduction of this functionality into microwave thermal ablation treatments.
Collapse
Affiliation(s)
- Klementina Vidjak
- Department of Information Engineering, Electronics, and Telecommunications, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carolin Hessinger
- Institute for Microwave Engineering and Photonics, Technische Universität Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany
| | - Marta Cavagnaro
- Department of Information Engineering, Electronics, and Telecommunications, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
2
|
Hessinger C, Hübner F, Schüßler M, Paravicini M, Ketomäki M, Vogl T, Jakoby R. Evolution of a theranostic applicator for microwave ablation treatment. FREQUENZ 2022; 76:677-684. [DOI: 10.1515/freq-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Abstract
The purpose of this work is to further develop a novel dual-mode microwave applicator for diagnosis and thermal ablation treatment. The MR-compatible MW applicator enables differentiation of tumor tissue and healthy tissue through dielectric contrast measurements, optimizing the positioning of the applicator in the lesion. Due to the robust applicator design and the resulting permittivity tracking during ablation, even carbonized tissue can be detected. The use of operating frequencies between 5 and 10 GHz allow a noticeably lower power consumption for microwave ablation of only 20 W compared to commercially available applicators. Clinically relevant dimensions of ablation zones can be achieved and additionally monitored using MR imaging and thermometry.
Collapse
Affiliation(s)
- Carolin Hessinger
- Institute for Microwave Engineering and Photonics , Technische Universität Darmstadt , Merckstr. 25, 64283 Darmstadt , Germany
| | - Frank Hübner
- Institute of Diagnostic and Interventional Radiology , J. W. Goethe-Universität Frankfurt , Theodor-Stern-Kai 7, 60590 , Frankfurt am Main , Germany
| | - Martin Schüßler
- Institute for Microwave Engineering and Photonics , Technische Universität Darmstadt , Merckstr. 25, 64283 Darmstadt , Germany
| | - Markus Paravicini
- Institute for Microwave Engineering and Photonics , Technische Universität Darmstadt , Merckstr. 25, 64283 Darmstadt , Germany
| | - Markus Ketomäki
- Institute of Diagnostic and Interventional Radiology , J. W. Goethe-Universität Frankfurt , Theodor-Stern-Kai 7, 60590 , Frankfurt am Main , Germany
| | - Thomas Vogl
- Institute of Diagnostic and Interventional Radiology , J. W. Goethe-Universität Frankfurt , Theodor-Stern-Kai 7, 60590 , Frankfurt am Main , Germany
| | - Rolf Jakoby
- Institute for Microwave Engineering and Photonics , Technische Universität Darmstadt , Merckstr. 25, 64283 Darmstadt , Germany
| |
Collapse
|
3
|
Sebek J, Cappiello G, Rahmani G, Zeinali N, Keating M, Fayemiwo M, Harkin J, McDaid L, Gardiner B, Sheppard D, Senanayake R, Gurnell M, O’Halloran M, Dennedy MC, Prakash P. Image-based computer modeling assessment of microwave ablation for treatment of adrenal tumors. Int J Hyperthermia 2022; 39:1264-1275. [PMID: 36137605 PMCID: PMC9820798 DOI: 10.1080/02656736.2022.2125590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To assess the feasibility of delivering microwave ablation for targeted treatment of aldosterone producing adenomas using image-based computational models. METHODS We curated an anonymized dataset of diagnostic 11C-metomidate PET/CT images of 14 patients with aldosterone producing adenomas (APA). A semi-automated approach was developed to segment the APA, adrenal gland, and adjacent organs within 2 cm of the APA boundary. The segmented volumes were used to implement patient-specific 3D electromagnetic-bioheat transfer models of microwave ablation with a 2.45 GHz directional microwave ablation applicator. Ablation profiles were quantitatively assessed based on the extent of the APA target encompassed by an ablative thermal dose, while limiting thermal damage to the adjacent normal adrenal tissue and sensitive critical structures. RESULTS Across the 14 patients, adrenal tumor volumes ranged between 393 mm3 and 2,395 mm3. On average, 70% of the adrenal tumor volumes received an ablative thermal dose of 240CEM43, while limiting thermal damage to non-target structures, and thermally sparing 83.5-96.4% of normal adrenal gland. Average ablation duration was 293 s (range: 60-600 s). Simulations indicated coverage of the APA with an ablative dose was limited when the axis of the ablation applicator was not well aligned with the major axis of the targeted APA. CONCLUSIONS Image-based computational models demonstrate the potential for delivering microwave ablation to APA targets within the adrenal gland, while limiting thermal damage to surrounding non-target structures.
Collapse
Affiliation(s)
- Jan Sebek
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Grazia Cappiello
- Translational Medical Devices Lab, National University of Ireland, Galway, Republic of Ireland
| | - George Rahmani
- Department of Radiology, Galway University Hospitals, Galway, Republic Ireland
| | - Nooshin Zeinali
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Muireann Keating
- School of Medicine, National University of Ireland, Galway, Republic Ireland
| | - Michael Fayemiwo
- School of Computing, Engineering, and Intelligent Systems, Ulster University, Londonderry, Northern Ireland
| | - Jim Harkin
- School of Computing, Engineering, and Intelligent Systems, Ulster University, Londonderry, Northern Ireland
| | - Liam McDaid
- School of Computing, Engineering, and Intelligent Systems, Ulster University, Londonderry, Northern Ireland
| | - Bryan Gardiner
- School of Computing, Engineering, and Intelligent Systems, Ulster University, Londonderry, Northern Ireland
| | - Declan Sheppard
- Department of Radiology, Galway University Hospitals, Galway, Republic Ireland
| | | | - Mark Gurnell
- Institute of Metabolic Science, University of Cambridge, United Kingdom
| | - Martin O’Halloran
- Translational Medical Devices Lab, National University of Ireland, Galway, Republic of Ireland
| | - M. Conall Dennedy
- School of Medicine, National University of Ireland, Galway, Republic Ireland
| | - Punit Prakash
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA.,Author to whom correspondence should be addressed: Punit Prakash, 3078 Engineering Hall, 1701D Platt St, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|